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Abstract: In the present paper, we introduce some new families of elliptic curves with positive
rank arising from Pythagorean triples. We study elliptic curves of the form y2 = x3 −A2x+B2,
where A,B ∈ {a, b, c} are two different numbers and (a, b, c) is a rational Pythagorean triple.
First of all, we prove that if (a, b, c) is a primitive Pythagorean triple (PPT), then the rank of
each family is positive. Furthermore, we construct subfamilies of rank at least 3 in each fam-
ily but one with rank at least 2, and obtain elliptic curves of high rank in each family. Finally,
we consider two other new families of elliptic curves of the forms y2 = x(x − a2)(x + c2) and
y2 = x(x−b2)(x+c2), and prove that if (a, b, c) is a PPT, then the rank of each family is positive.
Keywords: Elliptic curves, Rank, Pythagorean triples.
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1 Introduction

An elliptic curve (EC) over the rationals is a curve E of genus 1, defined over Q, together with a
Q-rational point, and is expressed by the generalized Weierstrass equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where a1, a2, a3, a4, a6 ∈ Q.
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A theorem of Mordell–Weil [11] states that the rational points on E form a finitely generated
Abelian group E(Q) under a natural group law, i.e., E(Q) ∼= Zr × E(Q)tors, where r is a non-
negative integer called the rank of E, and E(Q)tors is the subgroup of elements of finite order in
E(Q), called the torsion subgroup of E(Q). The rank of E is the rank of the free part of this
group.

By Mazur’s theorem [9], the torsion subgroup E(Q)tors is one of the following 15 groups:
Z/nZ with 1 ≤ n ≤ 10 or n = 12, Z/2Z× Z/2mZ with 1 ≤ m ≤ 4.

Currently there is no general unconditional algorithm to compute the rank. It is not known
which integers can occur as ranks, but a well-known conjecture says that the rank can be arbitrar-
ily large. Elliptic curves of large rank are hard to find and the current record is a curve of rank at
least 28, found by Elkies in 2006 (see [1]).

In a recent paper, J. Park et al. [7] presents a heuristic suggesting that there are only finitely
many elliptic curves of rank greater than 21. Their heuristic is based on modeling the ranks and
Shafarevich–Tate groups of elliptic curves simultaneously, and relies on a theorem counting al-
ternating integer matrices of specified rank. Also B. Naskrecki [6] proved that for a generic triple
the lower bound of the rank of the EC over Q is 1, and for some explicitly given infinite family,
the rank is 2. To each family, the author attaches an elliptic surface fibred over the projective line
and shows that the lower bounds for the rank are optimal, in the sense that for each generic fiber
of such an elliptic surface its corresponding Mordell–Weil group over the function field Q(T ) has
rank 1 or 2, respectively.

Specialization is a significant technique for finding a lower bound of the rank of a family
of elliptic curves. One can consider an EC on the rational function field Q(T ) and then obtain
elliptic curves over Q by specializing the variable T to suitable values t ∈ Q (see [10, Chapter
III, Theorem 11.4] for more information).

Using this technique, Nagao and Kauyo [5] have found curves of rank ≥ 21, and Fermigier
[2] obtained a curve of rank ≥ 22.

In order to determine r, one should find the generators of the free part of the Mordell–Weil
group. Determining the associated height matrix is a useful technique for finding a set of gener-
ators.

If the determinant of an associated height matrix is nonzero, then the given points are linearly
independent and rank (E(Q)) ≥ r (see [10, Chapter III] for more information).

In this paper, we study elliptic curves of the form y2 = x3−A2x+B2, whereA,B ∈ {a, b, c}
are two different numbers and (a, b, c) is a Pythagorean triple (a, b, c ∈ Q). First of all, we prove
that if (a, b, c) is a primitive Pythagorean triple (PPT), then the rank of each family is positive.
By using both specialization and associated height matrix techniques, we construct subfamilies
of rank at least 3 in each family but one with rank at least 2, and obtain elliptic curves of high
rank in each family. Furthermore, we consider two other families of elliptic curves of the forms
y2 = x(x − a2)(x + c2), and y2 = x(x − b2)(x + c2), and prove that if (a, b, c) is a PPT,
then the rank of each family is positive. These familes are similar to another family of curves
y2 = x(x− a2)(x+ b2) with a2 + b2 = c2 which is a special case of the well-known Frey family.

In [3], a subfamily of the elliptic curve y2 = x3 − c2x+ a2, with the rank at least 4, has been
introduced. In [4], it is proved that the rank of the elliptic curve y2 = x(x−a2)(x−b2) is positive
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and also in [6] a subfamily of this elliptic curve with the rank at least 2 is obtained.
We need the following standard facts in this paper:

Lemma 1.1. The following relations will generate all primitive integer Pythagorean triples
(a2 + b2 = c2, (a, b, c) = 1) : a = m2 − n2, b = 2mn, c = m2 + n2, where m and n, are
positive integers with m > n, and m and n coprime with different parities.

Lemma 1.2. (Nagell–Lutz Theorem) Let y2 = f(x) = x3+ax2+bx+c, be a non-singular cubic
curve with integer coefficients a, b, c ∈ Z, and let D be the discriminant of the cubic polynomial
f(x), i.e., D = −4a3c+ a2b2 + 18abc− 4b3 − 27c2.

Let P = (x, y) ∈ E(Q) be a rational point of finite order. Then x and y are integers and,
either y = 0, in which case P has order 2, or else y divides D (see [9], page: 56).

2 The elliptic curve y2 = x3 − a2x + c2

In each family, let (a, b, c) be a PPT.
First, by letting −a2x + c2 = 0 in the above elliptic curve, we get x = c2

a2
and y = c3

a3
. Then

the point ( c
2

a2
, c

3

a3
) is on the aforementioned elliptic curve. Note that this point is of infinite order,

because in a PPT we have (a, c) = 1 and c 6= 1, i.e., the numbers c2

a2
and c3

a3
are not integers, then

by Lemma 1.2, the rank of the above elliptic curve is positive.
Second, we look at

E : y2 = x3 − a2x+ c2, (1)

as a 1-parameter family by letting

a = t2 − 1, b = 2t, c = t2 + 1, (2)

where t ∈ Q. Then instead of (1) one can take

Et : y
2 = x3 − (t2 − 1)2x+ (t2 + 1)2, t ∈ Q. (3)

Theorem 2.1. There are infinitely many elliptic curves of the form (3) with rank ≥ 3.

Proof. Clearly we have two points

Pt = (0, t2 + 1), Qt = (t2 − 1, t2 + 1). (4)

Now we impose a point on (3) with x-coordinate equal to 1. It implies that 1+4t2, is a square,
say = v2. Hence

t =
α2 − 1

4α
, v =

α2 + 1

2α
, (5)

with α ∈ Q. Then instead of (3), one can take

Eα : y2 = x3 −

((
α2 − 1

4α

)2

− 1

)2

x+

((
α2 − 1

4α

)2

+ 1

)2

, (6)
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or

Eα : y2 = x3 − (
α4 − 18α2 + 1

16α2
)2x+ (

α4 + 14α2 + 1

16α2
)2 (7)

equipped with the three points

Pα =

(
0,
(
α2−1
4α

)2
+ 1

)
,

Qα =

((
α2−1
4α

)2
− 1,

(
α2−1
4α

)2
+ 1

)
,

Rα =
(
1, α

2+1
2α

)
.

When we specialize to α = 2, we obtain a set of points

S = {P2, Q2, R2} =
{
(0,

73

64
), (
−55
64

,
73

64
), (1,

5

4
)

}
,

on
E2 : y

2 = x3 − (
55

64
)2x+ (

73

64
)2. (8)

Using SAGE [8], one can easily check that the associated height matrix of S has a non-zero
determinant ≈ 73.3583597733868 6= 0, showing that these three points are independent and so
the rank (E2) ≥ 3 (actually the rank is 4). The specialization result of Silverman [10] implies that
for all but finitely many rational numbers the rank of Eα is at least 3. For the values α = 4, 10,
and α = 8, 11, the rank of Eα is equal to 5 and 6, respectively.

3 The elliptic curve y2 = x3 − a2x + b2

We study the elliptic curve

Et : y
2 = x3 − (t2 − 1)2x+ (2t)2, (9)

where t ∈ Q. We construct a subfamily with rank at least 3.

Theorem 3.1. There are infinitely many elliptic curves of the form (9) with rank ≥ 3.

Proof. Clearly we have two points

P1 = (0, 2t), P2 = (t2 − 1, 2t). (10)

Letting −(t2 − 1)2x + (2t)2 = 0, in (9), yields x = ( 2t
t2−1

)2 and y = ( 2t
t2−1

)3. Then, the third
point is P3 = (( 2t

t2−1
)2, ( 2t

t2−1
)3) = ( b

2

a2
, b

3

a3
). By Lemma 1.2, if (a, b, c) is a PPT, then this point is

of infinite order, because (a, b) = 1, a 6= 1, and the numbers b2

a2
, and b3

a3
are not integers.

If we let t = 4T 3, and x3 + (2t)2 = 0, then we get x = −4T 2, and y = 2T (16T 6 − 1). Then
the point P4 = (−4T 2, 2T (16T 6 − 1)) is on the elliptic curve (9).
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When we specialize to T = 1, we obtain a set of points

A = {P1, P2, P3, P4} =
{
(0, 8), (15, 8), ((

8

15
)2, (

8

15
)3), (−4, 30)

}
,

lying on
E2 : y

2 = x3 − (152)x+ (82). (11)

Using SAGE, one can easily check that the associated height matrix of the points {P1, P2, P3}
or {P2, P3, P4} has a non-zero determinant ≈ 7.34210213314542 6= 0, showing that these three
points are independent and so the rank of the elliptic curve (9) is at least 3 (actually the rank
is 4). The specialization result of Silverman implies that for all but finitely many rational numbers
the rank of ET is at least 3. For the value T = 2, the rank ET is equal to 5.

4 The elliptic curve y2 = x3 − b2x + a2

We consider the elliptic curve

Et : y
2 = x3 − (2t)2x+ (t2 − 1)2, (12)

where t ∈ Q, and construct a subfamily with rank at least 3.

Theorem 4.1. There are infinitely many elliptic curves of the form (12) with rank ≥ 3.

Proof. Clearly we have two points

P1 = (0, t2 − 1), P2 = (2t, t2 − 1). (13)

Letting −(2t)2x+ (t2 − 1)2 = 0, in (12), yields x = ( t
2−1
2t

)2 and y = ( t
2−1
2t

)3. Then, the third
point is P3 = (( t

2−1
2t

)2, ( t
2−1
2t

)3) = (a
2

b2
, a

3

b3
). Again by Lemma 1.2 , if (a, b, c) is a PPT, this point

is of infinite order, because (a, b) = 1, b 6= 1, and the numbers a2

b2
, and a3

b3
are not integers. Now

we impose a point on (12) with x-coordinate equal to −1. Then, we have y2 = t2(t2 + 2). It
implies that t2 + 2 is a square, say = α2. Hence t = 1

m
− m

2
, and α = m

2
+ 1

m
, with m ∈ Q. Then

the point P4 = (−1, 1
m2 − m2

4
) is on the elliptic curve (12).

When we specialize to m = 10(t = −49
10

), we obtain a set of points

A = {P1, P2, P3, P4} =
{
(0,

2301

100
), (
−49
5
,
2301

100
), ((

2301

980
)2,−(2301

980
)3), (−1, −2499

100
)

}
,

lying on

E2 : y
2 = x3 − (

49

5
)2x+ (

2376

25
)2. (14)

Using SAGE, one can easily check that the associated height matrix of the points {P1, P3, P4}
and {P2, P3, P4} has non-zero determinants ≈ 421.718713884796 and 105.429678471199, re-
spectively. This shows that these three points are independent and so the rank of the elliptic
curve (14) is at least 3 (actually the rank is 5). The specialization result of Silverman implies
that for all but finitely many rational numbers the rank of Em is at least 3. For the values
m = 3, 5, 6, 7, 8, 10, 11, 13, and m = 12, 14, the rank of Em is equal to 5, and 6, respectively.
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5 The elliptic curve y2 = x3 − a2x + b2

We consider the elliptic curve

Et : y
2 = x3 − (t2 − 1)2x+ (2t)2, (15)

where t ∈ Q, and construct a subfamily with rank at least 3.

Theorem 5.1. There are infinitely many elliptic curves of the form (15) with rank ≥ 3.

Proof. Clearly we have two points

P1 = (0, 2t), P2 = (t2 − 1, 2t). (16)

Letting −(t2 − 1)2x+ (2t)2 = 0, in (15), yields x = ( 2t
t2−1

)2 and y = ( 2t
t2−1

)3. Then, the third
point is P3 = (( 2t

t2−1
)2, ( 2t

t2−1
)3) = ( b

2

a2
, b

3

a3
). This point is of infinite order, because in a PPT we

have (a, b) = 1 and a 6= 1, i.e., the numbers b2

a2
and b3

a3
are not integers, then the rank of the above

elliptic curve is positive.
If we let t = 4T 3 and x3 + (2t)2 = 0, then we get x = −4T 2 and y = 2T (16T 6 − 1).
Then the point P4 = (−4T 2, 2T (16T 6 − 1)) is on the elliptic curve (15).
When we specialize to T = 1, we obtain a set of points

A = {P1, P2, P3, P4} =
{
(0, 8), (15, 8), ((

8

15
)2, (

8

15
)3), (−4, 30)

}
,

lying on
E2 : y

2 = x3 − (152)x+ (82). (17)

Using SAGE, one can easily check that the associated height matrix of the points {P1, P2, P3}
or {P2, P3, P4} has a non-zero determinant ≈ 7.34210213314542 6= 0, showing that these three
points are independent and so the rank of the elliptic curve (15) is at least 3 (actually the rank is
4). The specialization result of Silverman implies that for all but finitely many rational numbers,
the rank of ET is at least 3. For the value T = 2, the rank ET is equal to 5.

6 The elliptic curve y2 = x3 − c2x + b2

We study the elliptic curve

Et : y
2 = x3 − (t2 + 1)2x+ (2t)2, (18)

where t ∈ Q. We construct a subfamily with rank at least 3.

Theorem 6.1. There are infinitely many elliptic curves of the form (18) with rank ≥ 3.

Proof. Clearly we have two points

P1 = (0, 2t), P2 = (t2 + 1, 2t). (19)
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Letting −(t2 + 1)2x + (2t)2 = 0 in (18) yields x = ( 2t
t2+1

)2 and y = ( 2t
t2+1

)3. Then the third
point is P3 = (( 2t

t2+1
)2, ( 2t

t2+1
)3) = ( b

2

c2
, b

3

c3
). This point is of infinite order, because in a PPT, we

have (b, c) = 1 and c 6= 1, i.e., the numbers b2

c2
and b3

c3
are not integers, then the rank of the above

elliptic curve is positive.
Now we impose a point on (18) with the x-coordinate equal to 1. Then we have y2 = t2(−t2+

2). It implies that−t2+2 is a square, say = α2. Hence we can get t = u2−2u−1
u2+1

, and α = −u2−2u+1
u2+1

,

with u ∈ Q. Then the point P4 = (1, (−u
2−2u+1)(u2−2u−1)

(u2+1)2
) is on the elliptic curve (18).

When we specialize to u = 2(t = −1
5

), we obtain a set of points

A = {P1, P2, P3, P4} =
{
(0,
−2
5
), (

26

25
,
−2
5
), ((

5

13
)2,−( 5

13
)3), (1,

7

25
)

}
,

lying on

E−1
5
: y2 = x3 − (

26

25
)2x+ (

2

5
)2. (20)

Using SAGE, one can easily check that the associated height matrix of the points {P1, P2, P4}
or {P2, P3, P4} has a non-zero determinant ≈ 16.9957115044387 (the determinant of points
{P1, P3, P4} is non-zero, too). This shows that these two points (in each set) are independent
and so the rank of the elliptic curve (20) is at least 3 (actually the rank is 5). The specialization
result of Silverman implies that for all but finitely many rational numbers, the rank of Eu is at
least 3.

7 The elliptic curve y2 = x3 − b2x + c2

We study the elliptic curve

Et : y
2 = x3 − (2t)2x+ (t2 + 1)2, (21)

where t ∈ Q. We construct a subfamily with rank at least 2.

Theorem 7.1. There are infinitely many elliptic curves of the form (21) with rank ≥ 2.

Proof. Clearly we have two points

P1 = (0, t2 + 1), P2 = (2t, t2 + 1). (22)

Letting −(2t)2x+ (t2 + 1)2 = 0, in (21), yields x = ( t
2+1
2t

)2 and y = ( t
2+1
2t

)3. Then the third
point is P3 = (( t

2+1
2t

)2, ( t
2+1
2t

)3) = ( c
2

b2
, c

3

b3
). Note that this point is of infinite order, because in a

PPT we have (b, c) = 1 and b 6= 1, i.e., the numbers c2

b2
and c3

b3
are not integers, then the rank of

the aforementioned elliptic curve is positive. If we impose a point on (21) with the x-coordinate
equal to 2, then we get the point P4 = (2, t2 − 3).

When we specialize to t = 7
29

, we obtain a set of points

A = {P1, P2, P3, P4} =
{
(0,

890

841
), (

14

29
,
890

841
), ((

445

203
)2,−(445

203
)3), (2,

2474

841
)

}
,
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lying on

E 7
29

: y2 = x3 − (
14

29
)2x+ (

890

841
)2. (23)

Using SAGE, one can easily check that the associated height matrix of the points {P3, P4} and
{P1, P3} have non-zero determinants≈ 13.2385415745155, and 52.9541662980621, respectively.
This shows that these two points (in each set) are independent and so the rank of the elliptic curve
(23) is at least 2 (actually the rank is 4). The specialization result of Silverman implies that for
all but finitely many rational numbers, the rank of Et is at least 2.

8 The elliptic curve y2 = x(x− a2)(x + c2)

Theorem 8.1. Let (a, b, c) be a PPT. Then the rank of the aforementioned elliptic curve is positive.

Proof. We have
y2 = x(x− a2)(x+ c2) = x(x2+(c2− a2)x− a2c2) = x(x2+ b2x− a2c2) = x3+ b2x2− a2c2x.

Then it suffices that we study the elliptic curve

y2 = x3 + b2x2 − a2c2x. (24)

Note that D = a4c4(b4 + 4a2c2) 6= 0. Now, if in (24) we take b2x2 − a2c2x = 0, then we get
x = a2c2

b2
and y = a3c3

b3
. Therefore the first point on (24) is P1 = (a

2c2

b2
, a

3c3

b3
). Note that the order

of this point is infinite, because in a PPT, the number ac is not divisible by b, and, the numbers
a2c2

b2
and a3c3

b3
are not integers. (Otherwise, if p is a prime number that divides b, then p must

divide one of a, c. Now, in view of the relation a2 + b2 = c2, p divides a, b, and c, that is not
correct, because (a, b, c) is a PPT: (a, b, c) = 1.) Then the rank of the elliptic curve (24) is always
positive. If we let x3 + b2x2 = 0, then we get x = −b2, and y = abc. Then the second point
on (24) is the point P2 = (−b2, abc). Letting x3 − a2c2x = 0, yields the third and fourth points
P3,4 = (±ac, abc).

Remark 8.2. Note that if in a PPT (a, b, c), b is odd, then we may prove by another method that the
rank of the aforementioned elliptic curve is positive. We prove that in the point P2 = (−b2, abc),
the number abc does not divide D, otherwise abc must divide 4a6c6. Then b divides a6c6, because
b is odd. This is not correct, because (a, b, c) is a PPT. Then the point P2 is of infinite order. Now
the result follows.

9 The elliptic curve y2 = x(x− b2)(x + c2)

Theorem 9.1. Let (a, b, c) be a PPT. Then the rank of the above elliptic curve is positive.

Proof. We have y2 = x(x − b2)(x + c2) = x(x2 + (c2 − b2)x − b2c2) = x(x2 + a2x − b2c2) =
x3 + a2x2 − b2c2x. Then it suffices that we study the elliptic curve

y2 = x3 + a2x2 − b2c2x. (25)
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Note thatD = b4c4(a4+4b2c2) 6= 0. If in (25) we take a2x2−b2c2x = 0, then we get x = b2c2

a2

and y = b3c3

a3
. Then the first point on (25) is P1 = ( b

2c2

a2
, b

3c3

a3
). Note that the order of this point is

infinite, because in a PPT the number bc is not divisible by a, and the numbers b2c2

a2
and b3c3

a3
are

not integers, this can be similarly proven. Then we conclude that the rank of the elliptic curve
(25) is always positive. By letting x3 + a2x2 = 0, we get x = −a2 and y = abc. Then the second
point on (25) is the point P2 = (−a2, abc). Letting x3 − b2c2x = 0, yields the third and fourth
points P3,4 = (±bc, abc).

Remark 9.2. Note that if in a PPT (a, b, c), a is odd, then we may prove by another method
that the rank of the aforementioned elliptic curve is positive. We prove that in the point P2 =

(−a2, abc), the number abc does not divide D, otherwise abc must divide 4b6c6. Then a divides
b6c6, because a is odd. This is not correct, because (a, b, c) is a PPT. Then the point P2 is of
infinite order. Now the result follows.
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