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1 Introduction

In 1973, the first use of these numbers appears “A Handbook of Integer Sequences” in a paper by
Sloane by the title applications of Jacobsthal sequences to curves [17].

Further, in 1988, Horadam [12] introduced the Jacobsthal and Jacobsthal-Lucas sequences
recurrence relation {.J,,} and {j,,} are defined by the recurrence relations

J(] = O, Jl = 1, Jn = Jn,1 + 2:]”,2, fOT n 2 2,

Jo=2, 1 =1, jon=1Jn1+2Jn_2, forn=>2,

respectively.
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The first eleven terms of the Jacobsthal sequence J, are 0, 1, 1, 3, 5, 11, 21, 43, 85,
171, and 341. This sequence is given by the formula

The first eleven terms of the Jacobsthal-Lucas sequence {j,} are 2,1,5,7, 17,31, 65,127,
257,511 and 1025. This sequence is given by the formula

Jn = 2" + <_1)n'

There are many articles in the literature that study on the Jacobsthal sequences [2, 3, 11, 13,
14]. Generalization of the Jacobsthal sequences is given in [4, 5, 8, 9, 10]. Also, we can see
the matrix representations of Jacobsthal and Jacobsthal-Lucas numbers in [6, 7, 15, 16]. Several
authors worked on the Jacobsthal quaternions in [1, 18, 19].

For the Jacobsthal and Jacobsthal-Lucas numbers, the following properties

J2420% = Jony (1

T 4207 = Joni )

Ton =4 J5 1 = Jon 3)

Jn =4 = ()" (4)
Jprdpir — J2 = (=1)n 2"t 6)
Jpp1 — 4Ty = (=1 (6)

Jni1 +4 0 = i (7)

Indn = Jon ()

Tndni1 + 2 Jm1Jn = Jpin )
It — Jm1dn = (=1)"2" 10 (10)

hold [6, 7, 13, 14, 15, 16, 18, 19].

2 The generalized Jacobsthal sequence

In this section, the generalized Jacobsthal sequence denoted by J,, will be defined. The general-
ized Jacobsthal sequence is defined by

I =Jn-1+2Jh—2, (n>3) (11)

with Jo =¢q, J1 = p+ ¢, Jo = p+ 3¢, where p, q are arbitrary integers. That is, the generalized
Jacobsthal sequence is

¢, p+q, p+3q, 3p+5q, 5p+11lq, llp+21q, ..., (p+qQ)Jn+2q¢Jn_1,... (12)
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Using the equations (11) and (12) , we get
Jn=pJn+ qJns1
Jns1 =@+ q) Jny1 +2qJy (13)
Jnte = (p+3q) Jn1 +2(p +q) Jn.
Putting n = r in (13) and using (11), we find
Jops=0Bp+5¢) i1 +2(p+3q) Jr =T3S + 202 J,
Jrra=0Gp+119) Jop1 +2@Bp+59) Jp = Ja Jrpr + 203 J,.

So, in general, we obtain relation between generalized Jacobsthal sequence and Jacobsthal

(14)

sequence as follows:
Jn—H" = Jn Jr-l—l + 2Jn—1 JT' (15)

Also, certain results follow almost immediately from (11)
Jngo =30, — 20,1 =0. (16)

For the generalized Jacobsthal sequence, we have the following properties:

(Jn)* +2(Jno1)? = (20 + @) J2n—1 — €5 Jon_1, (17)
) =4 Jn1)? = 20+ @)Jon — €5 Jon, (18)
Tn1Jngn — (Jn)* = (=1)"2" ey (19)

Jnr Tnir = (Tn)? = (Z1)"7F12" " ey (20)
4(Jn) +2ey Jn+1 =2pJlons1, 21
Jndni1 + 21 dn = 2o+ O)Jin — €5 Jinin (22)
Indn-1 = Jm1Jn = (=1)" 2" es Jonn, (23)

where e; = p? + pq — 24>
Also, for p =1, ¢ = 0, we get the well-known results in (1—10).

Theorem 1. If J, is the generalized Jacobsthal number, then

iy Jnt1 _ (P @) at2g
11m

n—oo J, qo+p

)
where o = 2.

Proof. We have for the Jacobsthal number J,,,

lim Jn+l

n—oo J, ’

where o = 2 [17].
Then for the generalized Jacobsthal number J,, , we obtain

T (Pt @) Jn + 290 (ptg)a+2g
lim —— = lim = .
n—oo J, =00 PJIn+qJna qa—+p

(24)
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Theorem 2. The Binet’s formula' for the generalized Jacobsthal sequence is as follows;

a—p
Proof. The characteristic equation of recurrence relation J,, 1o = J,+1 + 2], is
2 —t—2=0. (26)
The roots of this equation are
a=—1and g =2, 27)
wherea+ =1, a— =3, af = —2. Using recurrence relation and initial values J, = ¢,
J1 = p + ¢, for the Binet’s formula J,,, we get
aa® — R An
Jn:Aa”+BB":( 56), (28)
a—p
WhereA:%,B:aiof_gland@zp—i—q(l—ﬂ),B:q(a—l)—p. ]

2.1 The generalized Jacobsthal vectors

_>
A generalized Jacobsthal vector is defined by J, = (J,, , Jpt1, Jni2). Also, from equation (12) it
can be expressed as IR
Tn=(+a) Tut 2070, (29)

where ?n :_>( Jn s Jni1, Jnio) and 7“1 = (Jnt1, Jnya, Jnys) are the Jacobsthal vectors. The
product of J,, and A € R is given by

Ao = (AT AT oy A T i)

— —
and J, and J,, are equal if and only if J, = J,,, Jni1 = Jma1, Jnio =Jmaso .

Theorem 3. Let fn and jm be two generalized Jacobsthal vectors. The dot product of jn
and jm is given by

1
<jn7 jm> - pz[g (Jn+m + Jn+m+2 + Jn+m+4)
4 (_1)n+1Jm 4 (_1)m+1Jn]
1
+ 2pq [g (Jn+m+1 + Jn+m+3 + Jn+m+5) (30)
+ (_1)n+1<]m—1 + (_1)m+1Jn_1]
1

+ qz[g (Jntmr2 + Jngma + Jntmre)

+ (_1)n+2jm+1 + (_1)m+2Jn+1] :
'Binet’s formula is the explicit formula to obtain the n-th Jacobsthal and Jacobsthal-Lucas numbers. It is well

known that for the Jacobsthal and Jacobsthal-Lucas numbers, Binet’s formulas are J,, = a;:g” and j, = o™ + 8"
respectively, wherea« + =1, a— =3, af=—-2anda =2, g=-1,[15,16].
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Proof. The dot product of Y (Jny Jns1, Jna2) and j (T, Jms1s Jimaz) are defined
by <Tn, jm> = Jodm + Jnt1dmst1 + Jnsodmio. Also, using the equations (11), (12) and (13),
we obtain
JoJm = 0" (Jn In) + pq[Tndmst + Jns1 Jn) + @ (Jns1 Tt (31)
Jnt1Im1 = P’ (Jnt1 Jmt1)
+ 0 [Jns1Imrz + Jntz Jms1] + @ (Jng2 Jmta),
Jnvo Jmie :P2 (Jn+2']m+2)
+pq [Jns2dmrs + Jnisdmio) + @ (Jnrzmes)-
Then, from the equations (31), (32) and (33), we have
(T Tw) = PUdmt ot mia + Jusadnss)

+ pq [JnJm+1 + JnJrIJm + Jn+1Jm+2
+ Jnt2dms1 + Jn2dmes + JngsImyo)
+ q2 (Jn—H Jm+1 + Jn+2 Jm+2 + Jn+3 Jm+3)

(32)

(33)

1
= pz[g (Jn—i-m + Jn+m+2 + Jn+m+4)

(=1 T 4 (=17 39

1
+ 2pq [§ (Jn+m+1 + Jn+m+3 + Jn+m+5)
+ (=) Ty + (=)™, ]

1
+ q2[§ (Jn+m+2 + Jn+m+4 + Jn+m+6)

+ (_1)n+2Jm+1 + (_1)m+2<]n+1] :
Then for the norm of the generalized Jacobsthal vector, using identities as follows:
2+ 2J2 = Jons,
T = S =2,
JmJn—H +2 Jm—ljn = Jm—i—na

we have

2
Il = <J—n>7 «]]—n>> =J.2+ «Hn+12 + u]]n+22

1
PQ[ §<J2n + Jonto + Jonga) + 2 (—1)n+1 In |

1
+ 2pq] g(JQn—H + Jonta + Jonys) +2(=1)" T T,y ]

+ ¢ %(J2n+2 + Jonya + Jonye) +2(=1)"2 Ty ] (35)
or
=’ [Jont3 — 2n+1<]n71]
+ 2pq] 1(<]2n+1 + Jonts + Jangs) + 2 (=1)" ]

3
+ @[ Jonss — 2" T, ).
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e Special case 1: For the dot product of the generalized Jacobsthal vectors jn and Tnﬂ,
we get

<jn7 jn+l> = Jna]]n+1 + Jn+1a]]n+2 + Jn+2Jn+3
1
3

1
+2pgq [g(J2n+2 + Jonta + Jonge) + 2 (—1)n+1Jn—2]

1
+ q2 [g(JZnJrS + J2n+5 —+ J2n+7) + 92 (_1)n Jn]

= p2 [ (J2n+1 _I_ J2n+3 —|— J2n+5) _|_ 2 (_1)n+1 Jn_]_]

(36)

and

(T Ta) = 52+ Jas + Joys?
= pg[JnQ + J72z+1 + Jn2+2]
+2pq[Jndnsr + Jnprdnse + Jng Jngs ]
[T+ T+ T ]

1
g(Jgn + Jongo + Janga) +2 (1) T, ]
1
+2pq [g(JQnH + Jongs + Jongs) + (= 1) T ] (37)
1
g(J2n+2 + Jonta + Jonte) + 2 (=1)"2 Jpia ]

=p°[

+¢*
or

= p2[<]2n+3 - 2n+1<]n—1}

1
+ 2pq [§<J2n+1 + Jonts + Jonys) +2 (1) Ty ]

+ q2[ J2n+5 - 2n+2Jn]'

]

— — —
’Il)leorem 4. Let J, and J,,, be two generalized Jacobsthal vectors. The cross product of J,, and
Jm 18 given by
- =
Jo X I = (=1)" 2" J 0 (* +pg —2¢%) (=27 — j + k). (38)
- =
Proof. The cross product of J,, x J,, is defined by

i ik
jn X Tm - Jn Jn—i—l Jn+2 =1 (Jm+2u]]n+1 - Jm+le]]n+2)

I Inir ez 59
_] (Jm—l—%]]n - o]]mo]]n—l—Q) + k (Jm—‘rl«]]n - Jmo]]n+1>-
Now, we calculate the cross products:
Using relations (11) and (13) or the property J2 — J, 1/, 1 = (—1)"T1 2771 we get
e]]m—i-QJn—&-l - Jm+1Jn+2 - (_1)n+2 2n+1<]m—n (p2 +pq — 26]2), (40)
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Jm-{—QJn - JmJn+2 - (_1)n+1 2" Jm—n (p2 + pq — 2 q2> (41)

and
Jmi1dn — Imdny1 = (_1>n+1 2" Jm—n (p2 +pqg—2 C]2)- 42)

Then from the equations (40), (41) and (42), we obtain the equation (38). [l

- = —
Theorem 5. Let J,,, J,,, and J; be the generalized Jacobsthal vectors. The mixed product of these
vectors is

- = =
(I x T, T1) =0, 43)
.= .
Proof. Using J; = (J;, Ji41, Jiy2), we can write,

N N N Jn Jn—H Jn+2
(Tox T, T = |Tn Tmsr Jmsa| = I Gonsa vz = Jna Ji)
I i Jige

1 T2 It = I Jiv2) + Jnga T Jiir = T J0) -
Also, using the equations (40), (41) and (42) we obtain

(44)

I Tt Jive — T2 Jir) + okt Jir2 I — I Ji2)
+ oo T Jip1 — T dms1)
= (=120 (P +pg-2¢°) (45)
(=2Jn = Jng1 +Jny2)
= (=)' 2" g g (= Jpso + Jnsa) = 0.

Thus, we have the equation (43). L]

3 The generalized complex Jacobsthal sequence

In this section, the generalized complex Jacobsthal sequence, denoted by C,,, will be defined. The
generalized complex Jacobsthal sequence is defined by

Cn =Jn+ 7;Jn+1 ) (46)

withCo =q +i(p+q), Cr=(p+q) +i(p+3q), Co=(p+3q) +i(3p+5q), where
p, q are arbitrary integers. That is, the generalized complex Jacobsthal sequence is

qg+ilp+q), p+q +i(p+3q), P+3q¢) +i(B3p+54q),

. . . 47)
Bp+5q) +i(G5p+11¢q), ..., (p+i2¢)u+ (q+ i(p+q))ns1,. ..

e Special case 1: From the generalized complex Jacobsthal sequence (C,)) for p=1, ¢ =0
in the equation (47), we obtain complex Jacobsthal sequence (C,, = .J; ;) as follows:

(Cp) + i, 14+d, 1443, 3+45, 54+ill,...,Jn+ i Jpy1,---
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e Special case 2: From the generalized complex Jacobsthal sequence (C,,) for p = —1, ¢ =
2 in the equation (47), we obtain complex Jacobsthal-Lucas sequence (C,, = j 1444 2+4)
as follows:

244, 1445, 5447, T+i17, 17T+431,...  jn+ i jnits- ..

For the generalized complex Jacobsthal sequence, we have the following properties:

Cr +2Cl , =[(2p+q)+i(p+5q)]Cons — (3 +1) € J2n (48)
C2,+2C=[(2p+q)+i(p+5q)|Conp1 — (3 +1i) es Jont (49)
Cly —4C_ =[(2p+q)+i(p+5q)]Co — (3 +1i) €)Jan (50)

Cr1 Gt — C2 = (=1)" 2" (34 4) ey, (51)

where e; = p®> +pq — 2¢>.

4 The generalized dual Jacobsthal sequence

In this section, the generalized dual Jacobsthal sequence, denoted by D7, will be defined. The
generalized dual Jacobsthal sequence is defined by

D) = Jn+ednt1, (52)

withD] = ¢ +e(p+4q), D{ =p+ g+ elp+3q), D =p+3q + e(3p+5q), wherep,q
are arbitrary integers. That is, the generalized dual Jacobsthal sequence is

q+elp+tq), (p+q)+e(p+3q), (p+3q)+e(Bp+5q),
(3p+5q)+e(Gp+11¢q), (bp+11qg)+ e(1lp+21q), (53)
o [(p+2eq)dn+ (g4 c(p+q) ) Tngr =T +Tnia, -
Using the equations (52) and (53) , we get
D) = (p+2eq)n+ (g+e(p+ q)) Jun
D), =2[(g+e(p+ )]+ [+ +e(p+3q)]Jnn

D), =2[(p+q)+e(p+3q)]Ju+[(p+30) +e(3p+5q)]Jnt1 (54)
D)., =2D)  Jo+ D) gy

e Special case 1: From the generalized dual Jacobsthal sequence (D) for p =1, ¢ = 0in
the equation (53), we obtain dual Jacobsthal sequence (D) as follows:

(DY : e, 146, 14+3e,3+5e, 5+1le,...,.Ju+ cdnys,...

e Special case 2: From the generalized dual Jacobsthal sequence (D) for p = —1, ¢ =2
in the equation (53), we obtain dual Jacobsthal-Lucas sequence (D?) as follows:

(D7) : 24+ ¢, 1+5e, 54+Te, T+17¢, 17+31e,... 0+ €jnst,---

127



For the generalized dual Jacobsthal sequence, we have the following properties:

(D) +2(D;) = [(2p+q) + e(p+5q) | Dy, — (1+¢e)es Jono1, (55)
D)) +2M)°=[2p+q) + clp+5q) D3, — (L+¢)es Jonsr, (56)
(D )* =405 ) =[2p+9) + clp+59) Dy, — (1 +¢) ey Jon, (57)
D, Dy — (@) = (=1)" 2" (1 +¢)eys, (58)

4D +2J2, (1+e)e;=2(p+2eq)Dy, .y, (59)

Dy, Dy + 205, Dy = (2p+q) + e(p+ 50D, — (L +2) e Jmin,  (60)
D/ D - D) D= (-1)"2" (14 e)es Jnn. (61)

where e; = (p? +pq —24°%).

e Special case 3: From properties of the generalized dual Jacobsthal sequence (D;) for
p = 1, g = 0 in the equations (55)—(61), we obtain dual Jacobsthal sequence (D;f) as

follows:
(D;)? +2(Dy_1)? = (24 €) Dy — (14 €) Jo 1, (62)
(Dp1)? +2(Dp)? = (24 €) Dy — (14 €) Jona, (63)
(Dy1)? =4(Dy_1)? = (2+ €) D3, — (1 + €) Jan (64)
Dy Dyoy — (Dy)? = (=1)"2" (1 + ), (65)
4(D7{)2 +2(1+¢) Jg-ﬂ = 2D§7n+17 (60)
D) Dy +2D), D) =24 ¢)Dj = (14 €) Jmin, (67)
D! D!, — D! DI=(-1)"2""1(1+ &)Jp_n- (68)

Theorem 6. If D) is the generalized dual Jacobsthal number, then

oy Dair _ (Pa+ @) o + (0 + pa+ 2¢°)a+ 2pg
n—oo I ¢*a? + (2pq)o + p?

where o = —1.
Proof. For the generalized dual Jacobsthal number I}/, we obtain

lim% = lim (P+2eq)Jnis + (g +e(P+a)Jnts
n—00 Dg n—o0 <p+2€Q)J"+[Q+5(P+Q)]Jn+1
i PP 26) Taduis + (04 + @) (s +2P4 )
n—00 pZJg + 2pq Jan—i—l + q2J2+1
+ lim ¢ ()" 2" (0 + pg - 24°)
oo p2‘]’2+2quan+1+q2J3+l
(P +pa+2¢*) o+ (pg+ ¢)a*+(2pg)
¢*a* + (2pq)a+ p

(69)

where J, 10 = Jpi1 + 2 J,.
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e Special case 4: For p = 1, ¢ = 0 in the equation (69), we obtain

D/ D’
1 ntl frd 1 —n+1 fd frd
7}5]20 D = nh_r>1010 7 a+0=a. 0

Theorem 7. The Binet’s formula for the generalized dual Jacobsthal sequence is as follows;

Dl = (aa™— B B"). (70)

Proof. If we use definition of the generalized dual Jacobsthal sequence and substitute first equa-

tion in footnote, then we get
D)= (p+2eq)Jnt(qg+e(p+q))Jnn
an_ﬂn

a—f

an—&-l_ﬁn—i—l
)+<Q+5(p+Q))(a—_ﬁ) (71)

= (p+ 2eq)(

aa” — B p"
a— 3 ’

where @ = (p+2eq)+a(qg+e(p+q)) andB=(p+2eq)+B(qg+e(p+q)). u

S The generalized dual Jacobsthal vectors
A generalized dual Jacobsthal vector is defined by

ﬁn = (D], D], D],

n+1-

From the equations (52), (53) and (54) it can be expressed as

ID?H = jnJrejnH = (p+25q)?n+(q+5(p+q))?n+1 (72)

where jn = (Jn, Jus1, Jnio) and YH = (Jn, Jus1, Jus2) are the generalized Jacobsthal
vector and the Jacobsthal vector, respectively. The product of D, and A € R is given by

MDY, = AT+ AT o

and ﬁn and ]ﬁm are equal if and only if
v]]n = Jm, Jn—H = Jm+17 Jn+2 = Jm—I—Z-

Some examples of the generalized dual Jacobsthal vectors can be given easily as:

D'y = (D), D, DY) = (U1, B, o) + (32, B, J0)

[(p+q) +e(p+3q9), (p+3q) +e(3p+5q9), 3p+ 5q) +e(5p + 11q)],

(D3, D3, D3) + (D3, Dy, DY)

[(p+3q) +e(3p+5q9), Bp+5q) +e(b5p+ 11q), (5p + 11q) + (11p + 21q)].

D’

2

129



Theorem 8. Let ]ﬁn and Hﬁm be two generalized dual Jacobsthal vectors. The dot product of
]ﬁn and ﬁm is given by

1
<H¥n; ﬁm> :p2[§ (Jn+m + Jn+m+2 + Jn+m+4)

+ (=) + (1))

+2pgq [% (Jntm+1 + Jntmts + Jntmts)
+ (1) g 4 (1) ]

+ QQ[% (Jntm+2 + Jntmra + Jntmee)

-1 n+2jm -1 m+2<]n
+(=1) +1+(=1) +1] (73)

+ 2¢ {pQ% (Jntm+1 + Insm+s T Jntms)
+ (=) ey + (1) ]

+2pgq [% (Jntm+2 + Jntmra + Jntmee)

+ (1) Jpeo 4+ (1) ]

+ qz[% (Jntm+3 + Intmts + Jntm7)

+ (1) T+ (=)™, )

Proof. The dot product of ]ﬁn = (D7, D], D/.,)and Iﬁm = (D7, D7, D7 .,)is defined
by
<H¥n, ﬁm> =D, Dy, + D, Dy + Dy oDy

= <fm jm> +e] <jn ,jm+1> + <Yn+1 7jm> ],

where jn = (Jn, Jns1, Jnyo) is the generalized Jacobsthal vector. Also, the equations (11),
(12) and (13), we obtain

<jn7 jm> IPQ[% (Jnsm + Jngmaz + Jnsmsa)
+ (=1)" T + (1)
+2pq [% (Jntm+1 + Jntm+s + Jntmes) (74)
+ (=1 T+ (1) ]
+ QZ[% (Jnsmr2 + Jngmea + Jnsmss)
+ (1) Jpgr 4+ (=12 ]
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1
<Tn7 jm+l> :pz[g (Jn+m+1 + Jntmts + Jn+m+5)
4 (_l)n—i-ljm_H 4 (_1)m+2Jn]

1
+ 2pq [g (Jn+m+2 + Jn+m+4 + Jn+m+6)

+ (=D, + (=)™ 2, ]

1
+ q2[§ (Jn+m+3 + Jn+m+5 + Jn+m+7)

+ (1) e 4+ (1) T, 14]
1
<jn+1a jm> :p2[§ (Jn+m+1 + Jn+m+3 + Jn+m+5)
4 (_1)n+2jm 4 (_1)m+1Jn+1]

1
+ 2pq {g (Jn+m+2 + Jn+m+4 + Jn+m+6)

+ (_1)n+2Jm_1 + (_1>m+1Jn]

1
+ QQ[g (Jngm+3 + Jngms + Jnim7)
+ (_1)n+3<]m+1 + (_1)m+2Jn+2]-

Then from equation (74), (75) and (76), we have the equation (73).
D’

e Special case 1: For the dot product of generalized dual Jacobsthal vectors
we get

(B, DY) = DB, + DY, DY, + DL,
= (Vo Ty +el{ T Tua) + (T, Tua )}
_ {ﬁ[% (Joms1 + Jonss + Jomss) + 2 (—1)" T 1]
+2pq [§ (Jomsa -+ Jomia + Jomss) + 2 (=1 T, )
+*f[%(lm+3+wbn+5+«hwmﬁﬁ‘2(—1YHQJh]}
+ 2¢ {PQ[% (Jons2 + Jonsa + Jonig) + 2 (=1)" Js ]

(J2n+3 + J2n+5 + J2n+7) + 4 (_1)n+1 Jn—S]

+ [2
pals

1
2_
+q [3
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(Jon+a + Jonye + Jonys) + 2 (—1)n+2 1]}

(75)

(76)

O

n and ]D) n+1»

(77)



Then for the norm of the generalized dual Jacobsthal vector®, we have

Hﬁn =4/ [<§n,ﬁn>i| = \/[(Di)Q + (D741)% + (D)2

= 1P (o + J2 = J2,)

1
+ \/QPQ[(g (Jont1 + Jongs + Jonys) + 2 (=1) 1T, 4)]

P onss + T2y = T2)] (78)

1
+ \/5{2p2(§ (Jon+1 + Jonts + Jangs) +4 (=)0, 1)}

1
+ \/5{4}) Q[g (Jonto + Jonta + Jonte) +4 (=1)"H1 T, o]}

1
+ \/5{2(12(5 (Jants + Jongs + Jangr) + 4 (=1)"T2J,)]}

where used identity of the Jacobsthal numbers as follows [6]
1

Jn Jn+k = 3

(Jonsr + (1) T + (= 1),
(D%, D) =(BJ)? + (B )? + (B
- <Yn P jn> + 2¢ <jn 3 Fn—|—1>
= p*[Jonss + I — T2 4]
1
+ QPQ[g (Jons1 + Jonts + Jonys)

+2(=1)"" ] + @[ Jonss + Ty — Jr )]
1

(79)

+ {2 p2 (Jon+1 + Jonts + Janis) + 2 (_1)n+1Jn—1]

— W

Jont+2 + Jonta + Jonye) + 2 (_1)n+1¢]n72]

Wl

+ 4pq|

+2¢°[5 (Jansa + Jonts + Jonsr) + 2 (=1)" 2T, 1}

Wl =
—~

e Special case 2: For p = 1, ¢ = 0, in the equations (73), (77) and (79), we have

.y 1
<DJm ﬁm> - {g(Jan + Jngms2 + Jngmsa) + (=1)" T 4+ (1) Jn}
1
+2¢ |:§ (Jn+m+1 + Jn+m+3 + Jn+m+5) + (_1>n+1<]m71 + (_1)m+1 Jn1:| ’
— — 1
<DJn7 DJn+1> = {5 (Jont1 + Jongs + Jongs) + 2 (_1>n+1<]n—1:|

1
+2¢ [g (Jonso + Jonsa + Jonss) +2(=1)"H! Jn—2:|

%
3 Norm of dual number as follows: H A H =+va+ea*=+/a+ea* A=a+ea”, [1]

1
2v/a’
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and

_>
HDJn = \/(J2n+3 +J5 = J72L+1)

1
+ \/25 [g (Jont1 + Jongs + Jonys) + 2 (=1)" 1, 4]

% [(J2n+1 + J2n+3 + J2n+5) + 2 (_1)n+1<]n—1]
V(Jangs + J2 = T2 )

= (Janys + Jp = Ji) +

Theorem 9. Let Hﬁn and ﬁm be two generalized dual Jacobsthal vectors. The cross product of
]ﬁn and ﬁm is given by

D, x D',y = <—1>"+1 P S (L) (0P 4 pg— 2 (~2i —j+ k). (80)

Proof. The cross product of f + efnﬂ and ]D) j + sjmﬂ is defined by

ﬁ Xﬁ = j Xj —1—63 ijﬂ—f—jn_ﬂxj

where j is the generalized Jacobsthal vector and j j is the cross product for the gener-
alized Jacobsthal vectors T and j

Now, we calculate the cross products Y jm Y X jm_i,_l and jnﬂ X jm Using the
property J, Jpn1 — Jp1Jp = (=1)" 2771, ., we get

j j D2 (=20 — 5+ k) (p* 4+ pg —247) (81)
j jm—&-l n+1 2" Jen1 (=20 —j + k)(pQ +pg — 2(]2) (82)

and
T x Tow = (—1)"2270 (<20 — j+ K)(0? + pg — 247). (83)

Then from the equations (81), (82) and (83), we obtain the equation (80).
e Special case 3: For p = 1, ¢ = 0 in the equations (80), we have
_>
D7, x D7, = (=) 2" Jon(1 4+ ) (=20 — 5 + k). O
Theorem 10. Let ﬁ}m ]Iﬁm and ]]551 be the generalized dual Jacobsthal vectors. The mixed

product of these vectors is
<1§n <D, H§5> ~0. (84)

Proof. Using the properties
DY x Doy = (T % Ton) (T x T + Tt x Ton)
and D% = T, + £ T 1ys, we can write,
<n§n <D, ﬂﬁ> = (Tx T Ty +e[(To x T Tir)
(T x Tt T+ (T x T Tin ).
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Then from equations (81), (82) and (83), we obtain
<(—2i —j+k), jz> =20 = Ji1 +Jipe =0,
<(—22’ —j+k), jz+1> = =201 = Jip2 + J1es = 0.

Thus, we have the equation (84). [l

6 Conclusions

The generalized Jacobsthal, the generalized complex Jacobsthal and the generalized dual
Jacobsthal sequences have been introduced and studied. The use of such special sequences has
increased significantly in quantum mechanics, quantum physics, etc.
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