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1 Introduction

Inequalities for trigonometric and hyperbolic functions have been studied extensively in the last
20 years. Among such inequalities we mention the famous inequalities by Adamovi¢-Mitrinovic,

which states that )
sin x

> v/cos (1.1)
for any = € (O, %), and the Lazarovi¢ inequality

sinh

> v/cosh x (1.2)
i

for any « > 0. For a basic reference to (1.1) and (1.2), see [2]. See also [4, 6].
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In a little known paper [1] Iyengar, Madhava Rao and Nanjundiah have proved that

sinx T )
>cos| — | > Jcosz 1.3
T (\/5) (-3

for z € (O, %)
In a recent paper [7], we have discovered (1.3) by an application of the famous Hadamard
integral inequality. By using the same method, we have proved also the hyperbolic analogue of

(1.3), namely
sinh x

X 3
> cosh [ —= | > V/coshzx 1.4
T ( V3 > 15

for any > 0. We note that, the second inequality of (1.4) follows by a comparison of certain

series inequalities.
Iyengar, Madhava Rao and Nanjundiah have considered by other arguments, the signs of the

functions .
sin
— 1z =a(x)
oS px
1 2 2
and showed that for p; = i 0.577... one has a(z) > 0, and for s = —arccos — =
77 T
0.560. .. we have a(x) < 0, therefore,
e < COS o, (1.5)

T € (O, %) is also true. In fact, ;11 and p5 above are the best constants such that these inequalities
are valid.

The aim of this paper is to give a new proof of the above results, and also a new proof of the
first inequality of (1.4).

2 Main results

Our method (which we discovered in fact in 2010 [5]) is based on the auxiliary functions
ai(x) = arccos <¥) T E (O, g)

inh
as(x) = arccosh (sm a:) ,x > 0.
x

and

In the proof, the well-known “L’Hospital rule for monotonicity” lemma will be used, as fol-
lows (see e.g. [3]).

Lemma 2.1. Suppose that f,g : (a,b) — R are differentiable on (a,b), and ¢'(x) # 0 for
/
x € (a,b). Suppose that f(a+) = g(a+) = 0. Then, ifL/ is monotone on (a,b), then f is also
g g

monotone, having the same type of monotonicity.
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sin x

1
Theorem 2.1. The function f,(z) = — arccos (
T x

) is strictly decreasing for x € (0, %)

Proof. We will use successively Lemma 2.1. Put f(z) = arccos (Sml‘) ,g(x) = x. Then
T

fl(r)  sinx—wcosz

,;and f(0+) = g(0+) = 0.

Fa)\? _ (sinz —zcosz)®  u(x) ere
i) - ")

22(22 — sin’ 1) v(x)
T — T SIN T CoSx

2

g'(z) B v 2?2 —sin“x

To avoid the radicals, we will consider (

/ i 02
u(04) = v(0+) = 0 and z/(x) =

, clearly v'(z) # 0 as x > sinx
T — ITSINTCOST

u”(x) sinz cosx — x + 2wsin’x

() 222 —sin

and v > sinw cosx. As u'(x) = v'(x) = 0, consider ———= = , —5
v"(x) 3z — 3sinzcosx + 2xsin” .

continuing, we obtain finally

u" (x) cos?z —sin®x — 1+ 2sin® r + 4x sinx cos x
v"(x) 3 —3cos?x + 3sin®x 4 2sin® 2 + 4w sinzcosx

4xsinx cos x T CosT _ A(x)

8sinx + 4rsinzcosz  2sinx +xcosz  B(x)

B 2t t
Now, remark that Agmi _ Zeny + 1, and it is well-known that any is strictly increasing
x x
on (0, g) .
. A(z) . . ) o
This means that B(x) is strictly decreasing, and the proof of Theorem 2.1. is finished. ]
x

sinh z

1
Theorem 2.2. The function fo(x) = — arccosh < ) , & > 01is strictly increasing on (0, 00).
x

X

sinh x

Proof. Apply again Lemma 2.1 for f(z) = arccosh( ) and g(z) = z. As f(0+) =

! hz — sinh
g(0+) = 0 and f/(x) _ TR o I, we will consider again

9@  zy\/sinh®z — 22
( f’(x)>2 _ (zcoshz —sinha)?  u()

g (z) 22(sinh® z — 22) v(x)

and all can be repeated as in the proof of Theorem 2.1. One arrives finally to the function

A(z) x coshx . B(x) 2tanhz
= d k that in th =
B(z)  2sinhz + zcoshx and remaric that 1 ths case A(z) x

tanh A
ann e is known to be strictly decreasing for x > 0. Thus Bixi
x

+ 1, which is strictly

decreasing, as the function x —

x
/ 2

will be strictly increasing, so (M) and (@
g'(z) 9(x)

is strictly increasing, too. O
g9()

2
) will be strictly increasing, too. This last

assertion implies also that

sin

Theorem 2.3. The function f3(z) = arccos ( ) — x is strictly decreasing on (O, g) .

xT

136



Proof. Remark that f3(x) = x(fi(x) — 1), where f;(x) is the decreasing function of Theorem

2.1. On the other hand, fi(x) — 1 = h(z) is also decreasing, but h(z) < 0. This follows by
S x

> cos x so the arccos function being decreasing, we get f1(z) < 1. Now f3(z) = xzh(z),
X
so fi(x) = h(x) + zh'(x) < 0as h(x) < 0and A'(z) < 0,2 > 0. O

sinh z

Theorem 2.4. The function f,(x) = arccosh (
T

) — x is strictly decreasing.

Proof. The method of proof of Theorem 2.3 cannot be applied here, since fy(x) = z(fo(x) — 1),
sinh =

where fy(x) is the strictly increasing function of Theorem 2.2. Now, fo(x) — 1 < 0 as
cosh  and the function arccosh is strictly increasing. By letting k(x) = fo(z) — 1 < 0, sxtrictly
increasing and fj(x) = k(x) + xk/(z), where k(z) < 0, but £'(z) > 0.

We will compute

xcoshz — sinh x — zv/sinh? z — 22
x\/sinh? z — 22

Now b(z) = z cosh x — sinh z — 2/sinh?* 2 — 22 < 0 is equivalent to (x cosh z — sinh x)?
2%(sinh® 2 — 22), or ¢(x) = sinh® x — 2z sinh x coshx + 22 + 2* < 0. One has ¢/(z) = 4 (2 —
sinh?) < 0, after some elementary computations. Thus it follows c(z) < ¢(0+) = 0, implying
b(x) < 0,1i.e. fi(z) < 0. This finishes the proof of the theorem. O

fi(z) =

Corollary 2.1. The best constants a,b > 0 such that

sinx

cosbr < —— < cosax, 2.1
x
1 2 2
for x € (0 ) are b = —,a = — arccos —.
V3 T T
T s 2 2
Proof. By Theorem 2.1 one has f; (5) < filz) < fi(0+). As f; <§> = —arccos —, and
™ T

(we will prove below), and the function cos x being strictly decreasing, inequality

f1(0+) = %

(2.1) follows with best constants a = f; (—

2) ,b = f1(04). Now, to compute b = hH(l) fi(z),
Tr—r

sin x arccos ¥y
puty = — and as y — 1 as ¢ — 0+, remark that ——— — 1 as z = arccosy —
x sin(arccos y)
2
sin” x arccosy
0 and — 1. Put sin(arccos = +/1- = — . Therefore, as =
sin z v) x? x
arccos sin(arccos . ) . 1 sin? ...
- J_. ( y)’ it is sufficient to compute the limit of —4/1 — ———, or avoiding
sin(arccos y) x x x
2 142
. o x? —sin“x
the radicals, the limit of —
x
2 a2
. . . T —sin“x 1 .
Now it is immediate by L’Hospital’s rule that ———— — 3 3 2?2 — sin’z =
x
, ) T +sinx r —sinw 1 ..
(x —sinz)(x + sinz), and — 2, 5 SO the limit follows. O
x x
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Corollary 2.2. The best constants c, d such that

sin @
cos(z +¢) <

< cos(z + d) (2.2)

are for x € (0, g) c=0,d= arccos% —5=-0689...
Proof. Applying Theorem 2.3, we get f3 (g) < fa(x) < f3(0+4). Now, f3 (g) = arccos% -z

2
while f3(0+) = 0. Thus we get d < arccos e

— x < c, and applying the decreasing
x

function cos z, we get (2.2). O

Corollary 2.3. The best constant k > 0 such that

sinh z

> cosh kx, 2.3)

1
forx>0isk=—

7

Proof. By Theorem 2.2 we get fo(x) > f2(0+). Now, it follows by the same lines as in the
y g y
sinhx) 1

= ——. As the function cosh z

1
f of llary 2.1 th = lim — h
proof of Corollary 2.1 that f5(0+) Jim — arccos ( 7

is strictly increasing, relation (2.3) follows.

Remark 2.1. If x € (0, xy), the the best constant | > 0 such that

inh
ST < cosh lx, 2.4)
x
x > 0, will be
inh
[ = arccosh (sm xo)
Zo
Corollary 2.4. The best constant s such that
inh
S & < cosh(x + s) (2.5)
T

forx > 0,is s = 0.

sinh z

Proof. By Theorem 2.4 one has fy(x) < f4(0+) = s, so arccosh (
x

> < x + s, implying
sinh z

< cosh(z + s), with best s = 0. O
T

Remark 2.2. If x € (0, x), the best constant p such that

sinh z

— > cosh(z + p) (2.6)

. sinh xg
for x > 0, is p = arccosh

— Xy-.
Lo
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