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Abstract: The Collatz conjecture is among the unsolved problems in mathematics. It says that if
we take any natural number x; divide it by two if x is even, and multiply it by 3 and add 1 if x is
odd; and repeat this rule on the resulting numbers, eventually we obtain 1. For a given positive
integer x, we say that x is a Collatz number if the claim of the conjecture is true for x. Computer
verification reveals a large range of Collatz numbers. We develop methods by which we construct
sets of Collatz numbers.
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1 Introduction

Lothar Collatz conjectured that if we take any natural number x and do the following: if x is
even, divide it by 2 (divide by 2 rule); if x is odd, multiply it by 3 and add 1 (3x + 1-rule); if we
repeat these steps indefinitely on the resulting numbers then we will eventually obtain 1. Proving
or disproving this conjecture has been among the unsolved problems in mathematics since it was
stated by Collatz in 1937. It has also been among the problems whose solution will be awarded by
a cash prize [7]. Paul Erdös made the following strong comment on this conjecture: “Mathematics
may not be ready for such problems.” [6]. The problem has also been known under other names
[2, 3, 4, 5].

We consider sequences of integers generated by the rules described in the Collatz conjecture.
For any given positive integer x we call each such sequence starting with x a Collatz sequence for
x. Let fi(x) denote the number in a Collatz sequence for x at step i starting with initial number x

47



at step 0. We can define fi(x) as the following function: for every positive integer x, f0(x) = x,
and for i > 0,

fi(x) =

{
3fi−1(x) + 1, if fi−1(x) is odd;
fi−1(x)/2, otherwise, i.e. if fi−1(x) is even.

(1)

The Collatz conjecture claims that for any value of positive integer x, there exists step i (i ≥ 0)
such that fi(x) = 1. Note that once 1 is obtained in the sequence then continuing the steps is not
interesting because the subsequent integers will be 4, 2, and then 1, and this pattern will repeat
forever. Therefore, if 1 is obtained, we are not interested in the rest of the generated integers
in the sequence. A positive integer x has a 1-yielding Collatz sequence f0(x)f1(x) . . . fi(x) if
fi(x) = 1 at some step i. If fi(x) = 1 exists, the smallest i is considered. The shortest 1-yielding
Collatz sequence for x is the shortest sequence f0(x)f1(x) . . . fi(x) where fi(x) = 1. The op-
eration at step i − 1 in generating fi from fi−1 depends on the parity of fi−1. Let 0, 1 indicate
respectively the divide by 2, and the 3x+1 rule (operation). For a given Collatz sequence starting
with x, we call the corresponding binary sequence of operations the Collatz operation sequence
for x. There exists a Collatz operation sequence for x that yields 1 at some step i if x has a
1-yielding Collatz sequence. For x, the shortest 1-yielding Collatz operation sequence is the Col-
latz operation sequence that corresponds to the shortest 1-yielding Collatz sequence for x. We
say that a positive integer x is a Collatz number if x has a 1-yielding Collatz sequence.

Let Θ(x) be the number of Collatz numbers not exceeding x. Krasikov [8] showed that
Θ(x) > cx3/7 for some positive constant c. Andrei and Masalagiu [1] showed that 2m+1(23

mn+1)
3m+1

is a Collatz number for all natural numbers m,n, where n ∈ {6t + 1, 6t + 5 | for some natural
number t }. This is the most relevant result in the literature for our work as we also report new
Collatz numbers in the current paper.

We do not attempt to prove or disprove the Collatz conjecture in this paper. We develop
methods by which we can construct new Collatz numbers. By this kind of efforts, we can gain
more insight into the conjecture, and discover some building blocks for forming larger sets of
Collatz numbers. Clearly, the union of these sets is also a set of Collatz numbers. Our construction
methods imply that for any given positive integer B, there exist odd Collatz numbers larger than
B with Collatz operation sequences in at least two different forms.

We explain our notation in Section 2. In Section 3 we show two methods to construct new
positive odd Collatz numbers from the set of computer-verified Collatz numbers. Further, in
Section 4, we construct two infinite sets of odd Collatz numbers. We summarize the results in
Section 5.

2 Notation

For any nonnegative integer K, we denote by 0K a sequence of K zeros, and by {0, 1}K any
K-bit sequence. Both 00 and {0, 1}0 give the null sequence. For a given bit sequence x, (x)2
denotes the corresponding binary number. For two bit-sequences x and y, xy denotes the binary
number (xy)2 formed by concatenating bit sequences x and y ( x in the high order bits and y in
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the low order bits). If a binary number (x)2 yields a binary number (y)2 in zero or more steps
using the rules defined in Eq. (1) then we state this by the following expression: x ⇒∗ y, or
equivalently, (x)2 ⇒∗ (y)2. We also use them in a mixed way, e.g. x ⇒∗ (y)2. When the
derivation takes exactly one step then we use⇒ instead of⇒∗.

Let C denote the largest integer such that the Collatz conjecture has been verified by computer
for all starting values in [1, C]. Currently C = 5 × 260 [9]. We use this value of C in the rest of
the paper.

3 New finite sets of odd Collatz numbers

Clearly, for every non-negative n, 2n has a 1-yielding Collatz sequence of length n + 1 which
contains all powers of 2 from power n to power 0.

Consider (x0n)2 for a non-negative integer n, (x0n)2 = (x)22
n ⇒ (x)22

n−1 ⇒∗ (x)2 after
a sequence of n divide-by-2 operations. If (x)2 ≤ C then the integer (x0n)2 has a 1-yielding
Collatz sequence since all integers up to C have been verified by computer as Collatz numbers.
In other words, if (x)2 ≤ C, (x0n)2 is a Collatz number for all non-negative integers n. In the
rest of the paper, we focus on odd Collatz numbers.

Lemma 1. For every positive integer K that satisfies 3dK/2e + 2 ≤ C, the integer 2K + 1 is an
odd Collatz number.

Proof. For all K ≥ 1, 2K + 1 is a positive odd integer for which a Collatz sequence is described
in Table 1. After step 0, steps are grouped by three as shown in the table.

step j operation group result fj parity
(current integer in the sequence)

0 initialize 2K + 1 odd
1 3x + 1 rule 1 3(2K) + 4 even
2 divide by 2 1 3(2K−1) + 2 even
3 divide by 2 1 3(2K−2) + 1 odd
3.1 + 1 3x + 1 rule 2 32(2K−2) + 4 even
3.1 + 2 divide by 2 2 32(2K−3) + 2 even
3.2 divide by 2 2 32(2K−4) + 1 odd
... ... ... ... ...
3(i− 1) + 1 3x + 1 rule i 3i(2K−2(i−1)) + 4 even
3(i− 1) + 2 divide by 2 i 3i(2K−2i+1) + 2 even
3i divide by 2 i 3i(2K−2i) + 1 odd

Table 1. A Collatz sequence for 2K + 1.

For K = 2i − 1, for some positive integer i (i.e. for odd K), the Collatz sequence in Table
1 has 3i(2K−2i+1) + 2 = 3i + 2 = 3(K+1)/2 + 2 at step 3(i − 1) + 2; and for K = 2i, for a
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positive integer i (i.e. for even K), it has 3i(2K−2i) + 1 = 3i + 1 = 3K/2 + 1 at step 3i. In both
cases (K odd or even), there exists a Collatz operation sequence for 2K + 1 that yields an integer
less than or equal to 3dK/2e + 2. Therefore, 2K + 1 (K ≥ 0) has a 1-yielding Collatz sequence if
3dK/2e + 2 ≤ C.

We note that for integer K ≥ 4, 2K + 1 > 3dK/2e + 2. This means that although the Collatz
conjecture is verified until C, the implication of Lemma 1 is that there exists an odd Collatz
number of the form 2K + 1 larger than C for some K where 3dK/2e+ 2 ≤ C = 5× 260. Lemma 1
will remain to be true when the verified range (the integer C) for the Collatz conjecture increases
in the future.

Lemma 2. For all integers K ≥ 0, (x)2 ≥ 1 such that 3dK/2e(x)2 + 2 ≤ C, (x0K+21)2 is an odd
Collatz number.

Proof. This proof is similar to that of Lemma 1. For all K ≥ 0, (x0K+21)2 is a positive odd
integer for which a Collatz sequence is described in Table 2. After step 0, steps are grouped by
three as shown in Table 2.

step j operation group result fj parity
(current integer in the sequence)

0 initialize (x0K+11)2 = (x)22
K+3 + 1 odd

1 3x + 1 rule 1 3(x)22
K+3 + 4 even

2 divide by 2 1 3(x)22
K+2 + 2 even

3 divide by 2 1 3(x)22
K+1 + 1 odd

3.1 + 1 3x + 1 rule 2 32(x)2(2
K+1) + 4 even

3.1 + 2 divide by 2 2 32(x)2(2
K) + 2 even

3.2 divide by 2 2 32(x)2(2
K−1) + 1 odd

... ... ... ... ...
3(i− 1) + 1 3x + 1 rule i 3i(x)2(2

K−2(i−1)) + 4 even
3(i− 1) + 2 divide by 2 i 3i(x)2(2

K−2i+1) + 2 even
3i divide by 2 i 3i(x)2(2

K−2i) + 1 odd

Table 2. A Collatz sequence for (x0K+21)2 .

For K = 2i−1, for some nonnegative integer i (i.e. for odd K), the Collatz sequence in Table
2 has 3i(x)2(2

K−2i−1)+2 = 3i(x)2+2 = 3(K+1)/2(x)2+2 at step 3(i−1)+2; and for K = 2i, for a
positive integer i (i.e. for even K), it has 3i(x)2(2

K−2i)+1 = 3i(x)2+1 = 3K/2(x)2+1 at step 3i.
In both cases (K odd or even), a Collatz operation sequence for (x0K+21)2 = (x)22

K+3+1 yields
an integer less than or equal to 3dK/2e(x)2 + 2 included in the range [1, C] where the conjecture
has been verified by computers. Therefore, (x)22

K+3+1 is a Collatz number for all K ≥ 0 where
3dK/2e(x)2 + 2 ≤ C.
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We note that for integers K ≥ 3, (x)2 ≥ 1, (x0K+21)2 > 3dK/2e(x)2 + 2. This means that
there exists a Collatz number of the form (x0K+21)2 larger than the computer-verified maximum
C.

4 Infinite sets of odd Collatz numbers

In this section we show two infinite sets of odd Collatz numbers. Fig. 1 describes their elements.

  

  

2 
2n+2 

3 
- 1 

x 
* 

1 0 0 

(2n+2) 0’s 

a) . . . 

* b) y x 0…0  1 0 … 0 z 
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2 = 

(z) = 3(y) 2 2 k+2n+3 k 

Figure 1. Two infinite sets of Collatz numbers. Each part describes a binary number
and a number derived by applying the rules in Eq. (1): a) 22n+2−1

3
(an integer in set

S1)⇒∗ (102n+2)2 = 22n+2; b) (y)22
k+2n+3 + (x)2 (an integer in set S2)⇒∗ (z0k1)2,

where (x)2 ∈ S1, 3(x)2+1 = 22n+2 for integer n ≥ 0; 3(y)22
k+1+1 = 6(y)22

k+1 ≤
C for integer k ≥ 0. Both cases (a) and (b) eventually yield 1.

Lemma 3. Let S1 =
{

2
(

22n+1−2
3

)
+ 1 = 22n+2−1

3
| n is a positive integer

}
. Set S1 is an infinite

set of odd Collatz numbers.

Proof. We independently discovered a set of Collatz numbers (that we call S1 in this paper)
reported in Lemma 4.1 in [1]. However, our proof is different; and we focus on Collatz operation
sequences. Fig. 1 (a) describes this case. First, we show that S1 is a set of odd Collatz numbers.
For every n ≥ 1, we have the following implications

22 ≡ 1 (mod 3) ⇒ 22n ≡ 1 (mod 3)
⇒ 22n+1 ≡ 2 (mod 3)
⇒ 22n+1 − 2 ≡ 0 (mod 3) (since −2 ≡ 1 (mod 3) )

Therefore, for every n ≥ 1, 2
(

22n+1−2
3

)
+ 1 = 22n+2−1

3
is a positive odd integer. For

2
(

22n+1−2
3

)
+ 1, a Collatz sequence is described in Table 3.

As can be seen from this table, for every n ≥ 1, 2
(

22n+1−2
3

)
+ 1 has a 1-yielding Collatz

sequence having 1 at step 2n + 3. In other words, the shortest 1-yielding Collatz operation
sequence for 2

(
22n+1−2

3

)
+ 1 is 102n+2 (one application of 3x+ 1 rule, and then 2n+ 2 divisions

by 2).
Clearly, S1 contains infinitely many elements each of which is an odd number. This concludes

the proof.
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step i operation result fi(y)

0 initialize 2
(

22n+1−2
3

)
+ 1 ( this is an odd number)

1 3f0(y) + 1 3
(

2
(

22n+1−2
3

)
+ 1
)

+ 1 = 22n+2 − 4 + 4

= 22n+2 (a power of 2)
... ... ...
2n + 3 f2n+2(y)

2
1

Table 3. A Collatz sequence for y = 2
(

22n+1−2
3

)
+ 1 .

Lemma 4. Let S2 = {(y)22
k+2n+3 + (x)2 | (x)2 ∈ S1, where 3(x)2 + 1 = 22n+2 for some integer

n ≥ 0; 6(y)22
k + 1 ≤ C for some integer k ≥ 0, and bit sequence y }. Set S2 is an infinite set of

odd Collatz numbers.

Proof. Fig. 1 (b) describes this case. Since (x)2 ∈ S1, for some n ≥ 0, (x)2 = 22n+2−1
3

, and there-
fore, 3(x)2 + 1 = 22n+2. The shortest 1-yielding Collatz operation sequence for (x)2 is 102n+2.
This sequence is a prefix of a 1-yielding Collatz operation sequence for (y)22

k+2n+3 + (x)2 for
k ≥ 0. The derivation from this sequence is summarized in Table 4.

step i operation result fi
(
(y)22

k+2n+3 + (x)2
)

parity
0 initialize (y)22

k+n+3 + (x)2 odd
1 multiply by 3; add 1 3(y)22

k+2n+3 + 3(x)2 + 1 = 3(y)22
k+2n+3 + 22n+2 even

2 divide by 2 3(y)22
k+2n+2 + 22n+1 even

... ... ... ...
2n + 3 divide by 2 3(y)22

k+1 + 1 = 6(y)22
k + 1 ≤ C odd

... ... ... ...
1 odd

Table 4. A Collatz sequence for (y)22
k+2n+3 + (x)2 for (x)2 ∈ S1 .

Since k ≥ 0, (y)22
k+2n+3 + (x)2 is odd because (x)2 is odd. The first operation will yield

3(y)22
k+2n+3 + 3(x)2 + 1 = 3(y)22

k+2n+3 + 22n+2. After this step, the parity of the resulting
number in each step i is even until the result becomes 3(y)22

k+1 + 1 at step i = 2n + 3 after
2n+ 2 divisions by 2. It is given that (3(y)2)2

k+1 + 1 = 6(y)22
k + 1 ≤ C. Therefore, 6(y)22

k + 1

is guaranteed to have a 1-yielding Collatz sequence.
Clearly, set S2 is infinite; and it contains only odd integers because the least significant bit

positions in every element in S2 are occupied only by some element in S1 which is odd.

Theorem 1. For any given positive integer B, there exists:

1) at least one odd Collatz integer (x1)2 > B with the shortest 1-yielding Collatz operation
sequence of the form 102n+2 for some n ≥ 0;
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2) at least one odd Collatz integer (x2)2 > B with the shortest 1-yielding Collatz operation
sequence of the form 102n+2p where integer n ≥ 0, and p is the shortest 1-yielding Collatz
operation sequence for some positive integer less than or equal to C.

Proof. To prove (1), we know from Lemma 3 that for any given integer B, there exists an odd
integer (x1)2 ∈ S1 larger than B such that 3(x1)2 + 1 = 22n+2, and x1 has the shortest 1-yielding
Collatz operation sequence of the form 102n+2 for some integer n ≥ 0.

To prove (2), take (x1)2 that satisfies case (1). That is, (x1)2 ∈ S1, (x1)2 > B, 3(x1)2 + 1 =

22n+2 for some n ≥ 0, and x1 has the shortest 1-yielding Collatz operation sequence of the form
102n+2. Consider using Lemma 4 to construct a new odd Collatz number (x2)2 from (x1)2 by
setting (x2)2 = (y)22

k+2n+3 + (x1)2 for some integer k ≥ 0. The integer (x2)2 has the shortest
Collatz operation sequence with prefix 102n+2 with which (x2)2 = (y)22

k+2n+3 + (x1)2 ⇒∗

6(y)22
k + 1. Since 6(y)22

k + 1 ≤ C there exists a 1-yielding Collatz operation sequence for
6(y)22

k + 1. Let p be the shortest of such sequences.
Therefore, (x2)2 has the shortest Collatz operation sequence 102n+2p. To obtain one such

p, we can pick y = 10, k = 0. Applying the Collatz operation sequence 102n+2, we see that
(10)22

2n+3 + (x1)2 ⇒∗ 6(10)2 + 1, and 6(10)2 + 1 = (1101)2 ⇒ (101000)2 ⇒ (10100)2 ⇒
(1010)2 ⇒ (101)2 ⇒ (10000)2 ⇒ (1000)2 ⇒ (100)2 ⇒ (10)2 ⇒ 1.

Therefore, by noting the operations in this derivation, we see that (10)22
2n+3 + (x1)2 has

the shortest Collatz operation sequence 102n+2100010000 which is of the form 102n+2p, where
p = 100010000 is the shortest Collatz operation sequence that yields 1 from 6(10)2 + 1.

5 Conclusion

We show that for any given positive integer B, we can construct odd Collatz numbers larger than
B with shortest 1-yielding Collatz operation sequences in more than one forms. Traditionally,
computers are used to find ever-increasing range [1, C] for verified Collatz numbers. In this
paper, from the verified range [1, C], first we construct finitely many odd Collatz numbers of
the form 2K + 1 > C, and of the form (x0K+21)2, where x,K satisfy conditions we describe.
Second, we present a method to construct an infinite set S1 of odd Collatz numbers. Third, we
develop a method to create another set S2 by constructing, for every element x in infinite set S1,
new odd Collatz numbers in S2. Construction efforts of such sets can yield new insights into the
Collatz conjecture, and large sets of integers can be shown to be Collatz numbers by construction
without requiring computer verification. Clearly, the union of sets of Collatz numbers contains
only Collatz numbers.
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