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Abstract: Due to the fundamental theorem of number theory, the positive integers may be 

represented by vectors whose components are the unique corresponding powers of the prime 

numbers. Taking the prime numbers as coordinates, to each positive integer we assign a prime 

vector, whose components are the powers of the prime factors of this integer. The geometry of 

this system of prime coordinates of the positive integers is discussed. It is shown that the prime 

components assigned to the sequence of positive integers change in a strictly deterministic way 

and the parallel generating system is presented. Gödel’s prime vectors assigned to formal logical 

formulas are analyzed.  
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1 Introduction 

Every positive integer larger than 1 is the unique product of a finite number of primes or powers 

of primes. Taking the prime numbers as coordinates, to each positive integer we assign a prime 

vector, whose components are the powers of the prime factors of this integer. Taking into account 

the system of vectors whose components are powers of all the prime numbers, to each positive 

integer it corresponds a unique such a prime vector which has no more than a finite positive 

components. The integer 1 corresponds to the origin of the system of prime coordinates. Thus, 

we have: 

1 = (0, 0, 0, 0, 0, …), 2 = (1, 0, 0, 0, 0, …), 3 = (0, 1, 0, 0, 0, …), 4 = (2, 0, 0, 0, 0, …), … 
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Equivalently, we can mention explicitly only the positive exponents of the corresponding 

prime factors and assume that the exponents of all the other primes are equal to 0. Thus, 
 

2 = [1; 2], 3 = [1,3], 4 = [2; 2], 5 = [1, 5], 6 = [1,1; 2,3], … 

… 10000 = [4,4; 2,5], … …, 63992 = [3,1,1; 2,19,421], … 

…78936 = [3,1,1,11; 2.3.11,13,23], … 97823 = [1,1; 11,8893],… 
 

The geometry of the vectors with prime coordinates is strange but relevant. Denoting by pk the 

k-th prime number, then pk(n) is the k-th component of the positive integer n, which is the power 

of the prime number pk in the decomposition of n in prime factors. The norm of the positive 

integer n is:  
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As every positive integer is the product of a finite number of primes, the above series is a finite 

sum. The numerical value of the norm of the positive integer � essentially depends on the 

multiplicity of the prime factors of n. Thus, in spite of the fact that 6 and 97823 are very different 

integers, they have the same norm, namely ||6|| = ||97823|| = 2.  Because both numbers have 

only two prime factors of multiplicity 1. Also, ||78936|| = 13  and ||4| = 2. Obviously, each prime 

number has the norm equal to 1.  

The scalar product of the positive integers m and n is: 
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As every positive integer is the product of a finite number of primes, the above series is a finite 

sum.  

The scalar product essentially depends on the multiplicity of the common prime factors.  

Obviously, two different primes are orthogonal but there are positive integers which are 

orthogonal without being primes, such as < 63922 | 97823 > = 0 for instance, because the two 

integers have no common prime factors. Finally, the usual product of positive integers 

corresponds to the sum of the corresponding prime vectors. Thus, the prime vector corresponding 

to 12 × 66 = 792 is: 
 

[2,1; 2,3] + [1,1,1; 2,3,11] = [3,2,1; 2,3,11]. 
 

In the next two sections we discuss the regular way in which the components of the prime 

vectors are successively generated.  

2 The periodic structure of the components of the prime vectors  

Let p be an arbitrary prime number. It corresponds to an arbitrary coordinate of the system of 

prime vectors discussed above. For each positive integer r we define the periodic function: 
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which assigns the value 1 to all multiples of pr and the value 0 to the other positive integers. The 

p-th prime coordinate of the positive integer n or, equivalently, the power of the prime p in the 

factorization of n, is equal to the sum of these periodic functions at n, i.e. 
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As the positive integer n has only a finite number of prime factors, the series in (1) is in fact a 

finite sum. For instance, 

2(24) = f2,1(24) + f2,2(24) + f2,3(24) = 1 + 1 + 1 = 3,   

3(24) = f3,1(24) = 1.  

All the other values of the periodic functions (1) corresponding to n = 24 are equal to 0 and 

we have 24 = [3,1; 2,3]. 

3 Parallel system assigning integer powers of primes to integers  

Let S be a system which assigns powers of the prime numbers to the positive integer numbers 

larger than 1. For every prime p and every positive integer r there is a component Xp,r of the 

system S which assigns the value 1 (success) to the integers n = mpr (m = 1, 2, 3, …) and 0 

(failure) to the other positive integers. The structure function of the function fp,r is the component 

Xp,r defined in the previous section. The component Xp,r functions properly when it assigns the 

value 1 to a positive integer and fails to function properly when it assigns the value 0 to a positive 

integer. Taking the positive integers as being successive time instants, the structure function fp,r  

is periodic, with the period pr, for the component Xp,r the probability of success is p–r and the 

probability of a failure is 1 – p–r. Reliability of the component Xp,r is the probability that this 

component function properly, namely: 

 Rp,r = P(fp,r = 1) = p–r. (2) 

 The components Xp,r of the system S are joined in parallel. A parallel system functions 

properly if and only if all its components function properly. It fails to function properly if at least 

one of its components fails to function properly. The structure function of the parallel system 

S is: 

 f(n) = maxp,r{fp,r(n)} = 1 – ∏p,r[1 – fp,r(n)], (3) 

As every positive integer has only a finite number of prime factors, for each integer � only a 

finite number of elements of the set {fp,r(n)} are equal to 1, the rest of them being equal to 0. 

Using (2), the reliability of the parallel system S is:  

  R = maxp,r{Rp,r} = 1 – ∏p,r(1 – Rp,r) = 1 – ∏p,r(1 – p–r). (4) 

By proper functioning, the system � assigns integer powers to the prime factors of the positive 

integer numbers. But, due to the fundamental theorem of number theory, every positive integer 

larger than 1 is the product of a finite number of primes or positive integer powers of primes. 

Therefore, the system S functions properly covering all positive integers larger than 1 with finite 

products of primes or powers of primes.  
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Consequently, the reliability of the parallel system S is maximum and is equal to R – 1. As a 

corollary, the probability that the system S fails to assign positive integer powers to the positive 

integer numbers larger than 1 is equal to 1 – R = 0, which, according to (4), states that:  

  ∏p,r(1 – p–r) = 0, (5) 

which is a variant of Euler’s formula for the product of the reciprocal of primes.  

4 Gödel’s prime vectors  

Using an ingenious numbering system, entirely based on the prime numbers, Gödel arithmetized 

the mathematical logic and showed that any system of arithmetic axiomatic system contains a 

non-demonstrable, or non-provable statement. In this section, using Kurt Gödel methodology [2], 

the prime coordinates and Alonzo Church’s version of the liar paradox [1], a simple non-provable 

statement is given.  

 Using the version of Gödel theory given in [5], we assign the integers 1, 2, 3, 4, 5, 6, 7, to the 

elementary constant signs: of Gödel  ~ (non), ˅ (or), ⊃ (implies, or, equivalently, if ⋯then⋯ ), ∃ 

(there is), = (equal), 0 (zero), s (the immediate successor of). The punctuation marks ( and ) have 

the Gödel numbers 8 and 9, respectively. A numerical variable, like x or y, gets a prime larger 

than 10 as the Gödel number. A sentential variable gets as the Gödel number the square of a 

prime number larger than 10. Let p and q be two sentential variables with the 112 and 132, 

respectively. The logical sentence: 

 q(p) = ~p(p). (6) 

corresponds to the prime vector: 

[132, 8, 112, 9, 5, 1, 112, 8, 112, 9, 2, 3, 5, 7, 11, 13, 17, 10, 23, 29], 

whose components are the Gödel numbers of the signs of the expression (6). The Gödel number 

of the entire given logical expression (6) is: 

n = 2132
 × 38 × 5112

 × 79 × 115 × 131 × 17112
 × 198 × 23112

 × 299
. 

The number n is a label, or tag, for the logical expression (6). 

If x is the Gödel number of a sequence of symbols, y is a numerical variable whose value is 

the Gödel numbers of a variable, and z is a numerical variable whose value is the Gödel number 

of a sentence or variable, sub(x, y, z) is the sequence labeled by x in which the variable labeled 

by y is replaced by the sequence or variable labeled by z. Thus, sub(n, 112, 132) is the expression: 

 q(q) = ~q(q). (7) 

Let H be the set of axioms and P(H) be the class of the subsets of H. The following statement 

in non-provable: 

  (h) h ~ ⊃ sub(n, 112, 132), (8) 

which says that: for every set of axioms, we cannot prove the relation (7). Indeed, if (8) is true, 

then the system of axioms H is not consistent. If (8) is false, then:  

(∃h) h ⊃ sub(n, 112, 132), 
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which says that there is a set of axioms h that implies (7) which is a contradiction. Therefore, if 

(8) is provable then either the system of axioms is inconsistent or it contains a contradiction, 

Thus, (8) is not provable.  

5 Conclusion  

Taking the prime numbers as coordinates, to every positive integer n corresponds a vector, called 

the prime vector assigned to n, whose components are the powers of those primes that divide n. 

This is called the prime vector assigned to n. The geometry of these prime vectors assigned to the 

positive integers is unusual but relevant. The scalar product of the prime vectors corresponding 

to two positive integers m and n, reveals the multiplicity of the common prime factors of m and 

n, and the norm of the prime vector corresponding to the positive integer � reflects the multiplicity 

of the prime divisors of n. The components of the prime vectors assigned to the positive integers 

display a clear regularity, as shown by (1), each such component being the sum of the 

corresponding values of periodic functions. Finally, due to the fundamental theorem of number 

theory, the parallel system of assigning positive powers of primes to the positive integers larger 

than 1 proves to have a maximum reliability R = 1, which is equivalent to a strong version (5) of 

Euler’s formula for the product of reciprocal primes. Gödel has represented the formal logical 

statements as prime vectors. Using his methodology and Church’s version of the liar paradox, a 

simple non provable statement (8) is given. 
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