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Abstract: In the present paper we prove that every sufficiently large odd integer N can be repre-
sented in the form
N =pi+p2+ps,

where p1, p2, p3 are primes, such that p; = 2% + 4% + 1, py = [n°].
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1 Notations

Let NV be a sufficiently large odd integer. The letter p, with or without subscript, will always
denote prime numbers. Let A > 100 be a constant. By € we denote an arbitrary small positive
number, not the same in all appearances. The relation f(z) < g(x) means that f(z) = O(g(x)).
As usual [t] and {t} denote the integer part, respectively, the fractional part of ¢. Instead of
m = n (mod k) we write for simplicity m = n (k). As usual e(t)=exp(27it). We denote by
(d,q), [d, q] the greatest common divisor and the least common multiple of d and ¢ respectively.
As usual ¢(d) is Euler’s function; j(d) is Mobius’ function; r(d) is the number of solutions of the
equation d = m$+mj in integers m;; x(d) is the non-principal character modulo 4 and L(s, x) is
the corresponding Dirichlet’s L-function. By ¢y we denote some positive number, not necessarily
the same in different occurrences. Let ¢ be a real constant such that 1 < ¢ < 73/64.
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2 Introduction and statement of the result

In 1937, 1. M. Vinogradov [15] solved the ternary Goldbach problem. He proved that for a
sufficiently large odd integer NV

1 N?
Y. logplogplogps = SG(N)N? +0 (1 AN) ,
p1+p2+p3=N 08

where G(N) is defined by (6) and A > 0 is an arbitrarily large constant.
In 1953, Piatetski-Shapiro [9] proved that for any fixed ¢ € (1,12/11) the sequence

([nPnen

contains infinitely many prime numbers. Such prime numbers are named in honor of Piatetski-
Shapiro. The interval for ¢ was subsequently improved many times and the best result up to now
belongs to Rivat and Wu [10] for ¢ € (1,243/205).



In 1992, A. Balog and J. P. Friedlander [1] considered the ternary Goldbach problem with
variables restricted to Piatetski-Shapiro primes. They proved that, for any fixed 1 < ¢ < 21/20,
every sufficiently large odd integer N can be represented in the form

N =pi +p2 +p3,

where pi, po, p3 are primes, such that p, = [n{], k=1,2,3. Rivat [10] extended the range to
1 < ¢ < 199/188; Kumchev [7] extended the range to 1 < ¢ < 53/50. Jia [5] used a sieve
method to enlarge the range to 1 < ¢ < 16/15.

Furthermore, Kumchev [7] proved that for any fixed 1 < ¢ < 73/64 every sufficiently large
odd integer may be written as the sum of two primes and prime number of type p = [n].

On the other hand, in 1960, Linnik [8] showed that there exist infinitely many prime numbers
of the form p = 22 + y? + 1, where z and y are integers. In 2010 Tolev [14] proved that every
sufficiently large odd integer N can be represented in the form

N =pi +ps+p3,

where py, p2, p3 are primes, such that p;, = z7 +y7 + 1, k=1,2. In 2017 Terdviinen [12] improved
Tolev’s result for primes py, p, ps, such that p, = 22 + y2 + 1,k = 1,2, 3.
Recently the author [2] proved that there exist infinitely many arithmetic progressions of three
different primes py, p2, ps = 2ps — p1 such that p; = 22 + ¢ + 1, ps = [n].
Define
T(N)= > r(pi— 1)py "logpilogps logps. (10)

p1+p2+p3=N
p2=[n°]

Motivated by these results we shall prove the following theorem.

Theorem 1. Assume that 1 < ¢ < 73/64. Then the asymptotic formula
I'(N) = %GF(N)N2 + O(N*(log N)~*(loglog N)°) ,
holds. Here v, 0y and S (N) are defined by (1), (4) and (7).

Bearing in mind that S(N) > 1 for N odd, from Theorem 1 it follows that for any fixed
1 < ¢ < 73/64 every sufficiently large odd integer N can be written in the form

N = pi +p2 +p3,

where p1, po, p3 are primes, such that p; = 22 + 32 + 1, p, = [n9].
The asymptotic formula obtained for I'(V) is the product of the individual asymptotic formu-
las ]
> rlpr—1)logpilogpalogps ~ §6F(N)N2
p1t+p2+p3=N
and |
~ 2 P logp .

p<N
p=[n€]

The proof of Theorem 1 follows the same ideas as the proof in [2].
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3 Outline of the proof
Using (10) and well-known identity r(n) = 4>, x(d) we find

I'(N) = 4(T1(N) 4+ Ia(N) + I5(N)),

where

Ni(N)= ) > x(d) | py " logpi log py log ps ,
p1+p2t+p3=N dlpp—1
p2=[n€] d<D

Ty(N) = ) > x(d) | py " logpilogpalogps,
p1+po+p3=N d|lpp—1
pa=[n¢] D<d<N/D

[3(N) = Z Z x(d) pé_“’logpllogmlogpg,.
p1+p2+p3=N dlp1—1
pa=[n] d>N/D

In order to estimate I'; (V') and I'3(/V) we have to consider the sum

Liss(N)= > py "logplogp;logps,

p1tpo2+p3=N
p1=L(d)
p1€J
po=[nc]

(11)

(12)

(13)

(14)

(15)

where d and [ are coprime natural numbers, and J C [1, N]. The left and the right side of the
interval .J, we shall denote with J; and Jy, i.e. J = (Ji, o). If J = [1, N] then we write for

simplicity I4;(N'). We apply the circle method. Clearly

1

Iy;.5(N) = /Sd,l;J(a)S(a)Sc(a)e(—Na)da,

0

where

Saug () = E e(ap)logp,
peJ
p=l(d)

S(a) = S, (@),
Se(a) = > p'e(ap)logp.

p=[n°]

We define major and minor arcs by

(16)

(17)

(18)
(19)

(20)



where
Q= (ogN)?, 7=NQ*', A>4B+3, B> 14. (21)

Then we have the decomposition
Iy.5(N) = It (N)+I(2) (N) (22)
dl;J dl;J dl;J )
where

19 (V) = / Sy (@)S(@)Su(@)e(~NaYda, i=1,2. (23)
E;

We shall estimate / c(zlz) J(N), T'5(N), I'y(N) and I'1 (V) respectively in the sections 4, 5, 6 and
7. In section 8 we shall complete the proof of the Theorem.

4 Asymptotic formula for Ifil); ;(N)

We have )
-
15, =3" 3" Hla,q), (24)
¢<Q  a=0
(a,9)=1
where
1/q7
H(a,q) = / Sd,i,g (E +a) S (E +a> Se (E —l—a) e (—N (g +a)) dov . (25)
q q q q
—1/q7
On the other hand,
Sai. (2 + oe) = Z e (@) T(a)+ O(qlogN), (26)
q 1<m<gq q
(m,q)=1
m=l((d,q))
where

T(a)= > e(ap)logp.
peJ
p=l(d)
p=m (q)
According to the Chinese remainder theorem there exists integer f = f(l,m,d, q) such that
(f;d,q]) = 1and

T(a)= Y elap)logp.
p=F (lal)
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Applying Abel’s transformation we obtain

T@)/( 3 logp) %(e(at))dt+( 3 logp) e(aly)

7 J1<p<t peEJ
1 p=f ([d.q]) p=f([d.a])

Jo

t— Jl d
- [ (s + 0atulaa) ) letana

1

Jo —
+ (m + O(A(JQ, [d, q]))> 6(C¥J2)

1
~ o(ld, q])

J2
/e(at)dt + O((l + |a|(Jy — J1))A(Js, [d, q])) .
J1
We use the well known formula
Ja
[ etavde = any(a) + o),
J1

where

M;(a) = Z e(am) .

meJ

Bearing in mind that |« < 1/¢7 and J C (1, N], from (21), (27) and (28) we get

- o 1+ )

From (26) and (29) it follows

Yha :cd(a,q,l) « 0
Sans (4 ) = L1, (0) + 0(QUos AW, . 4).

where

calag )= Y e(%)

1<m<q
(m,q)=1
m=l((d,q))

We shall find asymptotic formula for S, (g + a) . From (19) we have

Se(a) = p" 7 ([=p"] = [=(p + 1)"])e(ap) log p

p<N

= Qa) + X(a),
where

Qa) =) p" 7 ((p+1)" = p")e(ap)logp,

p<N

S(a) =Y p" 7 (W(=(p+1)7) —(—p"))e(ap)logp.

p<N
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According to Kumchev ([7], Theorem 2) for 64/73 < v < 1 uniformly in o we have that

> (g + a) < NI (34)
On the other hand,
(p+1)=p' =" +0(p7?) . (35)

The formulas (32) and (35) give us
Q) =vS5(a) + O(N7), (36)

where S(«) is defined by (18).
According to ([6], Lemma 3, §10) we have

S <g + a) _ Dy 40 (Ne’CWlOgN) , 37)

where

M(a) = Z e(am).

m<N

Bearing in mind (31), (34), (36) and (37) we obtain

S, (g + a) _ V%M(a) o) (Ne—com ) . 38)

Furthermore, we need the trivial estimates

a
Sd,l;J (— + Oé>
q

By (30), (37) — (39) and the well-known inequality ¢(n) > n(loglogn)~! we find

(3 o0)s(2 ) (o) (4(200)
oo (5 (320)) o0 (o)
(o (Ve

Nlog N

<7y

| ‘S(g+a)‘<<N, M) < N, |ulg) < 1. (39)

A(N,[d, q])> : (40)

Having in mind (21), (25) and (40) we get

1/qt

H(a,q)sze (—Nﬁ) / My(a)M?*(a)e(—Na)da

e(ld, q])*(q) q
—1/q7
2 210g?
Lo <J;7_d€com) Lo (NQ;—;)gNA(M d, q])) _ (41)
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Taking into account (24), (41) and following the method in [13] we obtain

<)0( ) mi+mo+mgz=N

my1€eJ q>Q
A(N,|d
+0 <7’2(10gN) Z—[dq ]> +0 (NQQ(logN)zz —< ’£ ,q}))
gz 4 q<Q q
N2 —cov/Tog N
+ O 76 covioe s (42)
where S4;(N) is defined by (5).
5 Upper bound for I';(IN)
Consider the sum I'3(N).
Since .
b — .
Y ox= > X( — ):ZX(J) oo
dlp1—1 m|py—1 j==*1 mlpy—1
d>N/D m<(p1—1)D/N m(p1~))D/N
P Loj
then from (14) and (15) it follows
Z Z ]4m J14-gm; Jm(N) )
m<D j=+41
2|m
where J,,, = [1 + mN/D, NJ.
Therefore from (22) we get
[3(N) = T3 (V) + T (), (43)
where
Z Z 4m 1+]me(N)’ V= 172 (44)
m<D] 41

2|m

Let us consider first F?)(N ). Bearing in mind (23) for ¢ = 2 and (44) for v = 2 we have

r@(n) = / K(a)S(a)Su(a)e(— Na)da

where

= D X Sumtsimin (@) (45)

m<D Jj==1

Using Cauchy’s inequality we obtam

rA(N)< sup |Si(a |/|K o)|da + O(N?)
aeBx\{1}
) 1/2
< sup |Sq(o) /|K(a)|2d0z /|S(a)|2da + O(N?). (46)
ac€Ex\{1} .,
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From (31) and (36) we have

Se(a)

=75(a) + X(a) + O(N7),

where S(a) and ¥(«) are defined by (18) and (33).

Using (20) and (21) we can prove in the same way as in ([6], Ch.10, Th.3) that

sup

ac€FE\{1}

NS Ty

According to Kumchev ([7], Theorem 2) we have that

sup  |S(a)| < N'°=.

acF\{1}

Bearing in mind (47)—(49) we get

sup

a€B\{1}

|Se(a)] < (log N)B/ 1

From (18) after straightforward computations we find

1
/ |S(a)]Pda < Nlog N .
0

On the other hand, from (17) and (45) we obtain

1

JACIRIEND S SRANGA

0
1

m1,mo<D j1=%1
2|mq,2|my Jo==%1

X /S4m1,1+j1m1;Jm1 (a)S4m2,1+j2m2;Jm2(_a)da

= Z ZX(]&)X(]Q)

mq1,mo<D ji==%1
2|mq,2|my Jo=%1

1
> log ps logpz/e(a(pl — p2))dar
0

Pi€Jm,; i=1,2
p;=1+j;m; (4m;),i=1,2

=> > x>

(logp)?

m<D ]:j:l pEJm

2|m

p=1+jm (4m)

<<(10gN)2Z Z 1

m<D pEJIm
2lm  p=1+4+jm (4m)

1
< N(log N)? Z .

m<D

< Nlog® N .

14

(47)

(48)

(49)

(50)

(S1)

(52)



Thus from (46), (50) — (52) it follows

N2
r@(n —_—
3 ( ) < (log N>B/2_6 (53)
Now let us consider Fgl)(N ). From (42) and (44) for v = 1 we get
T (N) =T + O(N?(log N)Ey) + O(73(log N)%,)
+ O(NQ*(log N)*S3) + O(N?eovieeNy ) (54)

where

= 7( Z 1) Z gp(im) Z X (1) Suama+im(N),

mq+mo+mgz=N m<D j==%1
m1€Jm 2|m

J
21 = Z Z <4m;7;];210g )

m<D ¢>Q

q
=2 2 [4m, q]’

m<D q<Q

From the definition (5) it follows that 64m71+jm(N ) does not depend on j. Then we have

S X(5)Sumiatim(N) = 0 and that leads to
j=+1

T™* =0, (55)

Arguing as in [13] and using Bombieri—Vinogradov’s theorem we find the following estimates

log® N
1< Og@ . S < Qlog? N, (56)
23 < W s 24 < logN (57)
Bearing in mind (21), (54) — (57) we obtain
2
(1) N
[y7(N) < W. (58)
Now from (43), (53) and (58) we find
N2

T4(N) < (59)

(log N)B/zfﬁ )
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6 Upper bound for I';(IN)

Consider the sum I'y(V) defined by (13). We denote by F the set of all primes p < N such that
p — 1 has a divisor belongs to the interval (D, N/D). Using the inequality uv < u? + v? and
taking into account the symmetry with respect to d and ¢ we get

SR DS DI D SIS 1D SERC)

p1+p2t+p3=N dlpp—1 tlpg—1
p4+p5+prg=N D<d<N/D D<t<N/D

po=[ng], p5=[n§]

< (log N)'N>=27 3y~ ’ > x(d)

p1+p2+p3=N dlp;—1
pa+p5+pe=N D<d<N/D
p2=[n{], p5=[n5]
PyEF

2

(60)

Further, we use that if n is a natural such that n < N, then the number of solutions of the
equation p; + p» = n in primes p1, p» < N such that p; = [m'/?] is O(N7(log N)~2loglog N),
1.e.

N7loglog N
#{p1 ipitpa=n, pr=[Mm"), n<N}< # (61)
log® N
This follows for example from ([3], Ch.2, Th.2.4).
Thus the summands in the sum (60) for which p; = p, can be estimated with O(N3*¢).
Therefore
[3(N)? < (log N)°N?~27%, + N3te (62)
where )
Di= | 2 Xl > > L
p1<N dlp;—1 pa<N P2+P3iN*P1
D<d<N/D PyEF p5+Pe=N—py
pa#p1  pa=[n{], p5=[nS]
We use again (61) and find
N 9
21 < T(lOg lOg N) 2223 y (63)
log® N
where )
Y= > X)L Z=) 1
p<N d|lp—1 p<N
D<d<N/D peEF
Arguing as in ([4], Ch.5) we find
N(loglog N)7 N(loglog N)?
b _ b —_— 64
2 < log N ’ 3 (log N)1+200 ©4)
where 6, is denoted by (4).
From (62) — (64) it follows
I'y(N) < N?(log N)™%(loglog N)°. (65)
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7 Asymptotic formula for I'; (IN)

In this section our argument is a modification of Tolev’s [14] argument.
Consider the sum I'; (V). From (12), (15) and (22) we get

I (N) =T (N) + TP (), (66)

where

We estimate the sum ng) (N) by the same way as the sum F:(f) (N) and obtain

N2

F(Q) N —_— .
1 ( ><< (log N)B/2—6

(67)

Now we consider Fgl)(N ). We use the formula (42) for J = [1,N]. The error term is
estimated by the same way as for Fél) (N). We have

1) 7 X(d)&;,(N) ( N? >
[V(N) = G(N)NQ(; ) +0 (log X)51 ) (68)
where G(N) is defined by (6) and
r-I(55) 1 (-5t5)
R p—12) 1. (p—1)?
p|N ptN—1
1 ! B 1 ! ; 69
A(5o) O 055) >
pIN p|N—1
Denote (@)&, (V)
- X d,1
¥ = dgzpf(d) - f) = (70)
We have
f(d) < d *(loglog(10d))? (71)

with absolute constant in the Vinogradov’s symbol. Hence the corresponding Dirichlet series
- f(d)
Fs)=) -
d=1

is absolutely convergent in Re(s) > 0. On the other hand, f(d) is multiplicative with respect to d
and applying Euler’s identity we find

F(s)=1[Tw.s), Tps) =1+ f@w™". (72)
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From (69), (70) and (72) we establish that
-1
T(p,s) = (1 - ]%) (1 + ]%Ed(p)) ,

(P=3)®* —3p+3)~" if ptN(N-1),
Eq(p) =9 (p— 1)1 if p| N,
(2p—3)(p*—3p+3)"t if p|N-1.

where

Hence we find
F(s) = L(s + 1,x)N(s), (73)

where L(s + 1, x) is Dirichlet series corresponding to the character y and

N =[] )(1+X<p>ps+1<p §p+3>)ﬂ(1”@m>

PIN(N-1 p|N

2p — 3
X H (1+x T 3p+3)) (74)

p|N—1

From the properties of the L-functions it follows that F'(s) has an analytic continuation to
Re(s) > —1. It is well known that

1
L(s+1,x) < 1+|Im(s)["® for Re(s)> ~5- (75)

Moreover,

N(s) < 1. (76)
Using (73), (75) and (76) we get

, 1
F(s) < NY5 for Re(s) > —5 |[Im(s)] < N. (77)

We apply Perron’s formula given at Tenenbaum ([11], Chapter I1.2) and also (71) to obtain

w+iN
1 D? . D~*loglog(10t)
X=— F(s)—d @) 78
2m / () S s+ (Zt“r” 1+N|log€)| ’ (78)
»x—1N

where s = 1/10. It is easy to see that the error term above is O (N_l/zo).
Applying the residue theorem we see that the main term in (78) is equal to

—1/2—N  —=1/24+N  1/10+N

FO)+ 5 /+ / +/ F()Eds

1/10-aN  —1/2—N  —1/2+4N

From (77) it follows that the contribution from the above integrals is O (N ~1/20).
Hence
S =F(0)+0 (N . (79)
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Using (73) we get

F(0) = TN(0). (80)
Bearing in mind (68), (70), (74), (79) and (80) we find a new expression for Fgl) (N)
N2
rV(N) = Lep (V)N L |
1 ( ) 86F( ) + O (10g N>B,4 ’ (8 )

where Gr is defined by (7).
From (66), (67) and (81) we obtain

N2

8 Proof of the Theorem
Therefore using (11), (59), (65) and (82) we find
D(N) = %GF(N)NQ + O(N?(log N)™(loglog N)°) .

This implies that I'( V) — oo as N — oo.
The Theorem is proved. [
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