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1 Introduction

Inequalities for trigonometric and hyperbolic functions have been studied extensively in the last
20 years. Among such inequalities we mention the famous inequalities by Adamović–Mitrinović,
which states that

sinx

x
> 3
√
cosx (1.1)

for any x ∈
(
0, π

2

)
; and the Lazarović inequality

sinhx

x
>

3
√
coshx (1.2)

for any x > 0. For a basic reference to (1.1) and (1.2), see [2]. See also [4, 6].
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In a little known paper [1] Iyengar, Madhava Rao and Nanjundiah have proved that

sinx

x
> cos

(
x√
3

)
> 3
√
cosx (1.3)

for x ∈
(
0, π

2

)
.

In a recent paper [7], we have discovered (1.3) by an application of the famous Hadamard
integral inequality. By using the same method, we have proved also the hyperbolic analogue of
(1.3), namely

sinhx

x
> cosh

(
x√
3

)
>

3
√
coshx (1.4)

for any x > 0. We note that, the second inequality of (1.4) follows by a comparison of certain
series inequalities.

Iyengar, Madhava Rao and Nanjundiah have considered by other arguments, the signs of the
functions

sinx

cosµx
− x = a(x)

and showed that for µ1 =
1√
3

= 0.577 . . . one has a(x) > 0, and for µ2 =
2

π
arccos

2

π
=

0.560 . . . we have a(x) < 0, therefore,

sinx

x
< cosµ2x, (1.5)

x ∈
(
0, π

2

)
is also true. In fact, µ1 and µ2 above are the best constants such that these inequalities

are valid.
The aim of this paper is to give a new proof of the above results, and also a new proof of the

first inequality of (1.4).

2 Main results

Our method (which we discovered in fact in 2010 [5]) is based on the auxiliary functions

a1(x) = arccos

(
sinx

x

)
, x ∈

(
0,
π

2

)
and

a2(x) = arccosh

(
sinhx

x

)
, x > 0.

In the proof, the well-known “L’Hospital rule for monotonicity” lemma will be used, as fol-
lows (see e.g. [3]).

Lemma 2.1. Suppose that f, g : (a, b) → R are differentiable on (a, b), and g′(x) 6= 0 for

x ∈ (a, b). Suppose that f(a+) = g(a+) = 0. Then, if
f ′

g′
is monotone on (a, b), then

f

g
is also

monotone, having the same type of monotonicity.
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Theorem 2.1. The function f1(x) =
1

x
arccos

(
sinx

x

)
is strictly decreasing for x ∈

(
0, π

2

)
.

Proof. We will use successively Lemma 2.1. Put f(x) = arccos

(
sinx

x

)
, g(x) = x. Then

f ′(x)

g′(x)
=

sinx− x cosx
x
√
x2 − sin2 x

, and f(0+) = g(0+) = 0.

To avoid the radicals, we will consider
(
f ′(x)

g′(x)

)2

=
(sinx− x cosx)2

x2(x2 − sin2 x)
=

u(x)

v(x)
. Here

u(0+) = v(0+) = 0 and
u′(x)

v′(x)
=

sin2 x− x sinx cosx
2x2 − sin2 x− x sinx cosx

clearly v′(x) 6= 0 as x > sinx

and x > sinx cosx. As u′(x) = v′(x) = 0, consider
u′′(x)

v′′(x)
=

sinx cosx− x+ 2x sin2 x

3x− 3 sinx cosx+ 2x sin2 x.
By

continuing, we obtain finally

u′′′(x)

v′′′(x)
=

cos2 x− sin2 x− 1 + 2 sin2 x+ 4x sinx cosx

3− 3 cos2 x+ 3 sin2 x+ 2 sin2 x+ 4x sinx cosx

=
4x sinx cosx

8 sin2 x+ 4x sinx cosx
=

x cosx

2 sinx+ x cosx
=
A(x)

B(x)
.

Now, remark that
B(x)

A(x)
=

2 tanx

x
+ 1, and it is well-known that

tanx

x
is strictly increasing

on
(
0, π

2

)
.

This means that
A(x)

B(x)
is strictly decreasing, and the proof of Theorem 2.1. is finished.

Theorem 2.2. The function f2(x) =
1

x
arccosh

(
sinhx

x

)
, x > 0 is strictly increasing on (0,∞).

Proof. Apply again Lemma 2.1 for f(x) = arccosh

(
sinhx

x

)
and g(x) = x. As f(0+) =

g(0+) = 0 and
f ′(x)

g′(x)
=
x coshx− sinhx

x
√
sinh2 x− x2

, we will consider again

(
f ′(x)

g′(x)

)2

=
(x coshx− sinhx)2

x2(sinh2 x− x2)
=
u(x)

v(x)

and all can be repeated as in the proof of Theorem 2.1. One arrives finally to the function
A(x)

B(x)
=

x coshx

2 sinhx+ x coshx
and remark that in this case

B(x)

A(x)
=

2 tanhx

x
+ 1, which is strictly

decreasing, as the function x→ tanhx

x
is known to be strictly decreasing for x > 0. Thus

A(x)

B(x)

will be strictly increasing, so
(
f ′(x)

g′(x)

)2

and
(
f(x)

g(x)

)2

will be strictly increasing, too. This last

assertion implies also that
f(x)

g(x)
is strictly increasing, too.

Theorem 2.3. The function f3(x) = arccos

(
sinx

x

)
− x is strictly decreasing on

(
0, π

2

)
.
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Proof. Remark that f3(x) = x(f1(x) − 1), where f1(x) is the decreasing function of Theorem
2.1. On the other hand, f1(x) − 1 = h(x) is also decreasing, but h(x) < 0. This follows by
sinx

x
> cosx so the arccos function being decreasing, we get f1(x) < 1. Now f3(x) = xh(x),

so f ′
3(x) = h(x) + xh′(x) < 0 as h(x) < 0 and h′(x) < 0, x > 0.

Theorem 2.4. The function f4(x) = arccosh

(
sinhx

x

)
− x is strictly decreasing.

Proof. The method of proof of Theorem 2.3 cannot be applied here, since f4(x) = x(f2(x)− 1),

where f2(x) is the strictly increasing function of Theorem 2.2. Now, f2(x)− 1 < 0 as
sinhx

x
<

coshx and the function arccosh is strictly increasing. By letting k(x) = f2(x) − 1 < 0, strictly
increasing and f ′

4(x) = k(x) + xk′(x), where k(x) < 0, but k′(x) > 0.

We will compute

f ′
4(x) =

x coshx− sinhx− x
√

sinh2 x− x2

x
√
sinh2 x− x2

.

Now b(x) = x coshx− sinhx−x
√

sinh2 x− x2 < 0 is equivalent to (x coshx− sinhx)2 <

x2(sinh2 x− x2), or c(x) = sinh2 x− 2x sinhx coshx+ x2 + x4 < 0. One has c′(x) = 4x(x2 −
sinh2) < 0, after some elementary computations. Thus it follows c(x) < c(0+) = 0, implying
b(x) < 0, i.e. f ′

4(x) < 0. This finishes the proof of the theorem.

Corollary 2.1. The best constants a, b > 0 such that

cos bx <
sinx

x
< cos ax, (2.1)

for x ∈
(
0, π

2

)
, are b =

1√
3
, a =

2

π
arccos

2

π
.

Proof. By Theorem 2.1 one has f1
(π
2

)
< f1(x) < f1(0+). As f1

(π
2

)
=

2

π
arccos

2

π
, and

f1(0+) =
1√
3

(we will prove below), and the function cosx being strictly decreasing, inequality

(2.1) follows with best constants a = f1

(π
2

)
, b = f1(0+). Now, to compute b = lim

x→0
f1(x),

put y =
sinx

x
and as y → 1 as x → 0+, remark that

arccos y

sin(arccos y)
→ 1 as z = arccos y →

0 and
z

sin z
→ 1. Put sin(arccos y) =

√
1− y2 =

√
1− sin2 x

x2
. Therefore, as

arccos y

x
=

arccos y

sin(arccos y)
· sin(arccos y)

x
, it is sufficient to compute the limit of

1

x

√
1− sin2 x

x2
, or avoiding

the radicals, the limit of

√
x2 − sin2 x

x4
.

Now it is immediate by L’Hospital’s rule that
x2 − sin2 x

x4
→ 1

3
, as x2 − sin2 x =

(x− sinx)(x+ sinx), and
x+ sinx

x
→ 2,

x− sinx

x3
→ 1

6
, so the limit follows.
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Corollary 2.2. The best constants c, d such that

cos(x+ c) <
sinx

x
< cos(x+ d) (2.2)

are for x ∈
(
0, π

2

)
, c = 0, d = arccos 2

π
− π

2
= −0.689 . . .

Proof. Applying Theorem 2.3, we get f3
(
π
2

)
< f3(x) < f3(0+). Now, f3

(
π
2

)
= arccos 2

π
− π

2
,

while f3(0+) = 0. Thus we get d < arccos

(
sinx

x

)
− x < c, and applying the decreasing

function cosx, we get (2.2).

Corollary 2.3. The best constant k > 0 such that

sinhx

x
> cosh kx, (2.3)

for x > 0 is k =
1√
3
.

Proof. By Theorem 2.2 we get f2(x) > f2(0+). Now, it follows by the same lines as in the

proof of Corollary 2.1 that f2(0+) = lim
x→0+

1

x
arccosh

(
sinhx

x

)
=

1√
3
. As the function coshx

is strictly increasing, relation (2.3) follows.

Remark 2.1. If x ∈ (0, x0), the the best constant l > 0 such that

sinhx

x
< cosh lx, (2.4)

x > 0, will be

l = arccosh

(
sinhx0
x0

)
Corollary 2.4. The best constant s such that

sinhx

x
< cosh(x+ s) (2.5)

for x > 0, is s = 0.

Proof. By Theorem 2.4 one has f4(x) < f4(0+) = s, so arccosh

(
sinhx

x

)
< x + s, implying

sinhx

x
< cosh(x+ s), with best s = 0.

Remark 2.2. If x ∈ (0, x0), the best constant p such that

sinhx

x
> cosh(x+ p) (2.6)

for x > 0, is p = arccosh
sinhx0
x0

− x0.
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