Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 24, 2018, No. 2, 90–93 DOI: 10.7546/nntdm.2018.24.2.90-93

On two new combined 3-Fibonacci sequences

Krassimir T. Atanassov

Department of Bioinformatics and Mathematical Modelling IBPhBME – Bulgarian Academy of Sciences Acad. G. Bonchev Str. Bl. 105, Sofia-1113, Bulgaria

and

Intelligent Systems Laboratory Prof. Asen Zlatarov University, Bourgas-8010, Bulgaria e-mail: krat@bas.bg

Received: 29 March 2017

Accepted: 29 October 2017

Abstract: Two new combined 3-Fibonacci sequences are introduced and the explicit formulae for their *n*-th members are given.

Keywords: Fibonacci sequence, 3-Fibonacci sequence. **2010 Mathematics Subject Classification:** 11B39.

1 Introduction

The author has introduced a series of extensions of the nature of the Fibonacci sequence (see, e.g., [1]). Here, two new combined 3-Fibonacci sequences are introduced.

2 First scheme

Let a, b, c, d be arbitrary real numbers. The first sequence has the form: $\alpha_0 = a, \beta_0 = b, \gamma_0 = c, \gamma_1 = d$ and for each natural number n:

$$\alpha_{n+2} = \gamma_{n+1} + \beta_{n+1},$$

$$\beta_{n+2} = \gamma_{n+1} + \alpha_{n+1},$$

$$\gamma_{n+2} = \gamma_{n+1} + \gamma_n.$$

The first values of sequences $\{\alpha_n\}_{n=0}^{\infty}, \{\beta_n\}_{n=0}^{\infty}$ and $\{\gamma_n\}_{n=0}^{\infty}$ are the following

n	$lpha_n$	γ_n	β_n
0	a		b
0		c	
1	b+c		a + c
1		d	
2	a + c + d		b + c + d
2		c+d	
3	b+2c+2e		a+2c+2d
3		c+2d	
4	a + 3c + 4d		b+3c+4d
4		2c + 3d	
5	b + 5c + 7d		a + 5c + 7d
5		3c + 5d	
6	a + 8c + 12d		b + 8c + 12d
6		5c + 8d	
7	b + 13c + 20d		a + 13c + 20d
7		8c + 13d	
8	a + 21c + 33d		b+21c+33d
8		13c + 21d	
9	b + 34c + 54d		a + 34c + 54d
9		21c + 34d	

Let $\{F_n\}_{n=0}^{\infty}$ be the standard Fibonacci sequence, where for each natural number $n \ge 0$, $F_0 = 0, F_1 = 1$, and

$$F_{n+2} = F_{n+1} + F_n.$$

Theorem 1. For each natural number $n \ge 1$:

_

$$\begin{split} &\alpha_{2n-1} = b + F_{2n-1}a + (F_{2n} - 1)d, \\ &\alpha_{2n} = a + F_{2n}c + (F_{2n+1} - 1)d, \\ &\beta_{2n-1} = a + F_{2n-1}c + (F_{2n} + 1)d, \\ &\beta_{2n} = b + F_{2n}c + (F_{2n+1} - 1)d, \\ &\gamma_{n+2} = F_{n+1}c + F_{n+2}d. \end{split}$$

Proof: We can prove the Theorem, for example, by induction. For n = 1, the validity of the Theorem is checked directly from the above table. Let us assume that the Theorem is valid for some natural number $n \ge 1$. Then:

$$\begin{aligned} \alpha_{2n+1} &= \gamma_{2n} + \beta_{2n} \\ &= F_{2n-1}c + F_{2n}d + b + F_{2n}c + (F_{2n+1} - 1)d \\ &= b + (F_{2n-1} + F_{2n})c + (F_{2n} + F_{2n+1} - 1)d \\ &= b + F_{2n+1}c + (F_{2n+2} - 1)d. \end{aligned}$$

$$\begin{aligned} \alpha_{2n+2} &= \gamma_{2n+1} + \beta_{2n+1} \\ &= F_{2n}c + F_{2n+1}d + a + F_{2n+1}c + (F_{2n+2} - 1)d \\ &= a + (F_{2n} + F_{2n+1})c + (F_{2n+1} + F_{2n+2} - 1)d \\ &= b + F_{2n+2}c + (F_{2n+3} - 1)d. \end{aligned}$$

The rest formulas are checked by analogy.

3 Second scheme

Let a, b, c, d be arbitrary real numbers. The second sequence has the form: $\alpha_0 = a, \beta_0 = b, \gamma_0 = c, \alpha_2 = d$ and for each natural number n:

$$\alpha_{n+1} = \alpha_{n+1} + \alpha_n,$$

$$\beta_{n+1} = \alpha_{n+1} + \gamma_n,$$

$$\gamma_{n+1} = \alpha_{n+1} + \beta_n.$$

The first values of sequences $\{\alpha_n\}_{n=0}^{\infty}, \{\beta_n\}_{n=0}^{\infty}$ and $\{\gamma_n\}_{n=0}^{\infty}$ are the following

n	eta_n	$lpha_n$	γ_n
0		a	
0	b		c
1		d	
1	c+d		b+d
2		a+d	
2	a+b+2d		a + c + 2d
3		a+2d	
3	2a + c + 4d		2a+b+4d
4		2a + 3d	
4	4a+b+7d		4a + c + 7d
5		3a + 5d	
5	7a + c + 12d		7a + b + 12d
6		5a + 8d	
6	12a + b + 20d		12a + c + 20d
7		8a + 13d	
7	20a + c + 33d		20a + b + 33d
8		13a + 21d	
8	33a + b + 54d		33a + c + 54d
9		21a + 34d	
9	54a + c + 88d		54a + b + 88d

Theorem 2. For each natural number $n \ge 1$:

$$\alpha_n = F_{n-1}c + F_n d,$$

$$\beta_{2n-1} = (F_{2n} - 1)a + b + (F_{2n+1} - 1)d,$$

$$\beta_{2n} = (F_{2n+1} - 1)a + c + (F_{2n+2} - 1)d,$$

$$\gamma_{2n-1} = (F_{2n} - 1)a + c + (F_{2n+1} - 1)d,$$

$$\gamma_{2n} = (F_{2n+1} - 1)a + b + (F_{2n+2} - 1)d.$$

Proof: The proof is similar.

Another new scheme, modifying the standard form of 2-Fibonacci and 3-Fibonacci sequences and the above two sequences, will be discussed in near future.

References

[1] Atanassov K., Atanassova, V., Shannon, A., & Turner, J. (2002) *New Visual Perspectives on Fibonacci Numbers*, World Scientific, New Jersey.