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1 Notations

Let N be a sufficiently large odd integer. The letter p, with or without subscript, will always
denote prime numbers. Let A > 100 be a constant. By ε we denote an arbitrary small positive
number, not the same in all appearances. The relation f(x)� g(x) means that f(x) = O(g(x)).
As usual [t] and {t} denote the integer part, respectively, the fractional part of t. Instead of
m ≡ n (mod k) we write for simplicity m ≡ n (k). As usual e(t)=exp(2πit). We denote by
(d, q), [d, q] the greatest common divisor and the least common multiple of d and q respectively.
As usual ϕ(d) is Euler’s function; µ(d) is Möbius’ function; r(d) is the number of solutions of the
equation d = m2

1 +m2
2 in integersmj; χ(d) is the non-principal character modulo 4 and L(s, χ) is

the corresponding Dirichlet’s L-function. By c0 we denote some positive number, not necessarily
the same in different occurrences. Let c be a real constant such that 1 < c < 73/64.
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Denote

γ = 1/c ; (1)

D =
N1/2

(logN)A
; (2)

ψ(t) = {t} − 1/2 ; (3)

θ0 =
1

2
− 1

4
e log 2 = 0.0289... ; (4)

Sd,l(N) =
∏
p-d
p|N

(
1− 1

(p− 1)2

) ∏
p|d

p-N−l

(
1− 1

(p− 1)2

)

×
∏
p-dN

(
1 +

1

(p− 1)3

) ∏
p|d

p|N−l

(
1 +

1

p− 1

)
; (5)

S(N) =
∏
p|N

(
1− 1

(p− 1)2

)∏
p-N

(
1 +

1

(p− 1)3

)
; (6)

SΓ(N) = πS(N)
∏

p-N(N−1)

(
1 + χ(p)

p− 3

p(p2 − 3p+ 3)

)∏
p|N

(
1 + χ(p)

1

p(p− 1)

)

×
∏
p|N−1

(
1 + χ(p)

2p− 3

p(p2 − 3p+ 3)

)
; (7)

∆(t, h) = max
y≤t

max
(l,h)=1

∣∣∣∣∣∣∣
∑
p≤y

p≡l (h)

log p− y

ϕ(h)

∣∣∣∣∣∣∣ . (8)

(9)

2 Introduction and statement of the result

In 1937, I. M. Vinogradov [15] solved the ternary Goldbach problem. He proved that for a
sufficiently large odd integer N

∑
p1+p2+p3=N

log p1 log p2 log p3 =
1

2
S(N)N2 +O

(
N2

logAN

)
,

where S(N) is defined by (6) and A > 0 is an arbitrarily large constant.
In 1953, Piatetski-Shapiro [9] proved that for any fixed c ∈ (1, 12/11) the sequence

([nc])n∈N

contains infinitely many prime numbers. Such prime numbers are named in honor of Piatetski-
Shapiro. The interval for c was subsequently improved many times and the best result up to now
belongs to Rivat and Wu [10] for c ∈ (1, 243/205).

7



In 1992, A. Balog and J. P. Friedlander [1] considered the ternary Goldbach problem with
variables restricted to Piatetski-Shapiro primes. They proved that, for any fixed 1 < c < 21/20,
every sufficiently large odd integer N can be represented in the form

N = p1 + p2 + p3 ,

where p1, p2, p3 are primes, such that pk = [nck], k=1,2,3. Rivat [10] extended the range to
1 < c < 199/188; Kumchev [7] extended the range to 1 < c < 53/50. Jia [5] used a sieve
method to enlarge the range to 1 < c < 16/15.

Furthermore, Kumchev [7] proved that for any fixed 1 < c < 73/64 every sufficiently large
odd integer may be written as the sum of two primes and prime number of type p = [nc].

On the other hand, in 1960, Linnik [8] showed that there exist infinitely many prime numbers
of the form p = x2 + y2 + 1, where x and y are integers. In 2010 Tolev [14] proved that every
sufficiently large odd integer N can be represented in the form

N = p1 + p2 + p3 ,

where p1, p2, p3 are primes, such that pk = x2
k + y2

k + 1, k=1,2. In 2017 Teräväinen [12] improved
Tolev’s result for primes p1, p2, p3, such that pk = x2

k + y2
k + 1, k = 1, 2, 3.

Recently the author [2] proved that there exist infinitely many arithmetic progressions of three
different primes p1, p2, p3 = 2p2 − p1 such that p1 = x2 + y2 + 1, p3 = [nc].

Define
Γ(N) =

∑
p1+p2+p3=N

p2=[nc]

r(p1 − 1)p1−γ
2 log p1 log p2 log p3 . (10)

Motivated by these results we shall prove the following theorem.

Theorem 1. Assume that 1 < c < 73/64. Then the asymptotic formula

Γ(N) =
γ

2
SΓ(N)N2 +O

(
N2(logN)−θ0(log logN)6

)
,

holds. Here γ, θ0 and SΓ(N) are defined by (1), (4) and (7).

Bearing in mind that SΓ(N) � 1 for N odd, from Theorem 1 it follows that for any fixed
1 < c < 73/64 every sufficiently large odd integer N can be written in the form

N = p1 + p2 + p3 ,

where p1, p2, p3 are primes, such that p1 = x2 + y2 + 1, p2 = [nc].
The asymptotic formula obtained for Γ(N) is the product of the individual asymptotic formu-

las ∑
p1+p2+p3=N

r(p1 − 1) log p1 log p2 log p3 ∼
1

2
SΓ(N)N2

and
1

N

∑
p≤N

p=[nc]

p1−γ log p ∼ γ .

The proof of Theorem 1 follows the same ideas as the proof in [2].
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3 Outline of the proof

Using (10) and well-known identity r(n) = 4
∑

d|n χ(d) we find

Γ(N) = 4
(
Γ1(N) + Γ2(N) + Γ3(N)

)
, (11)

where

Γ1(N) =
∑

p1+p2+p3=N
p2=[nc]

 ∑
d|p1−1
d≤D

χ(d)

 p1−γ
2 log p1 log p2 log p3 , (12)

Γ2(N) =
∑

p1+p2+p3=N
p2=[nc]

 ∑
d|p1−1

D<d<N/D

χ(d)

 p1−γ
2 log p1 log p2 log p3 , (13)

Γ3(N) =
∑

p1+p2+p3=N
p2=[nc]

 ∑
d|p1−1
d≥N/D

χ(d)

 p1−γ
2 log p1 log p2 log p3 . (14)

In order to estimate Γ1(N) and Γ3(N) we have to consider the sum

Id,l;J(N) =
∑

p1+p2+p3=N
p1≡l (d)
p1∈J

p2=[nc]

p1−γ
2 log p1 log p2 log p3 , (15)

where d and l are coprime natural numbers, and J ⊂ [1, N ]. The left and the right side of the
interval J , we shall denote with J1 and J2, i.e. J = (J1, J2]. If J = [1, N ] then we write for
simplicity Id,l(N). We apply the circle method. Clearly

Id,l;J(N) =

1∫
0

Sd,l;J(α)S(α)Sc(α)e(−Nα)dα , (16)

where

Sd,l;J(α) =
∑
p∈J

p≡l (d)

e(αp) log p , (17)

S(α) = S1,1;[1,N ](α) , (18)

Sc(α) =
∑
p≤N

p=[nc]

p1−γe(αp) log p . (19)

We define major and minor arcs by

E1 =
⋃
q≤Q

q−1⋃
a=0

(a,q)=1

[
a

q
− 1

qτ
,
a

q
+

1

qτ

]
, E2 =

[
1

τ
, 1 +

1

τ

]
\ E1 , (20)
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where
Q = (logN)B , τ = NQ−1 , A > 4B + 3 , B > 14 . (21)

Then we have the decomposition

Id,l;J(N) = I
(1)
d,l;J(N) + I

(2)
d,l;J(N) , (22)

where
I

(i)
d,l;J(N) =

∫
Ei

Sd,l;J(α)S(α)Sc(α)e(−Nα)dα , i = 1, 2. (23)

We shall estimate I(1)
d,l;J(N), Γ3(N), Γ2(N) and Γ1(N) respectively in the sections 4, 5, 6 and

7. In section 8 we shall complete the proof of the Theorem.

4 Asymptotic formula for I
(1)
d,l;J(N)

We have

I
(1)
d,l;J(N) =

∑
q≤Q

q−1∑
a=0

(a,q)=1

H(a, q) , (24)

where

H(a, q) =

1/qτ∫
−1/qτ

Sd,l;J

(
a

q
+ α

)
S

(
a

q
+ α

)
Sc

(
a

q
+ α

)
e

(
−N

(
a

q
+ α

))
dα . (25)

On the other hand,

Sd,l;J

(
a

q
+ α

)
=

∑
1≤m≤q
(m,q)=1

m≡l ((d,q))

e

(
am

q

)
T (α) +O

(
q logN

)
, (26)

where
T (α) =

∑
p∈J

p≡l (d)
p≡m (q)

e(αp) log p .

According to the Chinese remainder theorem there exists integer f = f(l,m, d, q) such that
(f, [d, q]) = 1 and

T (α) =
∑
p∈J

p≡f ([d,q])

e(αp) log p .
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Applying Abel’s transformation we obtain

T (α) = −
J2∫
J1

 ∑
J1<p<t

p≡f ([d,q])

log p

 d

dt
(e(αt))dt+

 ∑
p∈J

p≡f ([d,q])

log p

 e(αJ2)

= −
J2∫
J1

(
t− J1

ϕ([d, q])
+O

(
∆(J2, [d, q])

)) d

dt
(e(αt))dt

+

(
J2 − J1

ϕ([d, q])
+O

(
∆(J2, [d, q])

))
e(αJ2)

=
1

ϕ([d, q])

J2∫
J1

e(αt)dt+O
(
(1 + |α|(J2 − J1))∆(J2, [d, q])

)
. (27)

We use the well known formula
J2∫
J1

e(αt)dt = MJ(α) +O(1) , (28)

where
MJ(α) =

∑
m∈J

e(αm) .

Bearing in mind that |α| ≤ 1/qτ and J ⊂ (1 , N ], from (21), (27) and (28) we get

T (α) =
MJ(α)

ϕ([d, q])
+O

((
1 +

Q

q

)
∆(N, [d, q])

)
. (29)

From (26) and (29) it follows

Sd,l;J

(
a

q
+ α

)
=
cd(a, q, l)

ϕ([d, q])
MJ(α) +O

(
Q(logN)∆(N, [d, q])

)
, (30)

where

cd(a, q, l) =
∑

1≤m≤q
(m,q)=1

m≡l ((d,q))

e

(
am

q

)
.

We shall find asymptotic formula for Sc
(
a
q

+ α
)

. From (19) we have

Sc(α) =
∑
p≤N

p1−γ([−pγ]− [−(p+ 1)γ]
)
e(αp) log p

= Ω(α) + Σ(α) , (31)

where

Ω(α) =
∑
p≤N

p1−γ((p+ 1)γ − pγ
)
e(αp) log p , (32)

Σ(α) =
∑
p≤N

p1−γ(ψ(−(p+ 1)γ)− ψ(−pγ)
)
e(αp) log p . (33)
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According to Kumchev ([7], Theorem 2) for 64/73 < γ < 1 uniformly in α we have that

Σ

(
a

q
+ α

)
� N1−ε . (34)

On the other hand,
(p+ 1)γ − pγ = γpγ−1 +O

(
pγ−2

)
. (35)

The formulas (32) and (35) give us

Ω(α) = γS(α) +O(N ε) , (36)

where S(α) is defined by (18).
According to ([6], Lemma 3, §10) we have

S

(
a

q
+ α

)
=
µ(q)

ϕ(q)
M(α) +O

(
Ne−c0

√
logN

)
, (37)

where
M(α) =

∑
m≤N

e(αm) .

Bearing in mind (31), (34), (36) and (37) we obtain

Sc

(
a

q
+ α

)
= γ

µ(q)

ϕ(q)
M(α) +O

(
Ne−c0

√
logN

)
. (38)

Furthermore, we need the trivial estimates∣∣∣∣Sd,l;J (aq + α

)∣∣∣∣� N logN

d
,

∣∣∣∣S (aq + α

)∣∣∣∣� N , |M(α)| � N , |µ(q)| � 1 . (39)

By (30), (37) – (39) and the well-known inequality ϕ(n)� n(log log n)−1 we find

Sd,l;J

(
a

q
+ α

)
S

(
a

q
+ α

)
Sc

(
a

q
+ α

)
e

(
−N

(
a

q
+ α

))
= γ

cd(a, q, l)µ
2(q)

ϕ([d, q])ϕ2(q)
MJ(α)M2(α)e

(
−N

(
a

q
+ α

))
+O

(
N3

d
e−c0

√
logN

)
+O

(
N2Q log2N

q2
∆(N, [d, q])

)
. (40)

Having in mind (21), (25) and (40) we get

H(a, q) = γ
cd(a, q, l)µ

2(q)

ϕ([d, q])ϕ2(q)
e

(
−N a

q

) 1/qτ∫
−1/qτ

MJ(α)M2(α)e(−Nα)dα

+O
(
N2

qd
e−c0

√
logN

)
+O

(
NQ2 log2N

q3
∆(N, [d, q])

)
. (41)
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Taking into account (24), (41) and following the method in [13] we obtain

I
(1)
d,l;J(N) = γ

Sd,l(N)

ϕ(d)

∑
m1+m2+m3=N

m1∈J

1 +O

(
N2

d
(logN)

∑
q>Q

(d, q) log q

q2

)

+O

(
τ 2(logN)

∑
q≤Q

q

[d, q]

)
+O

(
NQ2(logN)2

∑
q≤Q

∆(N, [d, q])

q2

)

+O
(
N2

d
e−c0

√
logN

)
, (42)

where Sd,l(N) is defined by (5).

5 Upper bound for Γ3(N)

Consider the sum Γ3(N).
Since ∑

d|p1−1
d≥N/D

χ(d) =
∑

m|p1−1
m≤(p1−1)D/N

χ

(
p1 − 1

m

)
=
∑
j=±1

χ(j)
∑

m|p1−1
m≤(p1−1)D/N

p1−1
m ≡j (4)

1

then from (14) and (15) it follows

Γ3(N) =
∑
m<D
2|m

∑
j=±1

χ(j)I4m,1+jm;Jm(N) ,

where Jm = [1 +mN/D,N ].
Therefore from (22) we get

Γ3(N) = Γ
(1)
3 (N) + Γ

(2)
3 (N) , (43)

where
Γ

(ν)
3 (N) =

∑
m<D
2|m

∑
j=±1

χ(j)I
(ν)
4m,1+jm;Jm

(N) , ν = 1, 2. (44)

Let us consider first Γ
(2)
3 (N). Bearing in mind (23) for i = 2 and (44) for ν = 2 we have

Γ
(2)
3 (N) =

∫
E2

K(α)S(α)Sc(α)e(−Nα)dα ,

where
K(α) =

∑
m<D
2|m

∑
j=±1

χ(j)S4m,1+jm;Jm(α) . (45)

Using Cauchy’s inequality we obtain

Γ
(2)
3 (N)� sup

α∈E2\{1}
|Sc(α)|

∫
E2

|K(α)S(α)|dα +O(N ε)

� sup
α∈E2\{1}

|Sc(α)|

 1∫
0

|K(α)|2dα

1/2 1∫
0

|S(α)|2dα

1/2

+O(N ε) . (46)
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From (31) and (36) we have

Sc(α) = γS(α) + Σ(α) +O(N ε) , (47)

where S(α) and Σ(α) are defined by (18) and (33).
Using (20) and (21) we can prove in the same way as in ([6], Ch.10, Th.3) that

sup
α∈E2\{1}

|S(α)| � N

(logN)B/2−4
. (48)

According to Kumchev ([7], Theorem 2) we have that

sup
α∈E2\{1}

|Σ(α)| � N1−ε . (49)

Bearing in mind (47)–(49) we get

sup
α∈E2\{1}

|Sc(α)| � N

(logN)B/2−4
. (50)

From (18) after straightforward computations we find

1∫
0

|S(α)|2dα� N logN . (51)

On the other hand, from (17) and (45) we obtain

1∫
0

|K(α)|2 dα =
∑

m1,m2<D
2|m1,2|m2

∑
j1=±1
j2=±1

χ(j1)χ(j2)

×
1∫

0

S4m1,1+j1m1;Jm1
(α)S4m2,1+j2m2;Jm2

(−α)dα

=
∑

m1,m2<D
2|m1,2|m2

∑
j1=±1
j2=±1

χ(j1)χ(j2)

×
∑

pi∈Jmi ,i=1,2

pi≡1+jimi (4mi),i=1,2

log p1 log p2

1∫
0

e(α(p1 − p2))dα

=
∑
m<D
2|m

∑
j=±1

χ(j)
∑
p∈Jm

p≡1+jm (4m)

(log p)2

� (logN)2
∑
m<D
2|m

∑
p∈Jm

p≡1+jm (4m)

1

� N(logN)2
∑
m<D

1

m

� N log3N . (52)
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Thus from (46), (50) – (52) it follows

Γ
(2)
3 (N)� N2

(logN)B/2−6
. (53)

Now let us consider Γ
(1)
3 (N). From (42) and (44) for ν = 1 we get

Γ
(1)
3 (N) = Γ∗ +O

(
N2(logN)Σ1

)
+O

(
τ 2(logN)Σ2

)
+O

(
NQ2(logN)2Σ3

)
+O

(
N2e−c0

√
logNΣ4

)
, (54)

where

Γ∗ = γ

( ∑
m1+m2+m3=N

m1∈Jm

1

)∑
m<D
2|m

1

ϕ(4m)

∑
j=±1

χ(j)S4m,1+jm(N) ,

Σ1 =
∑
m<D

∑
q>Q

(4m, q) log q

mq2
,

Σ2 =
∑
m<D

∑
q≤Q

q

[4m, q]
,

Σ3 =
∑
m<D

∑
q≤Q

∆(N, [4m, q])

q2
,

Σ4 =
∑
m<D

1

m
.

From the definition (5) it follows that S4m,1+jm(N) does not depend on j. Then we have∑
j=±1

χ(j)S4m,1+jm(N) = 0 and that leads to

Γ∗ = 0 . (55)

Arguing as in [13] and using Bombieri–Vinogradov’s theorem we find the following estimates

Σ1 �
log3N

Q
, Σ2 � Q log2N , (56)

Σ3 �
N

(logN)A−B−5
, Σ4 � logN . (57)

Bearing in mind (21), (54) – (57) we obtain

Γ
(1)
3 (N)� N2

(logN)B−4
. (58)

Now from (43), (53) and (58) we find

Γ3(N)� N2

(logN)B/2−6
. (59)
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6 Upper bound for Γ2(N)

Consider the sum Γ2(N) defined by (13). We denote by F the set of all primes p ≤ N such that
p − 1 has a divisor belongs to the interval (D,N/D). Using the inequality uv ≤ u2 + v2 and
taking into account the symmetry with respect to d and t we get

Γ2(N)2 � (logN)6N2−2γ
∑

p1+p2+p3=N
p4+p5+p6=N

p2=[nc
1], p5=[nc

2]

∣∣∣∣ ∑
d|p1−1

D<d<N/D

χ(d)

∣∣∣∣∣∣∣∣ ∑
t|p4−1

D<t<N/D

χ(t)

∣∣∣∣
� (logN)6N2−2γ

∑
p1+p2+p3=N
p4+p5+p6=N

p2=[nc
1], p5=[nc

2]

p4∈F

∣∣∣∣ ∑
d|p1−1

D<d<N/D

χ(d)

∣∣∣∣2 . (60)

Further, we use that if n is a natural such that n ≤ N , then the number of solutions of the
equation p1 + p2 = n in primes p1, p2 ≤ N such that p1 = [m1/γ] is O

(
Nγ(logN)−2 log logN

)
,

i.e.
#{p1 : p1 + p2 = n, p1 = [m1/γ], n ≤ N} � Nγ log logN

log2N
. (61)

This follows for example from ([3], Ch.2, Th.2.4).
Thus the summands in the sum (60) for which p1 = p4 can be estimated with O(N3+ε).

Therefore
Γ2(N)2 � (logN)6N2−2γΣ1 +N3+ε , (62)

where

Σ1 =
∑
p1≤N

∣∣∣∣ ∑
d|p1−1

D<d<N/D

χ(d)

∣∣∣∣2 ∑
p4≤N
p4∈F
p4 6=p1

∑
p2+p3=N−p1
p5+p6=N−p4

p2=[nc
1], p5=[nc

2]

1 .

We use again (61) and find

Σ1 �
N2γ

log4N
(log logN)2Σ2Σ3 , (63)

where

Σ2 =
∑
p≤N

∣∣∣∣∣ ∑
d|p−1

D<d<N/D

χ(d)

∣∣∣∣∣
2

, Σ3 =
∑
p≤N
p∈F

1 .

Arguing as in ([4], Ch.5) we find

Σ2 �
N(log logN)7

logN
, Σ3 �

N(log logN)3

(logN)1+2θ0
. (64)

where θ0 is denoted by (4).
From (62) – (64) it follows

Γ2(N)� N2(logN)−θ0(log logN)6 . (65)
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7 Asymptotic formula for Γ1(N)

In this section our argument is a modification of Tolev’s [14] argument.
Consider the sum Γ1(N). From (12), (15) and (22) we get

Γ1(N) = Γ
(1)
1 (N) + Γ

(2)
1 (N) , (66)

where
Γ

(1)
1 (N) =

∑
d≤D

χ(d)I
(1)
d,1(N) ,

Γ
(2)
1 (N) =

∑
d≤D

χ(d)I
(2)
d,1(N) .

We estimate the sum Γ
(2)
1 (N) by the same way as the sum Γ

(2)
3 (N) and obtain

Γ
(2)
1 (N)� N2

(logN)B/2−6
. (67)

Now we consider Γ
(1)
1 (N). We use the formula (42) for J = [1, N ]. The error term is

estimated by the same way as for Γ
(1)
3 (N). We have

Γ
(1)
1 (N) =

γ

2
S(N)N2

∑
d≤D

χ(d)S∗d,1(N)

ϕ(d)
+O

(
N2

(logX)B−4

)
, (68)

where S(N) is defined by (6) and

S∗d,1(N) =
∏
p|d
p|N

(
1− 1

(p− 1)2

)−1 ∏
p|d

p-N−1

(
1− 1

(p− 1)2

)

×
∏
p|d
p-N

(
1 +

1

(p− 1)3

)−1 ∏
p|d

p|N−1

(
1 +

1

p− 1

)
; (69)

Denote

Σ =
∑
d≤D

f(d) , f(d) =
χ(d)S∗d,1(N)

ϕ(d)
. (70)

We have
f(d)� d−1(log log(10d))2 (71)

with absolute constant in the Vinogradov’s symbol. Hence the corresponding Dirichlet series

F (s) =
∞∑
d=1

f(d)

ds

is absolutely convergent in Re(s) > 0. On the other hand, f(d) is multiplicative with respect to d
and applying Euler’s identity we find

F (s) =
∏
p

T (p, s) , T (p, s) = 1 +
∞∑
l=1

f(pl)p−ls . (72)
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From (69), (70) and (72) we establish that

T (p, s) =

(
1− χ(p)

ps+1

)−1(
1 +

χ(p)

ps+1
Ed(p)

)
,

where

Ed(p) =


(p− 3)(p2 − 3p+ 3)−1 if p - N(N − 1) ,

(p− 1)−1 if p | N ,

(2p− 3)(p2 − 3p+ 3)−1 if p | N − 1 .

Hence we find
F (s) = L(s+ 1, χ)N (s) , (73)

where L(s+ 1, χ) is Dirichlet series corresponding to the character χ and

N (s) =
∏

p-N(N−1)

(
1 + χ(p)

p− 3

ps+1(p2 − 3p+ 3)

)∏
p|N

(
1 + χ(p)

1

ps+1(p− 1)

)

×
∏
p|N−1

(
1 + χ(p)

2p− 3

ps+1(p2 − 3p+ 3)

)
. (74)

From the properties of the L-functions it follows that F (s) has an analytic continuation to
Re(s) > −1. It is well known that

L(s+ 1, χ)� 1 + |Im(s)|1/6 for Re(s) ≥ −1

2
. (75)

Moreover,
N (s)� 1 . (76)

Using (73), (75) and (76) we get

F (s)� N1/6 for Re(s) ≥ −1

2
, |Im(s)| ≤ N . (77)

We apply Perron’s formula given at Tenenbaum ([11], Chapter II.2) and also (71) to obtain

Σ =
1

2πı

κ+ıN∫
κ−ıN

F (s)
Ds

s
ds+O

(
∞∑
t=1

Dκ log log(10t)

t1+κ
(
1 +N

∣∣log D
t

∣∣)
)
, (78)

where κ = 1/10. It is easy to see that the error term above is O
(
N−1/20

)
.

Applying the residue theorem we see that the main term in (78) is equal to

F (0) +
1

2πı

 −1/2−ıN∫
1/10−ıN

+

−1/2+ıN∫
−1/2−ıN

+

1/10+ıN∫
−1/2+ıN

F (s)
Ds

s
ds .

From (77) it follows that the contribution from the above integrals is O
(
N−1/20

)
.

Hence
Σ = F (0) +O

(
N−1/20

)
. (79)
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Using (73) we get
F (0) =

π

4
N (0) . (80)

Bearing in mind (68), (70), (74), (79) and (80) we find a new expression for Γ
(1)
1 (N)

Γ
(1)
1 (N) =

γ

8
SΓ(N)N2 +O

(
N2

(logN)B−4

)
, (81)

where SΓ is defined by (7).
From (66), (67) and (81) we obtain

Γ1(N) =
γ

8
SΓ(N)N2 +O

(
N2

(logN)B/2−6

)
. (82)

8 Proof of the Theorem

Therefore using (11), (59), (65) and (82) we find

Γ(N) =
γ

2
SΓ(N)N2 +O

(
N2(logN)−θ0(log logN)6

)
.

This implies that Γ(N)→∞ as N →∞.
The Theorem is proved.
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