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1 Introduction

In modern science, there is a huge interest in the theory and application of the Golden Sec-
tion and Fibonacci numbers [1–17]. The Fibonacci numbers Fn are the terms of the sequence
0, 1, 1, 2, 5, ..., where Fn = Fn−1+Fn−2, n ≥ 2, with the initial values F0 = 0 and F1 = 1. Falcon
and Plaza [2] introduced a general Fibonacci sequence that generalizes the classical Fibonacci se-
quence. These general k-Fibonacci numbers Fk,n are defined by Fk,n = kFk,n−1+Fk,n−2, n ≥ 2,

with the initial conditions Fk,0 = 0 and Fk,1 = 1. If k is a real variable, then Fk,n will be equal to
Fx,n and they correspond to Fibonacci polynomials.

Fibonacci polynomials were studied in 1883 by the Belgian mathematician Eugene Charles
and German mathematician E. Jacobsthal. The polynomials Fn(x) were defined by the recurrence
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relation
Fn(x) = xFn−1(x) + Fn−2(x), n ≥ 2

where F0(x) = 0 and F1(x) = 1. The Fibonacci polynomials and their relationship to diagonals
of Pascal’s triangle were generalized by Hoggat and Bicknell [5]. Some relationships between
Zeckendorf theorem and Fibonacci polynomials [6] were examined. Their divisibility properties
had been found by Jacob et al. [10] and Webb and Parberry [17], Hoggat and Bicknell [7] found
the roots of Fibonacci polynomials of degree n. In [11], h(x)-Fibonacci polynomials were defined
that generalize both Catalan’s and Bryd’s Fibonacci polynomials. In [2], Falcon and Plaza inves-
tigated the derivatives of these polynomials and they had given many relations for the derivatives
of Fibonacci polynomials.

Afterwards, some new generalizations were identified about Fibonacci polynomials which
were given by Catalan. One of them is bivariate Fibonacci polynomials, defined as

Fn(x, y) = xFn−1(x, y) + yFn−2(x, y), n ≥ 2.

Many properties for selected values of the variables and some recurrence relations of bivariate
Fibonacci and Lucas polynomials were obtained [1]. In [9], the properties of bivariate Fibonacci
polynomials order k had been investigated in terms of the generating functions. M. N. S. Swamy
[12] derived some new properties concerning the derivatives of bivariate Fibonacci and Lucas
polynomials. In [3, 4] the works of Filipponi and Horadam revealed the first and second order
derivative sequences of Fibonacci and Lucas polynomials and these results had been extended
to the k-th derivative case as conjectured in [4] and then had been confirmed in [16]. Filipponi
and Horadam [4] considered the partial derivative sequences of bivariate second order recurrence
polynomials. In [15], Yu and Liang extended some of the results and derived some identities
involving the partial derivative sequences of bivariate Fibonacci and Lucas polynomials. One of
the generalization of Fibonacci polynomials is given by Tuğlu, Koçer and Stakhov [13]. Also in
[14], Claudio de Jesus Pita Ruiz Velasco defines bivariate s-Fibopolynomials and gives some of
the derivative identities.

This paper is based on the definition of Falcon and Plaza [2] and Tuğlu, Koçer, Stakhov
[13]. We study on the derivatives of bivariate Fibonacci polynomials in the form of convolution
of these polynomials. In this sense, the present paper is organised as follows. In Section 2, a
brief summary of the previous results obtained by Falcon and Plaza in [2] is given. In Section
3, some basic facts are given about bivariate Fibonacci Polynomials. Section 4 presents some
new relations related with the derivatives of bivariate Fibonacci Polynomials and gives a new
recurrence relation for the r-th partial derivative sequence.

2 The Fibonacci polynomials

In this section, we will give some basic facts related to Fibonacci polynomials. These results and
more can be found in [2].

The k-Fibonacci sequence, namely {Fk,n}n∈N has been defined recurrently by Fk,n+1 =

kFk,n+Fk,n−1 for n ≥ 1 and any positive real number k, with initial conditions Fk,0 = 0, Fk,1 = 1.
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If k is a real variable x then Fk,n = Fx,n and they correspond to the Fibonacci polynomials. The
Fibonacci polynomials are defined as follows

Fn+1 (x) =


1, n = 0

x, n = 1

xFn (x) + Fn−1 (x) , n ≥ 2

. (2.1)

According to this definition, the sequence of the Fibonacci polynomials is

{Fn(x)} = {1, x, x2 + 1, x3 + 2x, x4 + 3x2 + 1, . . .}.

Note that the k-Fibonacci polynomials are the natural extension of the k-Fibonacci numbers.
The general term of the Fibonacci polynomials is

Fn+1(x) =

bn
2
c∑

i=0

(
n− i

i

)
xn−2i, n ≥ 0. (2.2)

On the other hand, by deriving the elements of the sequence of Fibonacci polynomials the
following derivative sequence is obtained:

{F ′n(x)} = {0, 1, 2x, 3x2 + 2, 4x3 + 6x, . . .}.

The general term of the derivative sequence of Fibonacci polynomials is given as

F
′

n+1(x) =

bn−1
2
c∑

i=0

(
n− i

i

)
(n− 2i)xn−1−2i, n ≥ 1

by deriving equation 2.2 where F
′
1(x) = 0.

3 Bivariate Fibonacci polynomials

One of the generalizations of the Fibonacci-type polynomials and also Fibonacci numbers are
bivariate Fibonacci polynomials. The generalized bivariate Fibonacci polynomials are defined as

Hn(x, y) = xHn−1(x, y) + yHn−2(x, y), n ≥ 2. (3.1)

with initial conditions H0(x, y) = a0, H1(x, y) = a1 and it is assumed y 6= 0 and x2+4y 6= 0. In
[1], by taking a0 = 0, a1 = 1 the bivariate Fibonacci polynomials Fn(x, y) and by taking a0 = 2,
a1 = x the bivariate Lucas polynomials Ln(x, y) were obtained, where,

Fn(x, y) = xFn−1(x, y) + yFn−2(x, y), n ≥ 2 (3.2)

and
Ln(x, y) = xn−1L(x, y) + yLn−2(x, y), n ≥ 2. (3.3)

So, the first bivariate Fibonacci polynomials are

{Fn(x, y)} = {0, 1, x, x2 + y, x3 + 2xy, x4 + 3x2y + y2, . . .}.
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In [8], the general term of bivariate Fibonacci polynomials has been given by

Fn+1(x, y) =

bn
2
c∑

i=0

(
n− i

i

)
xn−2iyi, n ≥ 0. (3.4)

Some of relations between bivariate Fibonacci and Lucas polynomials as follows:

• The following equation appear in [12, eq. (2.8)] for all n ∈ Z,

Ln(x, y) = Fn+1(x, y) + yFn−1(x, y), (3.5)

• The following equation appear in [12, eq. (2.11)] for all n ∈ Z,(
x2 + 4y

)
Fn(x, y) = Ln+1(x, y) + yLn−1(x, y) (3.6)

• The following equation can be seen in [12, eq. (3.10)]

∂Ln(x, y)

∂x
= nFn(x, y). (3.6)

4 Expression of the derivative of bivariate
Fibonacci polynomials

In this section, we establish many formulas and relations for the derivatives of the bivariate Fi-
bonacci polynomials. Their derivatives are given as convolution of bivariate Fibonacci polyno-
mials. This fact allows us to present a family of integer sequences in a new and direct way. Also,
we give a new recurrence relation for the r-th partial derivative sequence.

If the equation 3.4 differantiate with respect to x and y the folllowing equalities are obtained

∂Fn+1(x, y)

∂x
=

bn−1
2
c∑

i=0

(
n− i

i

)
(n− 2i)xn−1−2iyi, n ≥ 1 (4.1)

∂Fn+1(x, y)

∂y
=

bn−1
2
c∑

i=0

(
n− i

i

)
(i)xn−2iyi−1, n ≥ 1 (4.2)

where ∂F1(x,y)
∂x

= ∂F1(x,y)
∂y

= 0 and by [12, eq. (3.12)]

∂Fn(x, y)

∂x
=

∂Fn+1(x, y)

∂y
(4.3)

is written.
The following theorem is a special form of [15, Theorem (2.a)].

Theorem 4.1. If ∂F1(x,y)
∂x

= 0, for n > 1, then

∂Fn(x, y)

∂x
=

n−1∑
i=1

Fi(x, y)Fn−i(x, y).
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Proof. We prove this conclusion by induction. For n = 2 it is trivial, since

2−1∑
i=1

Fi(x, y)F2−i(x, y) = F1(x, y)F1(x, y) = 1 =
∂

∂x
(x) =

∂F2(x, y)

∂x
.

Let us suppose that the formula is true for k ≤ n. Then

∂Fn−1(x, y)

∂x
=

n−2∑
i=1

Fi(x, y)Fn−1−i(x, y)

∂Fn(x, y)

∂x
=

n−1∑
i=1

Fi(x, y)Fn−i(x, y).

By deriving the equation 3.2 according to variable x and using previous expression we get

∂Fn+1(x, y)

∂x
= Fn(x, y) + x

∂Fn(x, y)

∂x
+ y

∂Fn−1(x, y)

∂x

= Fn(x, y) + x

(
n−1∑
i=1

Fi(x, y)Fn−i(x, y)

)
+ y

(
n−2∑
i=1

Fi(x, y)Fn−1−i(x, y)

)

= Fn(x, y) + xF1(x, y)Fn−1(x, y) +
n−1∑
i=1

Fi(x, y) [xFn−i(x, y) + yFn−1−i(x, y)]

= Fn(x, y)F1(x, y) + Fn−1(x, y)F2(x, y) +
n−2∑
i=1

Fi(x, y)Fn−i+1(x, y)

=
n∑

i=1

Fi(x, y)Fn−i+1(x, y).

Corollary 4.1.1. For n > 1

∂Fn(x, y)

∂y
=

n−2∑
i=1

Fi(x, y)Fn−1−i(x, y)

where ∂F1(x,y)
∂x

= 0.

Theorem 4.2.

∂Fn+1(x, y)

∂x
=

bn−1
2
c∑

i=0

(−1)i (n− 2i)Fn−2i(x, y)y
i, n ≥ 1.

Proof. We proof this by induction. It is clear that the claim is true for n = 1. Let us suppose that
the claim is true for n. If n is an even integer, by induction hypothesis we get

∂F2p+1(x, y)

∂x
=

p−1∑
i=0

(−1)i (2p− 2i)F2p−2i(x, y)y
i
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and

∂F2p(x, y)

∂x
=

p−1∑
i=0

(−1)i (2p− 1− 2i)F2p−1−2i(x, y)y
i

=

p−1∑
i=0

(−1)i (2p− 2i)F2p−1−2i(x, y)y
i +

p−1∑
i=0

(−1)1+i (2p− 1− 2i) yi.

Now, we will show the equation is true for n+ 1 namely 2p+ 1. By using 3.2 we get

F2p+2(x, y) = xF2p+1(x, y) + yF2p(x, y).

Then,

∂F2p+2(x, y)

∂x
= F2p+1(x, y) + x

∂F2p+1(x, y)

∂x
+ y

∂F2p(x, y)

∂x

= F2p+1(x, y) + x

p−1∑
i=0

(−1)i (2p− 2i) yi [xF2p−2i(x, y) + yF2p−1−2i(x, y)]

+y

p−1∑
i=0

(−1)1+i (2p− 1− 2i) yi

= (2p+ 1)F2p+1(x, y)− p (2p− 1)F2p−1(x, y) + ...+ (−1)p F1(x, y)y
p

=

p∑
i=0

(−1)i (2p+ 1− 2i)F2p+1−2i(x, y)y
i

=

bn−1
2
c∑

i=0

(−1)i (n− 2i)Fn−2i(x, y)y
i =

∂Fn+1(x, y)

∂x
.

The similar proof can be given for the case when n is an odd integer. Thus, the result follows for
all natural numbers.

Corollary 4.2.1. For n ≥ 3

∂Fn(x, y)

∂y
=

bn−3
2
c∑

i=0

(n− 2− 2i)Fn−2−2i(x, y)y
i.

Theorem 4.3.
Fn(x, y) =

1

n

[
∂

∂x
Fn+1(x, y) + y

∂

∂x
Fn−1(x, y)

]
.

Proof. By using equation 3.2 it can be written

Fn+1(x, y) =

bn
2
c∑

i=0

(
n− i

i

)
(x)n−2i yi, n ≥ 1

and

Fn−1(x, y) =

bn−2
2
c∑

i=0

(
n− 2− i

i

)
(x)n−2−2i yi, n ≥ 3.
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Then

Fn+1(x, y) + yFn−1(x, y) =

bn
2
c∑

i=0

(
n− i

i

)
(x)n−2i yi + y

bn−2
2
c∑

i=0

(
n− 2− i

i

)
(x)n−2−2i yi

= xn +

bn
2
c∑

i=1

(
n− i

i

)
(x)n−2i yi +

bn−2
2
c∑

i=0

(
n− 2− i

i

)
(x)n−2−2i yi+1

= xn +

bn
2
c∑

i=1

(
n− i

i

)
(x)n−2i yi +

bn−2
2
c∑

i=1

(
n− 1− i

i− 1

)
(x)n−2−2i yi

= xn +

bn
2
c∑

i=1

[(
n− i

i

)
+

(
n− 1− i

i− 1

)]
(x)n−2i yi

= xn + n

bn
2
c∑

i=1

(
n− 1− i

i− 1

)
1

i
(x)n−2i yi.

Now by deriving the last form, we get

∂

∂x
Fn+1(x, y) + y

∂

∂x
Fn−1(x, y) = nxn−1 + n

bn
2
c∑

i=1

(
n− 1− i

i− 1

)
n− 2i

i
(x)n−1−2i yi.

Then,

1

n

[
∂

∂x
Fn+1(x, y) + y

∂

∂x
Fn−1(x, y)

]
= xn−1 +

bn
2
c∑

i=1

(
n− 1− i

i− 1

)
n− 2i

i
(x)n−1−2i yi

=

bn−1
2
c∑

i=0

(
n− 1− i

i

)
(x)n−1−2i yi = Fn(x, y)

So we are done.

Theorem 4.4.

∂Fn(x, y)

∂x
=

(n+ 1)Fn+1(x, y) + y (n− 1)Fn−1(x, y)− 2xFn(x, y)

x2 + 4y
, n ≥ 1.

Proof. By deriving equation 3.6 according to variable x we get

2xFn(x, y) +
(
x2 + 4y

) ∂Fn(x, y)

∂x
=

∂Ln+1(x, y)

∂x
+ y

∂Ln−1(x, y)

∂x
.

At this point, by using equation 3.6 the conclusion can be seen.

Corollary 4.4.1. For n > 1

∂Fn(x, y)

∂x
=

(n)Fn(x, y) + y (n− 2)Fn−2(x, y)− 2xFn−1(x, y)

x2 + 4y
.
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Theorem 4.5.

∂rFn+1(x, y)

∂xr
=


For n < r, 0

For n = r, r!

For n > r, 1
n−r

[
nx∂rFn(x,y)

∂xr + y (n+ r) ∂rFn−1(x,y)
∂xr

] .

Proof. We prove this by induction. For r = 1, three subcases occur;

• If n < 1, then ∂F1(x,y)
∂x

= 0,

• If n = 1, then ∂F2(x,y)
∂x

= (x)
′
= 1!,

• If n > 1, then by deriving the equation 3.2 according to variable x we get

∂Fn+1(x, y)

∂x
= Fn(x, y) + x

∂Fn(x, y)

∂x
+ y

∂Fn−1(x, y)

∂x

and by Theorem 4.3 the following conclusion is obtained:

∂Fn+1(x, y)

∂x
=

1

n− 1

[
nx

∂Fn(x, y)

∂x
+ y (n+ 1)

∂Fn−1(x, y)

∂x

]
So, the claim holds for r = 1. Let us suppose that the equation is true for the r-th partial
derivative and we will induct on r.

• If n < r + 1, from induction hypothesis we can write ∂r+1Fn+1(x,y)
∂xr+1 = 0,

• If n = r + 1, by deriving the equation 3.2 ) (r + 1) times according to variable x we get

∂r+1Fn+1(x, y)

∂xr+1
= (r + 1)

∂rFn(x, y)

∂xr
+ x

∂r+1Fn(x, y)

∂xr+1
+ y

∂r+1Fn−1(x, y)

∂xr+1

= (r + 1) r! = (r + 1)!

(4.4)

• If n > r + 1, by considering the induction hypothesis

∂rFn+1(x, y)

∂xr
=

1

n− r

[
nx

∂rFn(x, y)

∂xr
+ y (n+ r)

∂rFn−1(x, y)

∂xr

]
.

If this equation is derived according to variable x we get

∂r+1Fn+1(x, y)

∂xr+1
=

1

n− r

[
n
∂rFn(x, y)

∂xr
+ nx

∂r+1Fn(x, y)

∂xr+1
+ y (n+ r)

∂r+1Fn−1(x, y)

∂xr+1

]
.

(4.5)
If the equations 4.4 and 4.5 are considered together, the desired recurrence relation can be
obtained:

∂r+1Fn+1(x, y)

∂xr+1
=

1

n− r − 1

[
nx

∂r+1Fn(x, y)

∂xr+1
+ y (n+ r + 1)

∂r+1Fn−1(x, y)

∂xr+1

]

Corollary 4.5.1. For n > 1

∂rFn+1(x, y)

∂xr
=


For n < r, 0

For n = r, r!

For n > r, 1
n−r−1

[
(n− 1)x∂rFn−1(x,y)

∂xr + y (n− 1 + r) ∂rFn−2(x,y)
∂xr

] .
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