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Abstract: In this paper, we define the double Fibonacci sequence and the basic double Fibonacci
sequence in groups and rings. Then we examine these sequences in finite 2-generator groups
and rings. Also, we obtain the periods of the double Fibonacci sequences and the basic double
Fibonacci sequences in the dihedral group D2m and the ring E for the generating pairs (a, b) and
(b, a) as applications of the results obtained.
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1 Introduction

It is well-known that the Fibonacci, the (a, b)-Fibonacci, the Pell and the half-companion Pell
sequences are defined as follows, respectively:

Fn = Fn−1 + Fn−2 for n ≥ 2 in which F0 = 0 and F1 = 1,

F (a,b)
n = aF

(a,b)
n−1 +bF

(a,b)
n−2 for non-zero integers a, b and n ≥ 2 in which F (a,b)

0 = 0 and F (a,b)
1 = 1,

Pn = 2Pn−1 + Pn−2 for n ≥ 2 in which P0 = 0 and P1 = 1

and
Hn+1 = 2Hn +Hn−1 for n ≥ 2 in which H0 = 1 and H1 = 1.

Let G be a finite n-generator group and suppose that

X = {(x1, x2, · · · , xn) ∈ G×G× · · · ×G︸ ︷︷ ︸
n

| 〈{x1, x2, · · · , xn}〉 = G}.

We call (x1, x2, · · · , xn) a generating n-tuple for G.

32



Definition 1.1. The Fibonacci orbit of the n-generated group G with respect to the generating
n-tuple (x1, x2, · · · , xn), written F(x1,x2,··· ,xn) (G), is the sequence ai = xi, 1 ≤ i ≤ n, an+i =
n∏
k=1

ai+k−1, i ≥ 1.

Recenlty, The Fibonacci orbits of special groups have been investigated by some authors; see
for example, [1, 3, 4, 10, 11].

Definition 1.2. Let R be a ring with identity I, The sequence {Mn} of elements of R is defined by

Mn+2 = A1Mn+1 + A0Mn, n ≥ 0 (1)

in which M0, M1, A0 and A1 are arbitrary elements of R.

Special cases of (1) were studied in [2, 5, 9, 13].

Definition 1.3. (Tasyurdu and Deveci [12]). Let R be a 2-generator ring and let (a, b) be a
generating pair of the ring R. We define the Fibonacci Polynomial-type orbit FR

(a,b) (x) = {xi} of
(a, b) by

xn+1 = bxn + xn−1

in which x0 = a and x1 = b.

A sequence is periodic if, after a certain point, it consists only of repetitions of a fixed subse-
quence. The number of elements in the shortest repeating subsequence is called the period of the
sequence. In particular, if the first n elements in the sequence form a repeating subsequence, then
this sequence is simply periodic and its period is n.

Given an integer matrix A = [aij], A (modm) means that all entries of A are modulo m,
that is, A (modm) = (aij (modm)). Let us consider the set 〈A〉m = {Ai (modm) | i ≥ 0}. If
gcd (detA,m) = 1, then 〈A〉m is a cyclic group. The order of the cyclic group 〈A〉m is denoted
by |〈A〉m|.

A group D2m is dihedral if

D2m =
〈
a, b | am = b2 = (ab)2 = e

〉
.

Note that the order of dihedral group D2m is 2m.
For any prime p, up to isomorphism, the 2-generator ring E of order p2, which is not field is

given by the following presentation

E =
〈
a, b | pa = pb = 0, a2 = a, b2 = b, ab = a, ba = b

〉
.

For more information on the ring E, see [7].
In this paper, we define the double Fibonacci sequence and the basic double Fibonacci se-

quence in groups and rings and then we give the periods of the double Fibonacci sequences in the
dihedral group D2m and the ring E for the generating pairs (a, b) and (b, a).
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2 The main results

Define the double Fibonacci sequence {F (n, k)} as shown:

F (n, k) = Fn+2Fk+1 + Fn+1Fk for n, k ≥ 0.

It is clear that F (n, k) = Fn+k+2.

Definition 2.1. Let G be a 2-generator group and let (x, y) be a generating pair of G. The kth
double Fibonacci orbit F k

(x,y) (G) =
{
akn
}

of (x, y) is defined by

akn+2 =
(
akn+1

)Fk
(
akna

k
n+1

)Fk+1 , n ≥ 1

in which ak1 = x, ak2 = y and k ≥ 1.

Theorem 2.1. A double Fibonacci orbit of a finite 2-generator group is periodic.

Proof. Let α be order of the group G; then it is clear that there are α2 distinct 2-tuples of elements
of G. Thus it is verified that at least one of the 2-tuples appears twice in a double Fibonacci orbit.
Because of the repeating, the double Fibonacci orbit is periodic.

The period of the kth double Fibonacci orbit F k
(x,y) (G) is denoted by PF k

(x,y) (G).

Definition 2.2. Let k ≥ 1 be an integer and let u be smallest positive integer such that aku =

ak
u+PFk

(x,y)
(G)

and aku+1 = ak
u+PFk

(x,y)
(G)+1

. For a generating pair (x, y), the kth basic double Fi-

bonacci orbit F k

(bk1 ,bk2)
(G) of the basic periodm is a sequence of group elements bk1, b

k
2, . . . , b

k
n, . . .

for which, given the initial (seed) set bk1 = aku, bk2 = aku+1, each element is defined by

bkn+2 =
(
bkn+1

)Fk
(
bknb

k
n+1

)Fk+1 , n ≥ 1

where m ≥ 2 is the smallest integer with bk1 = bkm+1θ and bk2 = bkm+2θ for some θ ∈ AutG (where
AutG means that the authomorphism group of G).

We denote the basic period of the k-th basic double Fibonacci orbit F k

(bk1 ,bk2)
(G) by

BPF k

(bk1 ,bk2)
(G) .

Theorem 2.2. Let G be a finite 2-generator group and let (x, y) be a generating pair of G. If
PF k

(x,y) (G) = λ and BPF k

(aku,aku+1)
(G) = m, then m divides λ.

Proof. Let u be the smallest positive integer such that aku = ak
u+PFk

(x,y)
(G)

and aku+1 = ak
u+PFk

(x,y)
(G)+1

.

Then we have λ = η ·m where η is order of automorphism θ ∈ AutG since

F k

(aku,aku+1)
(G) = F k

(aku,aku+1)
(G) ∪ F k

(akuθ,aku+1θ)
(G) ∪ F k

(akuθ2,aku+1θ
2)
(G) ∪ · · ·

and
BPF k

(aku,aku+1)
(G) = BPF k

(akuθ,aku+1θ)
(G) .
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Now we give the periods of the kth double Fibonacci orbits and the kth basic double Fibonacci
orbits of the dihedral group D2m for k ≥ 1 and m ≥ 3 by the following Theorem.

Theorem 2.3. For k ≥ 1, m ≥ 3 and generating pair (a, b), the periods of the kth double
Fibonacci orbits and the kth basic double Fibonacci orbits of the dihedral group D2m are as
follows:

(i). If Fk and Fk+1 is odd, then BPF k
(a,b) (D2m) = 2 and PF k

(a,b) (D2m) = 4.
(ii). If Fk is even and Fk+1 is odd, then there are two subcases:
Case 1. If Fk+1 | m, then PF k

(a,b) (D2m) = 3.

Case 2. If Fk+1 - m, then BPF k
(a,b) (D2m) = 3 and PF k

(a,b) (D2m) = 3i where i is the smallest
positive integer such that:

(−1)i (Fk+1)
i = m · r1 + 1 and (−Fk+1Fk + Fk+1 + 1)

i∑
u=1

(−1)i−u (Fk+1)
i−u = m · r2

for r1, r2 ∈ Z.
(iii). If Fk is odd and Fk+1 is even, then PF k

(a,b) (D2m) = 2.

Proof. (i). If Fk and Fk+1 is odd, then the orbit F k
(a,b) (D2m) is

ak1 = a, ak2 = b, ak3 = a−1, ak4 = a−Fk+1+1b, ak5 = a, ak6 = b, . . . .

So, we get BPF k
(a,b) (D2m) = 2 and PF k

(a,b) (D2m) = 4 since aθ = a−1 and bθ = a−Fk+1+1b

where θ is an automorphism of order 2.
(ii). If Fk is even and Fk+1 is odd, then we have the sequence

ak1 = a, ak2 = b, ak3 = ab,

ak4 = a−Fk+1 , ak5 = a−Fk+1Fk+Fk+1+1b, . . .

ak3i+1 = a(−1)i(Fk+1)
i

, ak3i+2 = a
(−Fk+1Fk+Fk+1+1)

i∑
u=1

(−1)i−u(Fk+1)
i−u

b, . . . .

Thus, two cases occur:
Case 1. If Fk+1 | m, then it is clear that ak3i+1 = ak3(i−1)+1 and ak3i+1 = ak3(i−1)+2. Thus, we

obtain PF k
(a,b) (D2m) = 3.

Case 2. Let Fk+1 - m. If we choose i as the smallest positive integer such that (−1)i (Fk+1)
i =

m · r1 + 1 and (−Fk+1Fk + Fk+1 + 1)
i∑

u=1

(−1)i−u (Fk+1)
i−u = m · r2 for r1, r2 ∈ Z, then we

get PF k
(a,b) (D2m) = 3i. Also, we obtain BPF k

(a,b) (D2m) = 3 since aθ = a
−1

Fk+1 and bθ =

a
−Fk+1Fk+Fk+1+1

Fk+1 b where θ is a automorphism of order i.
(iii). If Fk is odd and Fk+1 is even, then we have the sequence

ak1 = a, ak2 = b, ak3 = b, ak4 = b, ak5 = b, . . . ,

which has period 2.
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Theorem 2.4. For k ≥ 1, m ≥ 3 and generating pair (b, a), the periods of the kth double
Fibonacci orbits and the kth basic double Fibonacci orbits of the dihedral group D2m are as
follows:

(i). If Fk and Fk+1 is odd, then BPF k
(b,a) (D2m) = 2 and PF k

(b,a) (D2m) = 4.
(ii). If Fk is even and Fk+1 is odd, then two subcases occur:
Case 1. If Fk+1 | m, then PF k

(b,a) (D2m) = 3.

Case 2. If Fk+1 - m, then BPF k
(b,a) (D2m) = 3 and PF k

(b,a) (D2m) = 3i where i is the smallest

positive integer such that (Fk)
i∑

v=1

(−1)i−u (Fk+1)
i−u = m · t1 and (−1)i (Fk+1)

i = m · t2+1 and

for t1, t2 ∈ Z.
(iii). If Fk is odd and Fk+1 is even, then two subcases occur:
Case 1

′
. If gcd (Fk+1,m) = 1 and α - Fk+1 with Fk ≡ α (modm), then PF k

(b,a) (D2m) =

|〈Qk〉m| where the matrix Qk is defined by

Qk =

[
Fk+2 Fk+1

1 0

]
.

Case 2
′
. If gcd (Fk+1,m) = 1 and α | Fk+1 with Fk ≡ α (modm), then PF k

(b,a) (D2m) = τ

where τ is the smallest positive integer such that (Qk)
ϑ ≡ (Qk)

ϑ−τ (modm) for ϑ ∈ N.

Proof. The proofs of (i) and (ii) are similar to the above and are omitted. We will now prove only
the condition (iii). When Fk is odd and Fk+1 is even, we obtain the orbit F k

(a,b) (D2m) as follows:

ak1 = b, ak2 = a, ak3 = aFk , . . . .

Consider the sequence

v1 = x, v2 = Fk, vn+2 = vn+1 + Fk+1 (vn+1 + vn) , n ≥ 1.

It is clear that PF k
(b,a) (D2m) is equal to the peroid of the sequence {vn} when read modulo

m.
Let

(Qk)
n =

[
q
(k,n)
1,1 q

(k,n)
1,2

q
(k,n)
2,1 q

(k,n)
2,2

]
,

then by induction on n, it is easy to see that q(k,n)1,1 +q
(k,n)
1,2 = vn+2 and q(k,n)2,1 +q

(k,n)
2,2 = vn+1. Thus,

two cases occur:
Case 1′ . If gcd (Fk+1,m) = 1 and α - Fk+1 with Fk ≡ α (modm), then we easily see that the

period of the sequence {vn} when read modulo m is equal to the order of the cyclic group 〈Qk〉m.
Case 2′ . If gcd (Fk+1,m) = 1 and α | Fk+1 with Fk ≡ α (modm), then the peroid of

the sequence {vn} when read modulo m is the smallest positive integer τ such that (Qk)
ϑ ≡

(Qk)
ϑ−τ (modm) for ϑ ∈ N.

So, the proof is complete.
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Definition 2.3. Let R be a 2-generator ring and let (x, y) be a generating pair of R. The double
Fibonacci orbit of the ring R with respect to the generating pair (x, y), written F(x,y) (R), is the
sequence

x1 = x, x2 = y, xn+2 = (x+ y)xn + yxn+1, n ≥ 1.

Theorem 2.5. If R is a finite 2-generator ring and (x, y) is a generating pair of R, then the
sequence F(x,y) (R) is periodic.

Proof. The proof is similar the proof of Theorem 2.1 and is omitted.

The period of the sequence F(x,y) (R) is denoted by PF(x,y) (R).

Definition 2.4. Let u be smallest positive integer such that xu = xu+PF(x,y)(R) and xu+1 =

xu+PF(x,y)(R)+1. For a generating pair (x, y), the basic double Fibonacci orbit F(c1,c2) (R) of
the basic period m is a sequence of ring elements c1, c2, . . . , cn, . . .for which, given the initial
(seed) set c1 = xu, c2 = xu+1, each element is defined by

cn+2 = (x+ y) cn + ycn+1, n ≥ 1

where m ≥ 2 is the smallest integer with c1 = cm+1θ and c2 = cm+2θ for some θ ∈ AutR (where
AutR means that the set of all authomorphisms of the ring R).

We denote the period of the sequenceF(c1,c2) (R) byBPF(c1,c2) (R). The periodBPF(c1,c2) (R)

is called the basic double period of the ring R with respect to the initial (seed) set c1, c2.

Theorem 2.6. Let R be a finite 2-generator ring and let (x, y) be a generating pair of R. If
PF(x,y) (R) = β and BPF(xu,xu+1) (R) = m, then m divides β.

Proof. The proof is similar the proof of Theorem 2.2 and is omitted.

In [6], Deveci and Karaduman denoted the peroid of the Pell sequence {Pn} when read mod-
ulo m by hP2 (m). Gopalan and Geetha [8] derived a relation among the Pell sequence {Pn} and
the half-companion Pell sequence {Hn} as follows:

Hn+1 = Hn + 2Pn.

Thus, it is clear that hP2 (m) is equal to the period of the sequence {Hn} when read modulo m.

Theorem 2.7. (Deveci and Karaduman [6]). hP2 (m) is an even number.

Now we give the periods of the double Fibonacci orbits and the basic double Fibonacci orbits
of the ring E by the aid of hP2 (m).

Theorem 2.8. The lengths of the double Fibonacci periods and the basic double Fibonacci peri-
ods of the ring E are as follows:

(i). For the generating pairs (a, b) and (b, a),

PF(a,b) (E) = PF(b,a) (E) = hP2 (p) .

(ii). For the initial (seed) sets a+ 2b, 3a+ 4b and 2a+ b, 4a+ 3b,

BF(a+2b,3a+4b) (E) = BF(2a+b,4a+3b) (E) = 2.
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Proof. (i). It is important to note that pa = pb = 0. First, let us consider the double Fibonacci
orbit F(a,b) (E). Then we have the sequence

x1 = a, x2 = b, x3 = 2b+ a, x4 = 4b+ 3a, . . . .

Using the above we obtain the subsequence:

y1 = 2b+ a, y2 = 4b+ 3a, . . . , yi = 2Pi · b+H1 · a, . . . .

Then, it is readily seen that the period of the sequence {yn} is hP2 (p). So, we get

PF(a,b) (E) = hP2 (p) .

Now we consider the period PF(b,a) (E). The the double Fibonacci orbit F(b,a) (E) is in the
following form:

x1 = b, x2 = a, x3 = 2a+ b, x4 = 4a+ 3b, . . . .

Then we have the subsequence

z1 = 2a+ b, z2 = 4a+ 3b, . . . , zi = 2Pi · a+H1 · b, . . . .

So, we get PF(b,a) (E) = hP2 (p).
(ii). From the sequence {yn}, we obtain BF(a+2b,3a+4b) (E) = 2 since aθ = 3a + (3p− 4) b

and bθ = (p− 2) a+3b where θ is an automorphism of order hP2(p)
2

. Similarly, from the sequence
{zn}, we get BF(2a+b,4a+3b) (E) = 2 since aθ = 3a+ (3p− 2) b and bθ = (3p− 4) a+ 3b where
θ is an automorphism of order hP2(p)

2
.
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