Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 24, 2018, No. 2, 71–73 DOI: 10.7546/nntdm.2018.24.2.71-73

A note on the Frobenius and the Sylvester numbers

Amitabha Tripathi

Department of Mathematics, Indian Institute of Technology Hauz Khas, New Delhi – 110016, India e-mail: atripath@maths.iitd.ac.in

Received: 30 March 2017

Accepted: 7 May 2018

Abstract: Positive integers that cannot be represented by a linear form with relatively prime coefficients and over nonnegative integers are finite in number. We describe a connection between the largest number in this set and the cardinality of this set. We also describe a connection with a subset related to this set.

Keywords: Representable, Frobenius number.

2010 Mathematics Subject Classification: 11D07.

The Frobenius Coin Exchange problem revolves around the set $\Gamma^c(\{a_1, \ldots, a_k\})$ of positive integers that are not representable by the linear form $a_1x_1 + \cdots + a_kx_k$. For brevity, let us call $A = \{a_1, \ldots, a_k\}$. For the set $\Gamma^c(A)$ to be a finite set it is necessary and sufficient that gcd A = 1. The Frobenius problem operates under this assumption. Two classical problems involving the set $\Gamma^c(A)$ are the determination of the functions g(A) and n(A), both due to Sylvester [2], given by

$$\mathbf{g}(A) := \max \Gamma^{c}(A), \quad \mathbf{n}(A) := \left| \Gamma^{c}(A) \right|. \tag{1}$$

The number g(A) is often called the *Frobenius number* of A and the number n(A) sometimes called the *Sylvester number* of A, the former due to the fact that Frobenius popularized the problem posed by Sylvester in his lectures.

The set $\Gamma(A) = \{a_1x_1 + \cdots + a_kx_k : x_i \ge 0\}$ is closed under addition. So at most one of n, g(A) - n can belong to $\Gamma(A)$. By pairing the integers n and g(A) - n in $\{0, \ldots, g(A)\}$, we see that at least one integer in each pair belongs to $\Gamma^c(A)$. Hence $n(A) \ge \frac{1}{2}(1 + g(A))$. Equality occurs precisely when exactly one of n, g(A) - n belongs to $\Gamma^c(A)$, for each $n \in \{0, \ldots, g(A)\}$.

This inequality, together with different conditions under which equality may occur, appear in [1]. However, the equivalence we state and prove next is very easy to see and possibly has the status of folklore.

Theorem 1. Let A be a set of positive integers with gcd A = 1. The following are equivalent:

(i)
$$n \in \Gamma^{c}(A)$$
 implies $g(A) - n \in \Gamma(A)$ for each $n \in \{0, \dots, g(A)\}$

(ii)
$$n(A) = \frac{1}{2} (1 + g(A)).$$

Proof. Condition (ii) holds exactly when one of n, g(A) - n belongs to $\Gamma(A)$ and the other to $\Gamma^c(A)$, for each $n \in \{0, \dots, g(A)\}$. Since we already have this situation to hold when $n \in \Gamma(A)$, the remaining condition, given by (i), is equivalent to condition (ii).

The fact that $\Gamma(A)$ is closed under addition implies $n + \Gamma(A) \subseteq \Gamma(A)$ whenever $n \in \Gamma(A)$. What if we asked for the same property to hold for $n \in \Gamma^c(A)$? We will need to modify the condition a little, since $0 \in \Gamma(A)$ and $n + 0 \notin \Gamma(A)$. To exclude this trivial possibility, we define

$$\mathcal{S}^{\star}(A) := \left\{ n \in \Gamma^{c}(A) : n + \Gamma^{\star} \subset \Gamma^{\star} \right\},\tag{2}$$

where $\Gamma^{\star}(A) = \Gamma(A) \setminus \{0\}.$

The set $S^*(A)$ is never empty, for $g(A) \in S^*(A)$. Is it ever possible for $S^*(A) = \{g(A)\}$? To answer this question, fix $a \in A$, and let \mathbf{m}_x denote the smallest integer in $\Gamma(A) \cap (x)$, where (x) denotes the residue class of x modulo a. Thus $\Gamma^c(A) \cap (x)$ consists of the nonnegative integers of the form $\mathbf{m}_x - \lambda a$, with $\lambda \ge 1$. Since $(\mathbf{m}_x - \lambda a) + a \notin \Gamma(A)$ for $\lambda > 1$, we have

$$\mathcal{S}^{\star}(A) \subseteq \{\mathbf{m}_x - a : 1 \le x \le a - 1\}.$$
(3)

In order that $\mathbf{m}_x - a \in \mathcal{S}^*(A)$ for some $x \in \{1, \ldots, a-1\}$, it is necessary that $(\mathbf{m}_x - a) + \mathbf{m}_y \in \Gamma(A)$ for each $y \in \{1, \ldots, a-1\}$. This condition is also sufficient since any $n \in \Gamma(A)$ is of the form $\mathbf{m}_y + \lambda a$ with $y \in \{0, \ldots, a-1\}$ and $\lambda \ge 1$. Since $(\mathbf{m}_x - a) + \mathbf{m}_y \equiv x + y \mod a$, we must have $(\mathbf{m}_x - a) + \mathbf{m}_y \ge \mathbf{m}_{x+y}$, for each $y \in \{1, \ldots, a-1\}$. Hence we have shown that

$$\mathbf{m}_x - a \in \mathcal{S}^*(A) \iff \mathbf{m}_x + \mathbf{m}_y \ge \mathbf{m}_{x+y} + a \text{ for } 1 \le y \le a - 1.$$
 (4)

The definition in Eqn. (2) and results in Eqn. (3) and Eqn. (4) are from [3].

We are now in position to partially answer the question about when $S^*(A) = \{g(a, b)\}$. The connection is due to the fact that the largest integer in $\Gamma^c(A)$ is the largest among $\mathbf{m}_x - a$, with $x \in \{1, \ldots, a-1\}$.

Theorem 2. Let A be a set of positive integers with gcd A = 1. If $n \in \Gamma^{c}(A)$ implies $g(A) - n \in \Gamma(A)$ for each $n \in \{0, \dots, g(A)\}$, then

$$\mathcal{S}^{\star}(A) = \{ \mathsf{g}(A) \}.$$

Proof. Note that $g(A) \in S^*(A)$ because any integer greater than g(A) belongs to $\Gamma(A)$. Fix $a \in A$, and let $g(A) = \mathbf{m}_r - a$ with $r \in \{1, \ldots, a - 1\}$.

Suppose condition (i) of Theorem 1 holds. Then exactly one of n, g(A) - n belongs to $\Gamma^{c}(A)$, for each $n \in \{0, ..., g(A)\}$. Suppose $n \in S^{\star}(A)$, $n \neq g(A)$. Then $n = \mathbf{m}_{x} - a$ for some $x \in \{1, ..., a-1\} \setminus \{r\}$. Since $n \in \Gamma^{c}(A)$, $g(A) - n = \mathbf{m}_{r} - \mathbf{m}_{x} \in \Gamma(A)$, and must therefore be at least as much as the least integer in $\Gamma(A)$ in its congruence class. Therefore $\mathbf{m}_{r} - \mathbf{m}_{x} \ge \mathbf{m}_{r-x}$, so that $\mathbf{m}_{x} + \mathbf{m}_{r-x} \le \mathbf{m}_{r}$. It follows from (4) that $n = \mathbf{m}_{x} - a \notin S^{\star}(A)$ for $x \neq r$. \Box

Corollary 1. Let A be a set of positive integers with gcd A = 1. Then

$$n(A) = \frac{1}{2} (1 + g(A)) \text{ implies } S^*(A) = \{g(A)\}.$$

There are many instances where the converse of Theorem 2 (or to Corollary 1) holds. One such instance is the case of the geometric sequence $A = \{a^k, a^{k-1}b, \dots, b^k\}$, where gcd(a, b) = 1. However, for the arithmetic sequence $A = \{a, a + d, \dots, a + kd\}$, where gcd(a, d) = 1, it turns out that whereas $n(A) > \frac{1}{2}(1 + g(A))$, we have $S^*(A) = \{g(A)\}$ when $k \mid (a - 2)$; refer [3].

References

- [1] Nijenhuis, M. & Wilf, H. S. (1972) Representation of integers by linear forms in nonnegative integers, *J. Number Theory*, 4, 98–106.
- [2] Sylvester, J. J. (1884) Problem 7382, in W. J. C. Miller, ed., *Mathematical Questions*, with their Solutions, from the "Educational Times", 41, 1884, p. 21. Solution by W. J. Curran Sharp.
- [3] Tripathi, A. (2003) On a variation of the Coin Exchange Problem for Arithmetic Progressions, *Integers*, 3, Article A01, 5 pages.