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Abstract: In this paper we obtain two Zudilin-Like recurrence relations of third order for ((5),
after applying Zeilberger’s algorithm of creative telescoping to some hypergeometric series.
These recurrence relations do not supply diophantine approximations to ¢ (5) that prove its irra-
tionality, however it presents an algorithm for fast calculation of this constant. Moreover, we
deduce a new continued fraction expansion for ¢ (5) as a consequence.
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1 Introduction

The arithmetical properties of the Riemann zeta function at odd integer arguments
CRk+1)=) n " keN\{0},
n>1

had fascinated a good number of mathematicians from the XVII century. In particular, Euler gave
the following result for ¢(3)

71_2

w/2
¢(3) + 2/ x log sin zdx,
0

- log 2

for more details, see [31]. In Addition, he exposed the following conjecture

C(2k+1) = La2hst,
q
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where p and ¢ are integer numbers [33]. However, Euler’s efforts to validate it were failed, and
meanwhile the conjecture itself has been refuted [38]. Subsequent to the researches initiated
by Euler, nothing was known on the arithmetical nature of the Riemann zeta function at odd
arguments, until 2.00 pm on a Thursday afternoon in June 1978, Roger Apéry surprised the
mathematical community with a talk about the irrationality of ( (3), see for instance [7, 33, 34,
41]. The aforesaid result was credited as Apéry’s theorem, ¢ (3) ¢ Q, [7, 8,9, 10, 11, 12, 15, 18,
21,22, 29, 33, 34, 35, 36, 39, 40, 41].

From the result of Apéry, several seminaries were organized, in order to understand the afore-
said proof, so answering the questions about the arithmetical properties of the Riemann zeta func-
tion at odd integers. However, to this date it is not known if the ¢ (5) is irrational or not, although
many mathematicians conjecture that this aforesaid number is as much irrational like transcen-
dental; some of the few results connected with ¢ (5) appear in [30, 32, 42, 43, 44, 45]. Due to the
importance conferred to the study of the arithmetical properties of ¢ (2k + 1) for k € N, inside
and outside of mathematics, many researchers, inspired by the ideas of Euler and of Apéry, have
obtained some forms of representing to ¢ (5). For example, in [6, 14] the authors showed the
following relation connected to the golden ratio ¢ = 27! (v/5 + 1) [37]

) =230 L+ s () 1)

where

is the polylogarithm of order n. In addition, in [13, 27] appear

k+1 k—l—l 1

__Z k:3 42

E>1 k>1 1<j<k—1

and in [26] it is deduced

()= S o)

T o
and :
5> (1" (3;:1(22;)52071 +4)

™ (205n% — 160n + 32) 1 1
+Z 2n < Z ﬁ_ Z (k’—f—’I’L)Q)’

n>1 (n )5 1<k<n-1 0<k<n
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respectively. Another of the interesting results are the obtained for Zudilin, which, in [46] proved

Fsn=(-1)" n!4z (k + E) (1-k),(k+n+1),

6
k>1 2 (k)n—l—l
e 2 (1 —25) o2 (1 — 2= )"
:// = 20 oA a nﬁi( %) dxidxy - - - dxs
[0,1}5 Q5 ($1,$2,...,{E5)

with

Q5<JZ1,CL’2,...,JZ5):1—(]_—("'(1—(].—]35)1]4)"').%'2)1’1

=1—-21Q4 (22, ..., 75) = Qu (T2, ..., 2T4) — 1172+ - T5,

where wu,,, w,, v, € Q satisfy the following recurrence relation of third order

(n+1) (n42)"bo () Ynso — by (1) Upi1 — by (n) tn + 2(2n + 1) n°by (n + 1) up_y = 0,
with initial conditions

up = 2, wo=1v =0,
Uy = 18, wy = 66, v = 98,
6125 74463
uy = 938, w3 = o Vg = 16
where
bo (n) = 41218n% + 48459n2 + 20010n + 2871,

by (n) = 2(n + 1)(3874492n® + 33613836n" + 123666762n° + 250134420n°
+ 301587620n* + 220011738n° + 943728151 + 21917736 + 2131500),

by (n) = 2(48802112n° 4 350188128n° + 1080631646n" + 1882848690n°
+ 2045758212n° + 1442754107n" + 663248761n°
+ 19248636902 + 321367561 + 2360484).

Moreover, Zudilin in [45] using the very-well-poised hypergeometric series' (1) as well as
the result

= n+2 14 n\ (=k),p (K+n),.,
Fon = (120l 37 (k+ 5) 20—,
k>1 n+1

deduced the following recurrence relation of third order

(n+1)% a9 (1) Yt1 + a1 (n) yo — 4 (20 = 1) az (1) yo s
—4n-1)"2n—-1)2n -3 g (n+ 1D yp2=0, n>2 (2

'In the second section, we will give more details about this type of hypergeometric series.
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where

ag (n) = 41218n* — 48459n 4 20010n — 2871,

ap (n) = 2(48802112n° + 89030880n° + 3600265417
—24317344n5 — 19538418n° + 1311365n*
+3790503n* + 4600561% — 271701n — 60291),

g (n) = 3874492n° — 2617900n" — 3144314n°
42947148n° + 647130n* — 1182926n°
+115771n% + 1707160 — 44541,

which is satisfied by the numerators p,, 5 and denominators g, 5 of the rational approximations to
¢ (5) with the initial conditions

- B 87 B 1190161
Pos = YU, D15 = 5 D25 = 61
Qo5 = —1, qs=42, q5=—17934.

In addition, he verified that the sequence 7,5 = ¢,5( (5) — p,5 > 0 also satisfies the re-
currence relation (2) and he checked that the same and the sequence of the denominators g, 5,
satisfy the following limits

log |1,
lim 2&1mnsl o = —1.08607936..
n—o0 n
tim 2105l g 1,
n—o00 n

where
1 = —0.02001512..., o = 0.33753726..., 3 = —2368.31752213...,

are the roots of the characteristic polynomial p® + 2368u? — 7521 — 16 of recurrence relation
(2). With these results, Zudilin presented an efficient and fast algorithm for the calculation of
this constant ¢ (5), since the sequence of rational approximations p,, 5 /¢, 5 converge to ¢ (5) with
speed | o/ 3| < 1.42521964-10~* [33, 45].

The aim of this paper is to present an efficient algorithm for fast calculation of ¢ (5). As
consequence, new Zudilin-like rational approximations to ¢ (5) are deduced, as well as a new
continued fraction expansion for this constant.

2 Main results

As it is known, the ordinary hypergeometric series [17, 20, 23] at the variable z is defined by
aly...,0p

(@) - -~ (ar), 2"

T‘FS z = 1N 1\ 0

b, ..., Db ; (ba)yc - (bo)y Kt

where (-); denotes the Pochhammer symbol [5, 16], also called the shifted factorial, defined by
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= ] G+, k=1,

0<j<k—1
(2)g=1, (=2),=0, ifz<k, 3)
which in terms of the gamma function is given by

I'(z+k)

= kE=0,1,2,...
(Z)k F(Z) ’ 07 )<

Here {a;};_, and {b;}]_, are complex numbers subject to the condition that b; # —n with
n € N\ {0} for j = 1,2,...,s. In particular, the series

o, A1y - ., Ay

.y - :Z#_"
bi,...,b o (01 (br)y B!

is called well-poised if the sequences {a;};_, and {b;}’_, satisfy the following relations
ag—l—l:a1+blza2—i—bz:~~-:ar+br.

Theorem 2.1. Let n be an integer, with n > 1. Then, the following sequences

(=k), (k+n+2),

Rai = (=1)"nt" > (2k +n+2) , “)

1 2 (k+ 1)L,

and L i 3
Rn,zz(—l)nn!42(2k+n+2)( — k) (kA )n_l, )

6
k>1 (k + 1)n+1

are the very-well-poised hypergeometric series

3n
n!11(3n+2)! In+2,F+2,n+1,....,n+1 1
9l's ’

C@2n+ 1)
( ) 311,20+ 2,...,2n 4 2
and
3n
(n —1)! (3n +2)In!10 . In+2,F+2,nn+1,...,n+1 1 o
2n+2)!@2n+1)8 70| | :
41,2n+3,2n+2,...,2n+2

respectively.

Proof. We prove only the second result, since both are similar. According to (3) we have

(1-k), ,(k+n+3),,

Rpo = (—1)nn!42(2k+n+2) E1 P
n+1

k>n
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Consequently

Ruz=2(=1)"nl">"

k>0

( ; ) (1—k —(n)n1 (k+2n+ 3)%1_

k+-n+1 =
k+n+]‘)n+1

Then, having into account

3 271 (3n+2) (2 +2),
k+-n+1)= : (7)
N )
_ —1)!
(—)" '(1—k—n), , = (”kw )
_ (Bn+1)!Bn+2),
(k+2n+3), = (2n+2)!(2n + 3),’ ©
d
. (hine1)f - (2n +1)!% (2n +2)° 10)
e nl6 (n +1); .
We deduce

(n— 1)1 (3n + 2)Inl'0 = (30 +2), (32 +2), (n), (n+ 1)}

Rn,? = -
2n+2)12n+ 118 £ (324 1), (20 +3), (2n +2);

Y

which coincides with (6). This finishes the proof, the detailed verification of (7)—(10) being left
to the reader. [

Indeed, the very-well-poised hypergeometric series (4) and (5) are Q-linear forms in

{1,¢(3),¢()},
1. €.,
Rug = 0C (5) + B¢ (3) =7 and Rup = @nC (5) + 5uC (3) = Fa- (1)
Next, we apply to the very-well-poised hypergeometric series (4) and (5), the so-called algorithm
of creative telescoping due to W. Gosper and D. Zeilberger [1, 2, 3, 4, 25], from which are

deduced the following results. In fact, this algorithm is implemented in different computer algebra
systems, in particular, in Maple and Mathematica.

Proposition 2.2. The sequences (an),~1, (Bn)ys1 (n)ps1 and (Rnn),s, verify the following
Zudilin-like recurrence relation

(n+2) (n+3)" 0 ynrs — 200 + 200D ynr2 — 200 Yo
+2n+1)°2n+3) My, =0, n>1, (12)

n
with initial conditions

ap = 187 ﬁl = 667 M= 987

6125 74463
ay =938, [y = 5 =g (13)
1524635 1498833983
— 77202 — _ 2009709
a3 ) B3 6 ) V3 3888 )
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where
n\M = 4121803 + 172113n + 240582n + 112558,

n? = 3874492n8 + 64609772n" + 467449390n°
+1914997100n° + 4854959850n* + 779449747003
+ 7734655711n% + 43360145201 + 1051310919,

(¥ = 48802112n° + 789407136n° + 5639012702n" + 23351915204n°
+ 617957161980 + 108398618199n* + 126080841295n°
+ 9379447794602 + 40508900959n, 4 7741215265,

and
nW = 4121803 + 295767n? + 708462n + 566471.

Proposition 2.3. The sequences (Gin),~1, (Bn)n>1, (Fn)p>1 and (Rn2),5, verify the following
Zudilin-like recurrence relation

(n + 3)3 (” + 4)6 ﬁr(zl)ynJrS - 2(” + 3)4ﬁ§b2)yn+2 —2 (n + 2)3 ﬁ7§3)yn+1
+2n(n+1)°n+2°2n+3)iWy, =0, n>1, (14)

n

with initial conditions

~ ~ - 2685
ap =8, [i=28, =
5 ~ 1455 N 12885155
Qg = 222, ﬁg = T, Yo = W, (15)
~ 223895 56350012781
3 = 11340 = V3= —————
(%] ) 53 6 ) V3 095328 )

where

7 = 41218n° + 7619761 + 6198908n7 + 29116116n°
+ 86990832n° + 171424173n* + 222811091n> + 184222071n?
+ 87944623n + 18475776,

72 = 3874492n" + 135554862n' + 21824525961 % + 214277320810
+ 1433024548971 4 690442234873n" + 2471123718840n°
+ 6673220764546n" + 13662032585953n° 4 21099764318756n°
4 24196514657956n* + 19978330639676n°
+ 11227117507832n% 4 3843841185536n 4 604947087360,
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7% = 48802112n" + 17806176000 * 4 3003510593812 + 3106553798601
+2203200295168n'" + 11348221528255n'° + 43853910213752n°
+ 129467584214041n° + 294411248543850n" 4 515715215712131n°
+ 6902436845488261° 4 693281686236195n" 4+ 505903008137430n°
4 253247361204846n° 4 77776973364636n + 11049992110080,

and

7AW = 41218n° + 1132938n8 + 13778564n" + 97306112n°
+ 439728720n° + 1318613641n* + 2623833171n3
+ 3340846686n2 + 24700287120 + 807986784

Remark 2.4. Observe that the initial conditions (13) and (15) are justified by the following
relations

Ria = 18¢ (5) 4 66¢ (3) — 98,

Ray = 938 (5) + %C 3) - %3637
Ry = 77202 (5) + 15226354 3) %’
and
Ruz = 8¢ (5) +28¢ (3) — %,
Rya = 11340C (5) + ¢ (3) - %

which are easy to check using (4) and (5), respectively.

Evidently, from (11) we deduce that r,, = ¢,( (5) — p,, where
Gn = o = @By Do = Bun = Bun and 7 = B Rt = BuRos.
As the characteristic equation of (12) and (14) is
A% —188\% — 23681 +4 = 0,

and its zeros are t; = 0.00168896 + 7.10543 x 107154, t, = —11.8505 — 7.10543 x 10757 and
ts = 199.849 — 5.92119 x 10~'%;. Then, by from Poincaré’s theorem [24, 28] we deduced that
an = O ([t3]"), B = O (|ts]"), 7o = O (|t3]") and R,,1 = O (Jt1]"), respectively, as n goes to
infinity. Observe that the same behavior occurs for &, = O (|t3]"), B, = O (|ts|™), A = O (|ts|™)
and R, 2 = O (|t1|"). Thus, from above results we follow to following conjecture.

Conjecture 2.1. Let n be positive integer, with n > 1. Then, the sequences (pn),,>,, (qn),>, and
(Tn) 1 have the following behavior p, = O ([tat3|"), gn = O (|tats|") and r, = O (|t:t3]"), as
n goes to infinity.
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Evidently, the previous conjecture supplies an algorithm for fast calculation of the number
¢ (5). Consequently, the rational approximations p,, /¢, converge to ¢ (5) with speed 1.42522 x
10~*, which is showed in the following Table 1.

1 o7 0.0008327
768 '
, 6005741 L ss 100
5878656 089 X
. 13823722765 ot 1o
13331423232 osh X
694059844981027
4 1.836 x 10-15
669342528000000
116185685519039939851
5 9,578 x 10-19

112048004253657600000

3796057669715104060275403
6 3.638 x 107%
3660869960212652812800000

1883364094989235447800132560011

! 1816292490626633604983193600000 5149 > 107
10 5 1.472 % 107
= 5 5.016 x 10~77
47 : 7.106 x 10181
i : 2.455 x 10269

Table 1. Rational approximations to ¢ (5)

Let us recall some results about the continued fraction representation. We say that a number
« can be written by a infinite irregular continued fraction expansion, if admits the following

representation

bi| | ba by | by
a=ag+ ot o =g
|CL1 |CL2 |an ar + bQ
1

bs

as +
2 CL3+.

bn
an+_

Ap—1 +

Theorem 2.5. [19, p. 31] Let (pn),~_, and (qn),~_, be two sequences of numbers such that
qg-1=0,p_1=qo=1and p,qn_1 — Pn_1qn 7# 0 forn = 0,1,2, . ... Then, there exists a unique

irregular continued fraction



whose n-th numerator is p,, and n-th denominator is q,, for each n > 0. More precisely

ap = po, a1 =q, bi=p —poq,

a, = Pndn—2 — Pn—24n ’ bn _ Pn—19n — PnGn-1 , n— O, 1, 2’ o
Pn—19n—2 — Pn—2Qn—1 Pn—19n—2 — Pn—24n—1
Theorem 2.6. [19, p. 31] Two irregular continued fractions
b b b by, b, b b b
a0_|_1_|_|_2_|_|_3_|+..._|__|_|_...7 ap + 1/|_|_ 2/|_|_ 3/|_|_..._|_ "|_|_.. 7
lar  [ax  |as | an |ay  [ay | df | a,

are equivalent if and only if there exists a sequence of non-zero (c,),,~o With co = 1 such that
a, =cpan, n=0,1,2 ..., b =cuco1b,, n=12 ..
Using the previous theorems we deduce the following results.

Theorem 2.7. The following irregular continued fraction expansion for  (5) is verify

C(5) = 797| , —37597440 | 4963010140935 |
768 | —60957410 ' | —699335469
15209343303372544 | 442065924497557800000 |
| — 160388693712 | —19820970745081
2826977104806064592400532300 |
| —1015388502751019592
161193705016034065874069140445355480 |
| — 1124616677901200855445 o
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