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Abstract: In this paper we obtain two Zudilin-Like recurrence relations of third order for ζ(5),
after applying Zeilberger’s algorithm of creative telescoping to some hypergeometric series.
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deduce a new continued fraction expansion for ζ (5) as a consequence.
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1 Introduction

The arithmetical properties of the Riemann zeta function at odd integer arguments

ζ (2k + 1) ≡
∑
n≥1

n−2k−1, k ∈ N\ {0} ,

had fascinated a good number of mathematicians from the XVII century. In particular, Euler gave
the following result for ζ(3)

ζ(3) =
π2

log 2
+ 2

∫ π/2

0

x log sinxdx,

for more details, see [31]. In Addition, he exposed the following conjecture

ζ (2k + 1) =
p

q
π2k+1,
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where p and q are integer numbers [33]. However, Euler’s efforts to validate it were failed, and
meanwhile the conjecture itself has been refuted [38]. Subsequent to the researches initiated
by Euler, nothing was known on the arithmetical nature of the Riemann zeta function at odd
arguments, until 2.00 pm on a Thursday afternoon in June 1978, Roger Apéry surprised the
mathematical community with a talk about the irrationality of ζ (3), see for instance [7, 33, 34,
41]. The aforesaid result was credited as Apéry’s theorem, ζ (3) /∈ Q, [7, 8, 9, 10, 11, 12, 15, 18,
21, 22, 29, 33, 34, 35, 36, 39, 40, 41].

From the result of Apéry, several seminaries were organized, in order to understand the afore-
said proof, so answering the questions about the arithmetical properties of the Riemann zeta func-
tion at odd integers. However, to this date it is not known if the ζ (5) is irrational or not, although
many mathematicians conjecture that this aforesaid number is as much irrational like transcen-
dental; some of the few results connected with ζ (5) appear in [30, 32, 42, 43, 44, 45]. Due to the
importance conferred to the study of the arithmetical properties of ζ (2k + 1) for k ∈ N, inside
and outside of mathematics, many researchers, inspired by the ideas of Euler and of Apéry, have
obtained some forms of representing to ζ (5). For example, in [6, 14] the authors showed the
following relation connected to the golden ratio ϕ = 2−1

(√
5 + 1

)
[37]

ζ (5) = 2−1
∑
k≥1

(−1)k+1

k5
(
2k
k

) +
5

4
Li5 (ϕ)− 5

4
Li4 (ϕ)

+ 2−1ζ (3) log2 ϕ− 6−1ζ (2) log3 ϕ− 48−1 log5 ϕ,

where

Lin (z) =
∑
k≥1

zk

kn
,

is the polylogarithm of order n. In addition, in [13, 27] appear

ζ (5) = 2
∑
k≥1

(−1)k+1

k5
(
2k
k

) − 5

2

∑
k≥1

(−1)k+1

k3
(
2k
k

) ∑
1≤j≤k−1

1

j2
,

and in [26] it is deduced

ζ (5) =
3

16

∑
n≥1

(4n− 1) (16n3 − 8n2 + 4n− 1)

(−1)n−1 n5 (2n− 1)
(
2n
n

)(
3n
n

)
+ 4−1

∑
n≥1

(−1)n (56n2 − 32n+ 5)

n3 (2n− 1)2
(
2n
n

)(
3n
n

) ∑
1≤k≤n−1

1

k2
,

and

ζ (5) =
∑
n≥1

(−1)n (31n2 − 20n+ 4)

n7
(
2n
n

)5
+
∑
n≥1

(−1)n (205n2 − 160n+ 32)

n5
(
2n
n

)5
( ∑

1≤k≤n−1

1

k2
−
∑

0≤k≤n

1

2 (k + n)2

)
,
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respectively. Another of the interesting results are the obtained for Zudilin, which, in [46] proved

F5,n = (−1)n n!4
∑
k≥1

(
k +

n

2

) (1− k)n (k + n+ 1)n
(k)6n+1

=

∫
· · ·
∫
[0,1]5

xn1 (1− x1)n xn2 (1− x2)n · · ·xn5 (1− x5)n

Q5 (x1, x2, . . . , x5)
n+1 dx1dx2 · · · dx5

= unζ (5) + wnζ (3)− vn, (1)

with

Q5 (x1, x2, . . . , x5) = 1− (1− (· · · (1− (1− x5)x4) · · · )x2)x1
= 1− x1Q4 (x2, . . . , x5) = Q4 (x1, . . . , x4)− x1x2 · · · x5,

where un, wn, vn ∈ Q satisfy the following recurrence relation of third order

(n+ 1) (n+ 2)5 b0 (n) yn+2 − b1 (n)un+1 − b2 (n)un + 2 (2n+ 1)n5b0 (n+ 1)un−1 = 0,

with initial conditions

u0 = 2, w0 = v0 = 0,

u1 = 18, w1 = 66, v1 = 98,

u2 = 938, w3 =
6125

2
, v2 =

74463

16
,

where
b0 (n) = 41218n3 + 48459n2 + 20010n+ 2871,

b1 (n) = 2(n+ 1)(3874492n8 + 33613836n7 + 123666762n6 + 250134420n5

+ 301587620n4 + 220011738n3 + 94372815n2 + 21917736n+ 2131500),

b2 (n) = 2(48802112n9 + 350188128n8 + 1080631646n7 + 1882848690n6

+ 2045758212n5 + 1442754107n4 + 663248761n3

+ 192486369n2 + 32136756n+ 2360484).

Moreover, Zudilin in [45] using the very-well-poised hypergeometric series1 (1) as well as
the result

F̃5,n = (−1)n+2 n!4
∑
k≥1

(
k +

n

2

) (−k)n+1 (k + n)n+1

(k)6n+1

,

deduced the following recurrence relation of third order

(n+ 1)6 α0 (n) yn+1 + α1 (n) yn − 4 (2n− 1)α2 (n) yn−1

− 4 (n− 1)4 (2n− 1) (2n− 3)α0 (n+ 1) yn−2 = 0, n ≥ 2, (2)

1In the second section, we will give more details about this type of hypergeometric series.
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where

α0 (n) = 41218n3 − 48459n2 + 20010n− 2871,

α1 (n) = 2(48802112n9 + 89030880n8 + 36002654n7

−24317344n6 − 19538418n5 + 1311365n4

+3790503n3 + 460056n2 − 271701n− 60291),

α2 (n) = 3874492n8 − 2617900n7 − 3144314n6

+2947148n5 + 647130n4 − 1182926n3

+115771n2 + 170716n− 44541,

which is satisfied by the numerators pn,5 and denominators qn,5 of the rational approximations to
ζ (5) with the initial conditions

p0,5 = 0, p1,5 =
87

2
, p2,5 = −1190161

64
,

q0,5 = −1, q1,5 = 42, q1,5 = −17934.

In addition, he verified that the sequence rn,5 = qn,5ζ (5) − pn,5 > 0 also satisfies the re-
currence relation (2) and he checked that the same and the sequence of the denominators qn,5,
satisfy the following limits

lim
n→∞

log |rn,5|
n

= log |µ2| = −1.08607936...,

lim
n→∞

log |qn,5|
n

= log |µ3| ,

where
µ1 = −0.02001512..., µ2 = 0.33753726..., µ3 = −2368.31752213...,

are the roots of the characteristic polynomial µ3 + 2368µ2 − 752µ − 16 of recurrence relation
(2). With these results, Zudilin presented an efficient and fast algorithm for the calculation of
this constant ζ (5), since the sequence of rational approximations pn,5/qn,5 converge to ζ (5) with
speed |µ2/µ3| < 1.42521964·10−4 [33, 45].

The aim of this paper is to present an efficient algorithm for fast calculation of ζ (5). As
consequence, new Zudilin-like rational approximations to ζ (5) are deduced, as well as a new
continued fraction expansion for this constant.

2 Main results

As it is known, the ordinary hypergeometric series [17, 20, 23] at the variable z is defined by

rFs

 a1, . . . , ar
z

b1, . . . , bs

 ≡∑
k≥0

(a1)k · · · (ar)k
(b1)k · · · (bs)k

zk

k!
,

where (·)k denotes the Pochhammer symbol [5, 16], also called the shifted factorial, defined by
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(z)k ≡
∏

0≤j≤k−1

(z + j) , k ≥ 1,

(z)0 = 1, (−z)k = 0, if z < k, (3)

which in terms of the gamma function is given by

(z)k =
Γ (z + k)

Γ (z)
, k = 0, 1, 2, . . .

Here {ai}ri=1 and {bj}sj=1 are complex numbers subject to the condition that bj 6= −n with
n ∈ N\ {0} for j = 1, 2, . . . , s. In particular, the series

r+1Fr

 a0, a1, . . . , ar
z

b1, . . . , br

 =
∑
k≥0

(a0)k · · · (ar)k
(b1)k · · · (br)k

zk

k!
,

is called well-poised if the sequences {ai}ri=0 and {bj}rj=1 satisfy the following relations

a0 + 1 = a1 + b1 = a2 + b2 = · · · = ar + br.

Theorem 2.1. Let n be an integer, with n ≥ 1. Then, the following sequences

Rn,1 = (−1)n n!4
∑
k≥1

(2k + n+ 2)
(−k)n (k + n+ 2)n

(k + 1)6n+1

, (4)

and

Rn,2 = (−1)n n!4
∑
k≥1

(2k + n+ 2)
(1− k)n−1 (k + n+ 3)n−1

(k + 1)6n+1

, (5)

are the very-well-poised hypergeometric series

n!11 (3n+ 2)!

(2n+ 1)!7
9F8

 3n+ 2, 3n
2

+ 2, n+ 1, . . . , n+ 1

1
3n
2

+ 1, 2n+ 2, . . . , 2n+ 2

 ,

and

−(n− 1)! (3n+ 2)!n!10

(2n+ 2)! (2n+ 1)!6
9F8

 3n+ 2, 3n
2

+ 2, n, n+ 1, . . . , n+ 1

1
3n
2

+ 1, 2n+ 3, 2n+ 2, . . . , 2n+ 2

 , (6)

respectively.

Proof. We prove only the second result, since both are similar. According to (3) we have

Rn,2 = (−1)n n!4
∑
k≥n

(2k + n+ 2)
(1− k)n−1 (k + n+ 3)n−1

(k + 1)6n+1

.
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Consequently

Rn,2 = 2 (−1)n n!4
∑
k≥0

(
k +

3

2
n+ 1

)
(1− k − n)n−1 (k + 2n+ 3)n−1

(k + n+ 1)6n+1

.

Then, having into account

(k +
3

2
n+ 1) =

2−1 (3n+ 2)
(
3n
2

+ 2
)
k(

3n
2

+ 1
)
k

, (7)

(−1)n−1 (1− k − n)n−1 =
(n− 1)! (n)k

k!
, (8)

(k + 2n+ 3)n−1 =
(3n+ 1)! (3n+ 2)k
(2n+ 2)! (2n+ 3)k

, (9)

and

(k + n+ 1)6n+1 =
(2n+ 1)!6 (2n+ 2)6k

n!6 (n+ 1)6k
. (10)

We deduce

Rn,2 = −(n− 1)! (3n+ 2)!n!10

(2n+ 2)! (2n+ 1)!6

∑
k≥0

(3n+ 2)k
(
3n
2

+ 2
)
k

(n)k (n+ 1)6k(
3n
2

+ 1
)
k

(2n+ 3)k (2n+ 2)6k
,

which coincides with (6). This finishes the proof, the detailed verification of (7)–(10) being left
to the reader.

Indeed, the very-well-poised hypergeometric series (4) and (5) are Q-linear forms in

{1, ζ (3) , ζ (5)} ,

i. e.,
Rn,1 = αnζ (5) + βnζ (3)− γn and Rn,2 = α̃nζ (5) + β̃nζ (3)− γ̃n. (11)

Next, we apply to the very-well-poised hypergeometric series (4) and (5), the so-called algorithm
of creative telescoping due to W. Gosper and D. Zeilberger [1, 2, 3, 4, 25], from which are
deduced the following results. In fact, this algorithm is implemented in different computer algebra
systems, in particular, in Maple and Mathematica.

Proposition 2.2. The sequences (αn)n≥1, (βn)n≥1, (γn)n≥1 and (Rn,1)n≥1 verify the following
Zudilin-like recurrence relation

(n+ 2) (n+ 3)5 η(1)n yn+3 − 2(n+ 2)η(2)n yn+2 − 2η(3)n yn+1

+ 2 (n+ 1)5 (2n+ 3) η(4)n yn = 0, n ≥ 1, (12)

with initial conditions

α1 = 18, β1 = 66, γ1 = 98,

α2 = 938, β2 =
6125

2
, γ2 =

74463

16
,

α3 = 77202, β3 =
1524635

6
, γ3 =

1498833983

3888
,

(13)

109



where
η(1)n = 41218n3 + 172113n2 + 240582n+ 112558,

η(2)n = 3874492n8 + 64609772n7 + 467449390n6

+ 1914997100n5 + 4854959850n4 + 7794497470n3

+ 7734655711n2 + 4336014520n+ 1051310919,

η(3)n = 48802112n9 + 789407136n8 + 5639012702n7 + 23351915204n6

+ 61795716198n5 + 108398618199n4 + 126080841295n3

+ 93794477946n2 + 40508900959n+ 7741215265,

and
η(4)n = 41218n3 + 295767n2 + 708462n+ 566471.

Proposition 2.3. The sequences (α̃n)n≥1, (β̃n)n≥1, (γ̃n)n≥1 and (Rn,2)n≥1 verify the following
Zudilin-like recurrence relation

(n+ 3)3 (n+ 4)6 η̃(1)n yn+3 − 2(n+ 3)4η̃(2)n yn+2 − 2 (n+ 2)3 η̃(3)n yn+1

+ 2n (n+ 1)5 (n+ 2)2 (2n+ 3) η̃(4)n yn = 0, n ≥ 1, (14)

with initial conditions

α̃1 = 8, β̃1 = 28, γ̃1 =
2685

64
,

α̃2 = 222, β̃2 =
1455

2
, γ̃2 =

12885155

11664
,

α̃3 = 11340, β̃3 =
223895

6
, γ̃3 =

56350012781

995328
,

(15)

where

η̃(1)n = 41218n9 + 761976n8 + 6198908n7 + 29116116n6

+ 86990832n5 + 171424173n4 + 222811091n3 + 184222071n2

+ 87944623n+ 18475776,

η̃(2)n = 3874492n14 + 135554862n13 + 2182452596n12 + 21427732081n11

+ 143302454897n10 + 690442234873n9 + 2471123718840n8

+ 6673220764546n7 + 13662032585953n6 + 21099764318756n5

+ 24196514657956n4 + 19978330639676n3

+ 11227117507832n2 + 3843841185536n+ 604947087360,
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η̃(3)n = 48802112n15 + 1780617600n14 + 30035105938n13 + 310655379860n12

+ 2203200295168n11 + 11348221528255n10 + 43853910213752n9

+ 129467584214041n8 + 294411248543850n7 + 515715215712131n6

+ 690243684548826n5 + 693281686236195n4 + 505903008137430n3

+ 253247361204846n2 + 77776973364636n+ 11049992110080,

and

η̃(4)n = 41218n9 + 1132938n8 + 13778564n7 + 97306112n6

+ 439728720n5 + 1318613641n4 + 2623833171n3

+ 3340846686n2 + 2470028712n+ 807986784.

Remark 2.4. Observe that the initial conditions (13) and (15) are justified by the following
relations

R1,1 = 18ζ (5) + 66ζ (3)− 98,

R2,1 = 938ζ (5) +
6125

2
ζ (3)− 74463

16
,

R3,1 = 77202ζ (5) +
1524635

6
ζ (3)− 1498833983

3888
,

and

R1,2 = 8ζ (5) + 28ζ (3)− 2685

64
,

R2,2 = 222ζ (5) +
1455

2
ζ (3)− 12885155

11664
,

R3,2 = 11340ζ (5) +
223895

6
ζ (3)− 56350012781

995328
,

which are easy to check using (4) and (5), respectively.

Evidently, from (11) we deduce that rn = qnζ (5)− pn, where

qn = αnβ̃n − α̃nβn, pn = β̃nγn − βnγ̃n and rn = β̃nRn,1 − βnRn,2.

As the characteristic equation of (12) and (14) is

λ3 − 188λ2 − 2368λ+ 4 = 0,

and its zeros are t1 = 0.00168896 + 7.10543 × 10−15i, t2 = −11.8505 − 7.10543 × 10−15i and
t3 = 199.849 − 5.92119 × 10−16i. Then, by from Poincaré’s theorem [24, 28] we deduced that
αn = O (|t3|n), βn = O (|t3|n), γn = O (|t3|n) and Rn,1 = O (|t1|n), respectively, as n goes to
infinity. Observe that the same behavior occurs for α̃n = O (|t3|n), β̃n = O (|t3|n), γ̃n = O (|t3|n)

andRn,2 = O (|t1|n). Thus, from above results we follow to following conjecture.

Conjecture 2.1. Let n be positive integer, with n ≥ 1. Then, the sequences (pn)n≥1, (qn)n≥1 and
(rn)n≥1, have the following behavior pn = O (|t2t3|n), qn = O (|t2t3|n) and rn = O (|t1t3|n), as
n goes to infinity.
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Evidently, the previous conjecture supplies an algorithm for fast calculation of the number
ζ (5). Consequently, the rational approximations pn/qn converge to ζ (5) with speed 1.42522 ×
10−4, which is showed in the following Table 1.

n pn/qn |ζ (5)− pn/qn|

1
797

768
0.0008327

2
6095741

5878656
9.685× 10−8

3
13823722765

13331423232
1.321× 10−11

4
694059844981027

669342528000000
1.836× 10−15

5
116185685519039939851

112048004253657600000
2.578× 10−19

6
3796057669715104060275403

3660869960212652812800000
3.638× 10−23

7
1883364094989235447800132560011

1816292490626633604983193600000
5.149× 10−27

10
... 1.472× 10−38

20
... 5.016× 10−77

47
... 7.106× 10−181

70
... 2.455× 10−269

Table 1. Rational approximations to ζ (5)

Let us recall some results about the continued fraction representation. We say that a number
α can be written by a infinite irregular continued fraction expansion, if admits the following
representation

α = a0 +
b1 |
| a1

+
b2 |
| a2

+ · · ·+ bn |
| an

+ · · · = a0 +
b1

a1 +
b2

a2 +
b3

a3+. . .
an−1 +

bn
an+. . .

Theorem 2.5. [19, p. 31] Let (pn)n≥−1 and (qn)n≥−1 be two sequences of numbers such that
q−1 = 0, p−1 = q0 = 1 and pnqn−1 − pn−1qn 6= 0 for n = 0, 1, 2, . . .. Then, there exists a unique
irregular continued fraction

a0 +
b1 |
| a1

+
b2 |
| a2

+
b3 |
| a3

+ · · ·+ bn |
| an

+ · · · ,
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whose n-th numerator is pn and n-th denominator is qn, for each n ≥ 0. More precisely

a0 = p0, a1 = q1, b1 = p1 − p0q1,

an =
pnqn−2 − pn−2qn

pn−1qn−2 − pn−2qn−1
, bn =

pn−1qn − pnqn−1
pn−1qn−2 − pn−2qn−1

, n = 0, 1, 2, . . .

Theorem 2.6. [19, p. 31] Two irregular continued fractions

a0 +
b1 |
| a1

+
b2 |
| a2

+
b3 |
| a3

+ · · ·+ bn |
| an

+ · · · , a′0 +
b′1 |
| a′1

+
b′2 |
| a′2

+
b′3 |
| a′3

+ · · ·+ b′n |
| a′n

+ · · · ,

are equivalent if and only if there exists a sequence of non-zero (cn)n≥0 with c0 = 1 such that

a′n = cnan, n = 0, 1, 2, . . . , b′n = cncn−1bn, n = 1, 2, . . .

Using the previous theorems we deduce the following results.

Theorem 2.7. The following irregular continued fraction expansion for ζ (5) is verify

ζ (5) =
797 |
| 768

+
−37597440 |
| −60957410

+
4963010140935 |
| −699335469

+
15299843303372544 |
| − 160388693712

+
442065924497557800000 |
| − 19820970745081

+
2826977104806064592400532800 |
| − 1015388502751019592

+
161193705016034065874069140445355480 |
| − 1124616677901200855445

+ · · ·
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values, J. Théor. Nombres Bordeaux, 15 (2), 593–626.

116


