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A note on the Frobenius and the Sylvester numbers
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Abstract: Positive integers that cannot be represented by a linear form with relatively prime
coefficients and over nonnegative integers are finite in number. We describe a connection be-
tween the largest number in this set and the cardinality of this set. We also describe a connection
with a subset related to this set.
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The Frobenius Coin Exchange problem revolves around the set Γc({a1, . . . , ak}) of positive in-
tegers that are not representable by the linear form a1x1 + · · · + akxk. For brevity, let us call
A = {a1, . . . , ak}. For the set Γc(A) to be a finite set it is necessary and sufficient that gcdA = 1.
The Frobenius problem operates under this assumption. Two classical problems involving the set
Γc(A) are the determination of the functions g(A) and n(A), both due to Sylvester [2], given by

g(A) := max Γc(A), n(A) :=
∣∣Γc(A)

∣∣. (1)

The number g(A) is often called the Frobenius number of A and the number n(A) sometimes
called the Sylvester number of A, the former due to the fact that Frobenius popularized the prob-
lem posed by Sylvester in his lectures.

The set Γ(A) = {a1x1 + · · · + akxk : xi ≥ 0} is closed under addition. So at most one of
n, g(A) − n can belong to Γ(A). By pairing the integers n and g(A) − n in {0, . . . , g(A)}, we
see that at least one integer in each pair belongs to Γc(A). Hence n(A) ≥ 1

2

(
1 + g(A)

)
. Equality

occurs precisely when exactly one of n, g(A)− n belongs to Γc(A), for each n ∈ {0, . . . , g(A)}.
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This inequality, together with different conditions under which equality may occur, appear in [1].
However, the equivalence we state and prove next is very easy to see and possibly has the status
of folklore.

Theorem 1. Let A be a set of positive integers with gcdA = 1. The following are equivalent:

(i) n ∈ Γc(A) implies g(A)− n ∈ Γ(A) for each n ∈ {0, . . . , g(A)}.

(ii) n(A) = 1
2

(
1 + g(A)

)
.

Proof. Condition (ii) holds exactly when one of n, g(A) − n belongs to Γ(A) and the other to
Γc(A), for each n ∈ {0, . . . , g(A)}. Since we already have this situation to hold when n ∈ Γ(A),
the remaining condition, given by (i), is equivalent to condition (ii).

The fact that Γ(A) is closed under addition implies n + Γ(A) ⊆ Γ(A) whenever n ∈ Γ(A).
What if we asked for the same property to hold for n ∈ Γc(A)? We will need to modify the
condition a little, since 0 ∈ Γ(A) and n+ 0 /∈ Γ(A). To exclude this trivial possibility, we define

S?(A) :=
{
n ∈ Γc(A) : n+ Γ? ⊂ Γ?

}
, (2)

where Γ?(A) = Γ(A) \ {0}.
The set S?(A) is never empty, for g(A) ∈ S?(A). Is it ever possible for S?(A) = {g(A)}?

To answer this question, fix a ∈ A, and let mx denote the smallest integer in Γ(A) ∩ (x), where
(x) denotes the residue class of xmodulo a. Thus Γc(A)∩(x) consists of the nonnegative integers
of the form mx − λa, with λ ≥ 1. Since

(
mx − λa

)
+ a /∈ Γ(A) for λ > 1, we have

S?(A) ⊆
{
mx − a : 1 ≤ x ≤ a− 1

}
. (3)

In order that mx−a ∈ S?(A) for some x ∈ {1, . . . , a−1}, it is necessary that
(
mx−a

)
+my ∈

Γ(A) for each y ∈ {1, . . . , a − 1}. This condition is also sufficient since any n ∈ Γ(A) is of the
form my + λa with y ∈ {0, . . . , a− 1} and λ ≥ 1. Since

(
mx − a

)
+ my ≡ x + y mod a, we

must have
(
mx − a

)
+ my ≥mx+y, for each y ∈ {1, . . . , a− 1}. Hence we have shown that

mx − a ∈ S?(A)⇐⇒mx + my ≥mx+y + a for 1 ≤ y ≤ a− 1. (4)

The definition in Eqn. (2) and results in Eqn. (3) and Eqn. (4) are from [3].
We are now in position to partially answer the question about when S?(A) = {g(a, b)}. The

connection is due to the fact that the largest integer in Γc(A) is the largest among mx − a, with
x ∈ {1, . . . , a− 1}.

Theorem 2. Let A be a set of positive integers with gcdA = 1. If n ∈ Γc(A) implies g(A)− n ∈
Γ(A) for each n ∈ {0, . . . , g(A)}, then

S?(A) = {g(A)}.
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Proof. Note that g(A) ∈ S?(A) because any integer greater than g(A) belongs to Γ(A). Fix
a ∈ A, and let g(A) = mr − a with r ∈ {1, . . . , a− 1}.

Suppose condition (i) of Theorem 1 holds. Then exactly one of n, g(A)−n belongs to Γc(A),
for each n ∈ {0, . . . , g(A)}. Suppose n ∈ S?(A), n 6= g(A). Then n = mx − a for some
x ∈ {1, . . . , a−1}\{r}. Since n ∈ Γc(A), g(A)−n = mr−mx ∈ Γ(A), and must therefore be
at least as much as the least integer in Γ(A) in its congruence class. Therefore mr−mx ≥mr−x,
so that mx + mr−x ≤mr. It follows from (4) that n = mx − a /∈ S?(A) for x 6= r.

Corollary 1. Let A be a set of positive integers with gcdA = 1. Then

n(A) =
1

2

(
1 + g(A)

)
implies S?(A) = {g(A)}.

There are many instances where the converse of Theorem 2 (or to Corollary 1) holds. One
such instance is the case of the geometric sequenceA = {ak, ak−1b, . . . , bk}, where gcd(a, b) = 1.
However, for the arithmetic sequence A = {a, a + d, . . . , a + kd}, where gcd(a, d) = 1, it turns
out that whereas n(A) > 1

2

(
1 + g(A)

)
, we have S?(A) = {g(A)} when k | (a− 2); refer [3].

References

[1] Nijenhuis, M. & Wilf, H. S. (1972) Representation of integers by linear forms in nonnegative
integers, J. Number Theory, 4, 98–106.

[2] Sylvester, J. J. (1884) Problem 7382, in W. J. C. Miller, ed., Mathematical Questions, with
their Solutions, from the “Educational Times”, 41, 1884, p. 21. Solution by W. J. Curran
Sharp.

[3] Tripathi, A. (2003) On a variation of the Coin Exchange Problem for Arithmetic Progres-
sions, Integers, 3, Article A01, 5 pages.

73


