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1 Introduction

In 1973, the first use of these numbers appears “A Handbook of Integer Sequences” in a paper by
Sloane by the title applications of Jacobsthal sequences to curves [17].

Further, in 1988, Horadam [12] introduced the Jacobsthal and Jacobsthal–Lucas sequences
recurrence relation {Jn} and {jn} are defined by the recurrence relations

J0 = 0, J1 = 1, Jn = Jn−1 + 2Jn−2, for n ≥ 2,

j0 = 2, j1 = 1, jn = jn−1 + 2jn−2, for n ≥ 2,

respectively.
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The first eleven terms of the Jacobsthal sequence Jn are 0, 1 , 1 , 3, 5, 11, 21, 43, 85,

171, and 341. This sequence is given by the formula

Jn =
2n − (−1)n

3
.

The first eleven terms of the Jacobsthal–Lucas sequence {jn} are 2, 1, 5, 7, 17, 31, 65, 127,

257, 511 and 1025. This sequence is given by the formula

jn = 2n + (−1)n.

There are many articles in the literature that study on the Jacobsthal sequences [2, 3, 11, 13,
14]. Generalization of the Jacobsthal sequences is given in [4, 5, 8, 9, 10]. Also, we can see
the matrix representations of Jacobsthal and Jacobsthal–Lucas numbers in [6, 7, 15, 16]. Several
authors worked on the Jacobsthal quaternions in [1, 18, 19].

For the Jacobsthal and Jacobsthal–Lucas numbers, the following properties

J2
n + 2 J2

n−1 = J2n−1 (1)

J2
n+1 + 2 J2

n = J2n+1 (2)

J2
n+1 − 4 J2

n−1 = J2n (3)

J2
n − 4 J2

n−1 = (−1)n+1Jn+1 (4)

Jn−1Jn+1 − J2
n = (−1)n 2n−1 (5)

Jn+1 − 4 Jn−1 = (−1)n+1 (6)

Jn+1 + 4 Jn = jn+1 (7)

jnJn = J2n (8)

JmJn+1 + 2 Jm−1Jn = Jm+n (9)

JmJn−1 − Jm−1Jn = (−1)n 2n−1Jm−n (10)

hold [6, 7, 13, 14, 15, 16, 18, 19].

2 The generalized Jacobsthal sequence

In this section, the generalized Jacobsthal sequence denoted by Jn will be defined. The general-
ized Jacobsthal sequence is defined by

Jn = Jn−1 + 2 Jn−2 , (n ≥ 3) (11)

with J0 = q , J1 = p+ q, J2 = p+ 3 q, where p, q are arbitrary integers. That is, the generalized
Jacobsthal sequence is

q , p+ q , p+ 3 q , 3 p+ 5 q , 5 p+ 11 q , 11 p+ 21 q , . . . , (p+ q)Jn + 2 qJn−1, . . . (12)
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Using the equations (11) and (12) , we get

Jn = p Jn + q Jn+1

Jn+1 = (p+ q) Jn+1 + 2 q Jn

Jn+2 = (p+ 3 q) Jn+1 + 2 (p+ q) Jn.

(13)

Putting n = r in (13) and using (11), we find

Jr+3 = (3 p+ 5 q )Jr+1 + 2 (p+ 3 q ) Jr = J3 Jr+1 + 2 J2 Jr
Jr+4 = (5 p+ 11 q) Jr+1 + 2 (3 p+ 5 q) Jr = J4 Jr+1 + 2 J3 Jr.

(14)

So, in general, we obtain relation between generalized Jacobsthal sequence and Jacobsthal
sequence as follows:

Jn+r = Jn Jr+1 + 2 Jn−1 Jr. (15)

Also, certain results follow almost immediately from (11)

Jn+2 − 3 Jn − 2 Jn−1 = 0. (16)

For the generalized Jacobsthal sequence, we have the following properties:

(Jn)2 + 2 (Jn−1)2 = (2p+ q)J2n−1 − eJ J2n−1 , (17)

(Jn+1)
2 − 4 (Jn−1)2 = (2p+ q)J2n − eJ J2n , (18)

Jn−1 Jn+1 − (Jn)2 = (−1)n 2n−1 eJ , (19)

Jn−r Jn+r − (Jn)2 = (−1)n−r+1 2n−r J2
r eJ , (20)

4 (Jn)2 + 2 eJ J
2
n+1 = 2 p J2n+1 , (21)

Jm Jn+1 + 2 Jm−1 Jn = (2p+ q)Jm+n − eJ Jm+n , (22)

Jm Jn−1 − Jm−1 Jn = (−1)n 2n−1 eJ Jm−n, (23)

where eJ = p2 + p q − 2 q2.
Also, for p = 1, q = 0 , we get the well-known results in (1−10).

Theorem 1. If Jn is the generalized Jacobsthal number, then

lim
n→∞

Jn+1

Jn
=

(p+ q)α + 2 q

qα + p
,

where α = 2.

Proof. We have for the Jacobsthal number Jn,

lim
n→∞

Jn+1

Jn
= α,

where α = 2 [17].
Then for the generalized Jacobsthal number Jn , we obtain

lim
n→∞

Jn+1

Jn
= lim

n→∞

(p+ q) Jn+1 + 2 qJn
p Jn + q Jn+1

=
(p+ q)α + 2 q

q α + p
. (24)
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Theorem 2. The Binet’s formula1 for the generalized Jacobsthal sequence is as follows;

Jn =
( ᾱ αn − β̄ βn)

α− β
. (25)

Proof. The characteristic equation of recurrence relation Jn+2 = Jn+1 + 2Jn is

t2 − t− 2 = 0. (26)

The roots of this equation are
α = −1 and β = 2, (27)

where α + β = 1 , α − β = 3 , αβ = −2. Using recurrence relation and initial values J0 = q,
J1 = p+ q, for the Binet’s formula Jn, we get

Jn = A αn +B βn =

(
ᾱ αn − β̄ βn

)
α− β

, (28)

where A = J1−β J0
α−β , B = α J0−J1

α−β and ᾱ = p+ q (1− β), β̄ = q (α− 1)− p .

2.1 The generalized Jacobsthal vectors

A generalized Jacobsthal vector is defined by
−→
Jn = (Jn , Jn+1, Jn+2). Also, from equation (12) it

can be expressed as
−→
Jn = (p+ q)

−→
J n + 2 q

−→
J n−1, (29)

where
−→
J n = ( Jn , Jn+1, Jn+2) and

−→
J n+1 = ( Jn+1 , Jn+2, Jn+3) are the Jacobsthal vectors. The

product of
−→
Jn and λ ∈ R is given by

λ
−→
Jn = (λ

−→
J n, λ

−→
J n+1, λ

−→
J n+2)

and
−→
Jn and

−→
Jm are equal if and only if Jn = Jm, Jn+1 = Jm+1, Jn+2 = Jm+2 .

Theorem 3. Let
−→
J n and

−→
J m be two generalized Jacobsthal vectors. The dot product of

−→
J n

and
−→
J m is given by

〈
−→
J n,
−→
J m〉 = p2[

1

3
(Jn+m + Jn+m+2 + Jn+m+4)

+ (−1)n+1Jm + (−1)m+1Jn]

+ 2 p q [
1

3
(Jn+m+1 + Jn+m+3 + Jn+m+5)

+ (−1)n+1Jm−1 + (−1)m+1Jn−1]

+ q2[
1

3
(Jn+m+2 + Jn+m+4 + Jn+m+6)

+ (−1)n+2Jm+1 + (−1)m+2Jn+1] .

(30)

1Binet’s formula is the explicit formula to obtain the n-th Jacobsthal and Jacobsthal–Lucas numbers. It is well
known that for the Jacobsthal and Jacobsthal–Lucas numbers, Binet’s formulas are Jn = αn−βn

α−β and jn = αn + βn

respectively, where α+ β = 1 , α− β = 3 , αβ = −2 and α = 2 , β = −1, [15, 16].
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Proof. The dot product of
−→
J n = (Jn, Jn+1, Jn+2) and

−→
J m = (Jm , Jm+1, Jm+2) are defined

by
〈−→
J n,
−→
J m

〉
= JnJm + Jn+1Jm+1 + Jn+2Jm+2. Also, using the equations (11), (12) and (13),

we obtain
Jn Jm = p2 (Jn Jm) + p q [JnJm+1 + Jn+1 Jm] + q2 (Jn+1 Jm+1), (31)

Jn+1 Jm+1 = p2 (Jn+1 Jm+1)

+ p q [Jn+1Jm+2 + Jn+2 Jm+1] + q2 (Jn+2 Jm+2),
(32)

Jn+2 Jm+2 = p2 (Jn+2Jm+2)

+ p q [Jn+2Jm+3 + Jn+3Jm+2] + q2 (Jn+3Jm+3).
(33)

Then, from the equations (31), (32) and (33), we have〈−→
J n,
−→
J m

〉
= p2(JnJm + Jn+1Jm+1 + Jn+2Jm+2)

+ p q [JnJm+1 + Jn+1Jm + Jn+1Jm+2

+ Jn+2Jm+1 + Jn+2Jm+3 + Jn+3Jm+2]

+ q2 (Jn+1 Jm+1 + Jn+2 Jm+2 + Jn+3 Jm+3)

= p2[
1

3
(Jn+m + Jn+m+2 + Jn+m+4)

+ (−1)n+1Jm + (−1)m+1Jn]

+ 2 p q [
1

3
(Jn+m+1 + Jn+m+3 + Jn+m+5)

+ (−1)n+1Jm−1 + (−1)m+1Jn−1]

+ q2[
1

3
(Jn+m+2 + Jn+m+4 + Jn+m+6)

+ (−1)n+2Jm+1 + (−1)m+2Jn+1] .

(34)

Then for the norm of the generalized Jacobsthal vector, using identities as follows:

J2
n+1 + 2 J2

n = J2n+1,

J2
n+1 − J2

n = 2n+1Jn−1,

JmJn+1 + 2 Jm−1Jn = Jm+n,

we have ∥∥∥−→Jn∥∥∥2 =
〈−→
Jn,
−→
Jn
〉

= Jn2 + Jn+1
2 + Jn+2

2

= p2[
1

3
(J2n + J2n+2 + J2n+4) + 2 (−1)n+1 Jn ]

+ 2 p q [
1

3
(J2n+1 + J2n+3 + J2n+5) + 2 (−1)n+1 Jn−1 ]

+ q2[
1

3
(J2n+2 + J2n+4 + J2n+6) + 2 (−1)n+2 Jn+1 ]

or

= p2[J2n+3 − 2n+1Jn−1 ]

+ 2 p q [
1

3
(J2n+1 + J2n+3 + J2n+5) + 2 (−1)n+1 Jn−1 ]

+ q2[ J2n+5 − 2n+2Jn ].

(35)
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• Special case 1: For the dot product of the generalized Jacobsthal vectors
−→
J n and

−→
J n+1,

we get 〈−→
J n,
−→
J n+1

〉
= JnJn+1 + Jn+1Jn+2 + Jn+2Jn+3

= p2 [
1

3
(J2n+1 + J2n+3 + J2n+5) + 2 (−1)n+1 Jn−1]

+ 2 p q [
1

3
(J2n+2 + J2n+4 + J2n+6) + 2 (−1)n+1Jn−2]

+ q2 [
1

3
(J2n+3 + J2n+5 + J2n+7) + 2 (−1)n Jn]

(36)

and

〈
−→
J n,
−→
J n〉 = Jn2 + Jn+1

2 + Jn+2
2

= p2[ J2
n + J2

n+1 + J2
n+2 ]

+ 2 p q [JnJn+1 + Jn+1Jn+2 + Jn+Jn+3 ]

+ q2 [ J2
n+1 + J2

n+2 + J2
n+3 ]

= p2[
1

3
(J2n + J2n+2 + J2n+4) + 2 (−1)n+1 Jn ]

+ 2 p q [
1

3
(J2n+1 + J2n+3 + J2n+5) + (−1)n+1 Jn−1 ]

+ q2[
1

3
(J2n+2 + J2n+4 + J2n+6) + 2 (−1)n+2 Jn+1 ]

or

= p2[J2n+3 − 2n+1Jn−1 ]

+ 2 p q [
1

3
(J2n+1 + J2n+3 + J2n+5) + 2 (−1)n+1 Jn−1 ]

+ q2[ J2n+5 − 2n+2Jn ].

(37)

Theorem 4. Let
−→
Jn and

−→
Jm be two generalized Jacobsthal vectors. The cross product of

−→
Jn and

−→
Jm is given by

−→
Jn ×

−→
Jm = (−1)n+1 2n Jm−n (p2 + pq − 2 q2) (−2 i− j + k). (38)

Proof. The cross product of
−→
Jn ×

−→
Jm is defined by

−→
J n ×

−→
J m =

∣∣∣∣∣∣∣
i j k

Jn Jn+1 Jn+2

Jm Jm+1 Jm+2

∣∣∣∣∣∣∣ = i (Jm+2Jn+1 − Jm+1Jn+2)

−j (Jm+2Jn − JmJn+2) + k (Jm+1Jn − JmJn+1).

(39)

Now, we calculate the cross products:
Using relations (11) and (13) or the property J2

n − Jn+1Jn−1 = (−1)n+1 2n−1, we get

Jm+2Jn+1 − Jm+1Jn+2 = (−1)n+2 2n+1Jm−n (p2 + pq − 2 q2), (40)
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Jm+2Jn − JmJn+2 = (−1)n+1 2n Jm−n (p2 + pq − 2 q2) (41)

and
Jm+1Jn − JmJn+1 = (−1)n+1 2n Jm−n (p2 + pq − 2 q2). (42)

Then from the equations (40), (41) and (42), we obtain the equation (38).

Theorem 5. Let
−→
Jn,
−→
Jm and

−→
Jl be the generalized Jacobsthal vectors. The mixed product of these

vectors is 〈−→
Jn ×

−→
Jm ,

−→
Jl
〉

= 0. (43)

Proof. Using
−→
Jl = (Jl, Jl+1, Jl+2), we can write,

〈−→
Jn ×

−→
Jm ,

−→
Jl
〉

=

∣∣∣∣∣∣∣
Jn Jn+1 Jn+2

Jm Jm+1 Jm+2

Jl Jl+1 Jl+2

∣∣∣∣∣∣∣ = Jn (Jm+1 Jl+2 − Jm+2 Jl+1)

+Jn+1 (Jm+2 Jl − Jm Jl+2) + Jn+2 (Jm Jl+1 − Jm+1 Jl) .

(44)

Also, using the equations (40), (41) and (42) we obtain

Jn (Jm+1 Jl+2 − Jm+2 Jl+1) + Jn+1 (Jm+2 Jl − Jm Jl+2)

+ Jn+2 (Jm Jl+1 − Jl Jm+1)

= (−1)l 2l Jm−l (p
2 + p q − 2 q2)

(−2 Jn − Jn+1 + Jn+2 )

= (−1)l 2l Jm−l eJ (− Jn+2 + Jn+2 ) = 0.

(45)

Thus, we have the equation (43).

3 The generalized complex Jacobsthal sequence

In this section, the generalized complex Jacobsthal sequence, denoted by Cn, will be defined. The
generalized complex Jacobsthal sequence is defined by

Cn = Jn + i Jn+1 , (46)

with C0 = q + i (p + q) , C1 = (p + q) + i (p + 3 q), C2 = (p + 3 q) + i (3 p + 5 q), where
p, q are arbitrary integers. That is, the generalized complex Jacobsthal sequence is

q + i (p+ q) , (p+ q) + i (p+ 3 q), (p+ 3 q) + i (3 p+ 5 q),

(3 p+ 5 q) + i (5 p+ 11 q), . . . , ( p+ i 2 q )Jn + ( q + i (p+ q) )Jn+1, . . .
(47)

• Special case 1: From the generalized complex Jacobsthal sequence (Cn) for p = 1, q = 0

in the equation (47), we obtain complex Jacobsthal sequence (Cn = J1 , i ) as follows:

(Cn) : i , 1 + i , 1 + i 3 , 3 + i 5, 5 + i 11, . . . , Jn + i Jn+1, . . .
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• Special case 2: From the generalized complex Jacobsthal sequence (Cn) for p = −1, q =

2 in the equation (47), we obtain complex Jacobsthal–Lucas sequence (Cn = j−1+4 i , 2+ i)
as follows:

2 + i , 1 + i 5 , 5 + i 7 , 7 + i 17, 17 + i 31 , . . . , jn + i jn+1, . . .

For the generalized complex Jacobsthal sequence, we have the following properties:

C2
n + 2C2

n−1 = [ ( 2 p+ q ) + i ( p+ 5 q ) ]C2n−1 − ( 3 + i ) eJ J2n−1 (48)

C2
n+1 + 2C2

n = [ ( 2 p+ q ) + i ( p+ 5 q ) ]C2n+1 − ( 3 + i ) eJ J2n+1 (49)

C2
n+1 − 4C2

n−1 = [ ( 2 p+ q ) + i ( p+ 5 q ) ]C2n − ( 3 + i ) eJ J2n (50)

Cn−1Cn+1 − C2
n = (−1)n 2n−1 (3 + i ) eJ , (51)

where eJ = p2 + p q − 2 q2.

4 The generalized dual Jacobsthal sequence

In this section, the generalized dual Jacobsthal sequence, denoted by DJ
n, will be defined. The

generalized dual Jacobsthal sequence is defined by

DJ
n = Jn + ε Jn+1 , (52)

with DJ
0 = q + ε(p+ q) , DJ

1 = p+ q + ε(p+ 3 q), DJ
2 = p+ 3 q + ε(3 p+ 5 q), where p, q

are arbitrary integers. That is, the generalized dual Jacobsthal sequence is

q + ε(p+ q) , ( p+ q ) + ε( p+ 3 q), ( p+ 3 q ) + ε(3 p+ 5 q ),

( 3 p+ 5 q ) + ε(5 p+ 11 q), ( 5 p+ 11 q ) + ε(11 p+ 21 q ),

. . . , [ ( p+ 2 ε q)Jn + ( q + ε(p+ q) )Jn+1 = Jn + ε Jn+1, . . .

(53)

Using the equations (52) and (53) , we get

DJ
n = ( p+ 2 ε q )Jn + ( q + ε( p+ q )) Jn+1

DJ
n+1 = 2 [ ( q + ε( p+ q ) ] Jn + [ (p+ q) + ε ( p+ 3 q ) ]Jn+1

DJ
n+2 = 2 [ ( p+ q ) + ε( p+ 3 q ) ] Jn + [ (p+ 3 q) + ε( 3 p+ 5 q ) ]Jn+1

...

DJ
n+r = 2DJ

n−1 Jr + DJ
n Jr+1

(54)

• Special case 1: From the generalized dual Jacobsthal sequence (DJ
n) for p = 1, q = 0 in

the equation (53), we obtain dual Jacobsthal sequence (DJ
n) as follows:

(DJ
n) : ε , 1 + ε , 1 + 3 ε , 3 + 5 ε , 5 + 11 ε, . . . , Jn + ε Jn+1, . . .

• Special case 2: From the generalized dual Jacobsthal sequence (DJ
n) for p = −1, q = 2

in the equation (53), we obtain dual Jacobsthal–Lucas sequence (Dj
n) as follows:

(Dj
n) : 2 + ε , 1 + 5 ε , 5 + 7 ε , 7 + 17 ε, 17 + 31 ε , . . . , jn + ε jn+1, . . .
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For the generalized dual Jacobsthal sequence, we have the following properties:

(DJ
n)2 + 2 (DJ

n)2 = [ (2p+ q) + ε(p+ 5 q) ]DJ
2n−1 − (1 + ε) eJ J2n−1 , (55)

(DJ
n+1)

2 + 2 (DJ
n)2 = [ (2p+ q) + ε(p+ 5 q) ]DJ

2n+1 − (1 + ε) eJ J2n+1 , (56)

(DJ
n+1)

2 − 4 (DJ
n−1)

2 = [ (2p+ q) + ε(p+ 5 q) ]DJ
2n − (1 + ε) eJ J2n , (57)

DJ
n−1DJ

n+1 − (DJ
n)2 = (−1)n 2n−1 (1 + ε) eJ , (58)

4 (DJ
n)2 + 2 J2

n+1 (1 + ε) eJ = 2 ( p+ 2 ε q )DJ
2n+1 , (59)

DJ
mDJ

n+1 + 2DJ
m−1DJ

n = (2p+ q) + ε(p+ 5 q)DJ
m+n − (1 + ε) eJ Jm+n , (60)

DJ
mDJ

n−1 − DJ
m−1DJ

n = (−1)n 2n−1 (1 + ε) eJ Jm−n . (61)

where eJ = ( p2 + p q − 2 q2 ) .

• Special case 3: From properties of the generalized dual Jacobsthal sequence (DJ
n) for

p = 1, q = 0 in the equations (55)–(61), we obtain dual Jacobsthal sequence (DJ
n) as

follows:
(DJ

n)2 + 2 (DJ
n−1)

2 = (2 + ε)DJ
2n−1 − (1 + ε ) J2n−1 , (62)

(DJ
n+1)

2 + 2 (DJ
n)2 = (2 + ε)DJ

2n+1 − (1 + ε ) J2n+1 , (63)

(DJ
n+1)

2 − 4 (DJ
n−1)

2 = (2 + ε)DJ
2n − (1 + ε ) J2n (64)

DJ
n−1D

J
n+1 − (DJ

n)2 = (−1)n 2n−1 (1 + ε ) , (65)

4 (DJ
n)2 + 2 (1 + ε) J2

n+1 = 2DJ
2n+1 , (66)

DJ
mD

J
n+1 + 2DJ

m−1D
J
n = (2 + ε)DJ

m+n − (1 + ε ) Jm+n, (67)

DJ
mD

J
n−1 − DJ

m−1D
J
n = (−1)n 2n−1 (1 + ε )Jm−n . (68)

Theorem 6. If DJ
n is the generalized dual Jacobsthal number, then

lim
n→∞

DJ
n+1

DJ
n

=
( p q + q2)α2 + ( p2 + p q + 2 q2 )α + 2 p q

q2α2 + ( 2 p q )α + p2

where α = −1.

Proof. For the generalized dual Jacobsthal number DJ
n, we obtain

lim
n→∞

DJ
n+1

DJ
n

= lim
n→∞

(p+ 2 εq)Jn+1 + (q + ε(p+ q))Jn+2

(p+ 2 ε q)Jn + [q + ε(p+ q)]Jn+1

= lim
n→∞

(p2 + pq + 2 q2)JnJn+1 + (p q + q2)(J2
n+1 + 2 p q J2

n)

p2J2
n + 2 p q JnJn+1 + q2J2

n+1

+ lim
n→∞

ε
(−1)n+1 2n (p2 + p q − 2 q2)

p2J2
n + 2 p q JnJn+1 + q2J2

n+1

=
(p2 + p q + 2 q2)α + ( p q + q2 )α2 + ( 2 p q )

q2α2 + ( 2 p q )α + p2

(69)

where Jn+2 = Jn+1 + 2 Jn.
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• Special case 4: For p = 1, q = 0 in the equation (69), we obtain

lim
n→∞

DJ
n+1

DJ
n

= lim
n→∞

DJ
n+1

DJ
n

= α + 0 = α.

Theorem 7. The Binet’s formula for the generalized dual Jacobsthal sequence is as follows;

DJ
n =

1

α− β
( ᾱ αn − β̄ βn). (70)

Proof. If we use definition of the generalized dual Jacobsthal sequence and substitute first equa-
tion in footnote, then we get

DJ
n = ( p+ 2 ε q ) Jn + ( q + ε ( p+ q ) ) Jn+1

= ( p+ 2 ε q ) (
αn − βn

α− β
) + ( q + ε ( p+ q ) ) (

αn+1 − βn+1

α− β
)

=
α αn − β βn

α− β
,

(71)

where α = ( p+ 2 ε q ) + α ( q + ε ( p+ q )) and β = ( p+ 2 ε q ) + β ( q + ε ( p+ q )).

5 The generalized dual Jacobsthal vectors

A generalized dual Jacobsthal vector is defined by

−→
DJ

n = (DJ
n , DJ

n+1, DJ
n+2).

From the equations (52), (53) and (54) it can be expressed as

−→
DJ

n =
−→
J n + ε

−→
J n+1 = (p+ 2 ε q)

−→
J n + (q + ε (p+ q))

−→
J n+1 (72)

where
−→
J n = ( Jn , Jn+1, Jn+2) and

−→
J n = ( Jn , Jn+1, Jn+2) are the generalized Jacobsthal

vector and the Jacobsthal vector, respectively. The product of
−→
DJ

n and λ ∈ R is given by

λ
−→
DJ

n = λ
−→
J n + ελ

−→
J n+1

and
−→
DJ

n and
−→
DJ

m are equal if and only if

Jn = Jm, Jn+1 = Jm+1, Jn+2 = Jm+2.

Some examples of the generalized dual Jacobsthal vectors can be given easily as:

−→
DJ

1 = (DJ
1 , DJ

2 , DJ
3 ) = (J1 , J2, J3) + ε(J2 , J3, J4)

= [(p+ q) + ε(p+ 3q), (p+ 3q) + ε(3p+ 5q), (3p+ 5q) + ε(5p+ 11q)],
−→
DJ

2 = (DJ
2 , DJ

3 , DJ
4 ) + ε(DJ

3 , DJ
4 , DJ

5 )

= [(p+ 3q) + ε(3p+ 5q), (3p+ 5q) + ε(5p+ 11q), (5p+ 11q) + ε(11p+ 21q)].
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Theorem 8. Let
−→
DJ

n and
−→
DJ

m be two generalized dual Jacobsthal vectors. The dot product of−→
DJ

n and
−→
DJ

m is given by〈−→
DJ

n,
−→
DJ

m

〉
=p2[

1

3
(Jn+m + Jn+m+2 + Jn+m+4)

+ (−1)n+1Jm + (−1)m+1Jn]

+ 2 p q [
1

3
(Jn+m+1 + Jn+m+3 + Jn+m+5)

+ (−1)n+1Jm−1 + (−1)m+1Jn−1]

+ q2[
1

3
(Jn+m+2 + Jn+m+4 + Jn+m+6)

+ (−1)n+2Jm+1 + (−1)m+2Jn+1]

+ 2 ε { p2[1
3

(Jn+m+1 + Jn+m+3 + Jn+m+5)

+ (−1)n+1Jm−1 + (−1)m+1Jn−1]

+ 2 p q [
1

3
(Jn+m+2 + Jn+m+4 + Jn+m+6)

+ (−1)n+1Jm−2 + (−1)m+1Jn−2]

+ q2[
1

3
(Jn+m+3 + Jn+m+5 + Jn+m+7)

+ (−1)n+2Jm + (−1)m+2Jn ]}.

(73)

Proof. The dot product of
−→
DJ

n = (DJ
n , DJ

n+1, DJ
n+2) and

−→
DJ

m = (DJ
m , DJ

m+1, DJ
m+2) is defined

by 〈−→
DJ

n,
−→
DJ

m

〉
= DJ

nDJ
m + DJ

n+1DJ
m+1 + DJ

n+2DJ
m+2

=
〈−→
J n,
−→
J m

〉
+ ε [

〈−→
J n ,
−→
J m+1

〉
+
〈−→
J n+1 ,

−→
J m

〉
],

where
−→
J n = ( Jn , Jn+1, Jn+2) is the generalized Jacobsthal vector. Also, the equations (11),

(12) and (13), we obtain〈−→
J n,
−→
J m

〉
=p2[

1

3
(Jn+m + Jn+m+2 + Jn+m+4)

+ (−1)n+1Jm + (−1)m+1Jn]

+ 2 p q [
1

3
(Jn+m+1 + Jn+m+3 + Jn+m+5)

+ (−1)n+1Jm−1 + (−1)m+1Jn−1]

+ q2[
1

3
(Jn+m+2 + Jn+m+4 + Jn+m+6)

+ (−1)n+2Jm+1 + (−1)m+2Jn+1] ,

(74)
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〈−→
J n,
−→
J m+1

〉
=p2[

1

3
(Jn+m+1 + Jn+m+3 + Jn+m+5)

+ (−1)n+1Jm+1 + (−1)m+2Jn]

+ 2 p q [
1

3
(Jn+m+2 + Jn+m+4 + Jn+m+6)

+ (−1)n+1Jm + (−1)m+2Jn−1]

+ q2[
1

3
(Jn+m+3 + Jn+m+5 + Jn+m+7)

+ (−1)n+2Jm+2 + (−1)m+3Jn+1] ,

(75)

〈−→
J n+1,

−→
J m

〉
=p2[

1

3
(Jn+m+1 + Jn+m+3 + Jn+m+5)

+ (−1)n+2Jm + (−1)m+1Jn+1]

+ 2 p q [
1

3
(Jn+m+2 + Jn+m+4 + Jn+m+6)

+ (−1)n+2Jm−1 + (−1)m+1Jn]

+ q2[
1

3
(Jn+m+3 + Jn+m+5 + Jn+m+7)

+ (−1)n+3Jm+1 + (−1)m+2Jn+2].

(76)

Then from equation (74), (75) and (76), we have the equation (73).

• Special case 1: For the dot product of generalized dual Jacobsthal vectors
−→
DJ

n and
−→
DJ

n+1,
we get〈−→

DJ
n,
−→
DJ

n+1

〉
= DJ

nDJ
n+1 + DJ

n+1DJ
n+2 + DJ

n+2DJ
n+3

=
〈−→
J n,
−→
J n+1

〉
+ ε{

〈−→
J n,
−→
J n+2

〉
+
〈−→
J n+1,

−→
J n+1

〉
}

= {p2[1
3

(J2n+1 + J2n+3 + J2n+5) + 2 (−1)n+1Jn−1]

+ 2 p q [
2

3
(J2n+2 + J2n+4 + J2n+6) + 2 (−1)n+1Jn−2]

+ q2 [
1

3
(J2n+3 + J2n+5 + J2n+7) + 2 (−1)n+2Jn ] }

+ 2ε { p2[1
3

(J2n+2 + J2n+4 + J2n+6) + 2 (−1)n+1 Jn−2 ]

+ p q [
2

3
(J2n+3 + J2n+5 + J2n+7) + 4 (−1)n+1 Jn−3 ]

+ q2 [
1

3
(J2n+4 + J2n+6 + J2n+8) + 2 (−1)n+2 Jn−1 ] }.

(77)
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Then for the norm of the generalized dual Jacobsthal vector3, we have∥∥∥−→DJ
n

∥∥∥ =

√[〈−→
DJ

n,
−→
DJ

n

〉]
=
√[

(DJ
n)2 + (DJ

n+1)
2 + (DJ

n+2)
2
]

=
√

[p2(J2n+3 + J2
n − J2

n+1)]

+

√
2 p q[(

1

3
(J2n+1 + J2n+3 + J2n+5) + 2 (−1)n+1Jn−1)]

+
√
q2[(J2n+5 + J2

n+1 − J2
n+2)]

+

√
ε{2p2(1

3
(J2n+1 + J2n+3 + J2n+5) + 4 (−1)n+1Jn−1)}

+

√
ε{4 p q[1

3
(J2n+2 + J2n+4 + J2n+6) + 4 (−1)n+1Jn−2]}

+

√
ε{2q2(1

3
(J2n+3 + J2n+5 + J2n+7) + 4 (−1)n+2Jn)]}

(78)

where used identity of the Jacobsthal numbers as follows [6]

Jn Jn+k =
1

3
(J2n+k + (−1)n+1Jn+k + (−1)n+k+1Jn.

〈−→
DJ

n,
−→
DJ

n

〉
=(DJ

n)2 + (DJ
n+1)

2 + (DJ
n+2)

2

=
〈−→
J n ,

−→
J n

〉
+ 2ε

〈−→
J n ,

−→
J n+1

〉
= p2[J2n+3 + J2

n − J2
n+1]

+ 2 p q[
1

3
(J2n+1 + J2n+3 + J2n+5)

+ 2 (−1)n+1Jn−1] + q2[J2n+5 + J2
n+1 − J2

n+2]

+ ε {2 p2[1
3

(J2n+1 + J2n+3 + J2n+5) + 2 (−1)n+1Jn−1 ]

+ 4 p q [
1

3
(J2n+2 + J2n+4 + J2n+6) + 2 (−1)n+1Jn−2 ]

+ 2 q2[
1

3
(J2n+3 + J2n+5 + J2n+7) + 2 (−1)n+2Jn ]}.

(79)

• Special case 2: For p = 1, q = 0, in the equations (73), (77) and (79), we have〈−→
DJ

n,
−→
DJ

m

〉
=

[
1

3
(Jn+m + Jn+m+2 + Jn+m+4) + (−1)n+1Jm + (−1)m+1 Jn

]
+ 2 ε

[
1

3
(Jn+m+1 + Jn+m+3 + Jn+m+5) + (−1)n+1Jm−1 + (−1)m+1 Jn−1

]
,〈−→

DJ
n,
−→
DJ

n+1

〉
=

[
1

3
(J2n+1 + J2n+3 + J2n+5) + 2 (−1)n+1Jn−1

]
+ 2 ε

[
1

3
(J2n+2 + J2n+4 + J2n+6) + 2 (−1)n+1 Jn−2

]
3 Norm of dual number as follows:

∥∥∥−→A∥∥∥ =
√
a+ ε a∗ =

√
a+ ε a∗ 1

2
√
a
, A = a+ ε a∗, [1].
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and ∥∥∥−→DJ
n

∥∥∥ =
√

(J2n+3 + J2
n − J2

n+1)

+

√
2 ε [

1

3
(J2n+1 + J2n+3 + J2n+5) + 2 (−1)n+1Jn−1]

= (J2n+3 + J2
n − J2

n+1 ) + ε
1
3

[ (J2n+1 + J2n+3 + J2n+5) + 2 (−1)n+1Jn−1]√
(J2n+3 + J2

n − J2
n+1 )

.

Theorem 9. Let
−→
DJ

n and
−→
DJ

m be two generalized dual Jacobsthal vectors. The cross product of−→
DJ

n and
−→
DJ

m is given by
−→
DJ

n ×
−→
DJ

m = (−1)n+1 2n Jm−n (1 + ε) (p2 + pq − 2 q2)(−2 i− j + k). (80)

Proof. The cross product of
−→
DJ

n =
−→
J n + ε

−→
J n+1 and

−→
DJ

m =
−→
J m + ε

−→
J m+1 is defined by

−→
DJ

n ×
−→
DJ

m = (
−→
J n ×

−→
J m) + ε (

−→
J n ×

−→
J m+1 +

−→
J n+1 ×

−→
J m),

where
−→
J n is the generalized Jacobsthal vector and

−→
J n ×

−→
J m is the cross product for the gener-

alized Jacobsthal vectors
−→
J n and

−→
J m.

Now, we calculate the cross products
−→
J n ×

−→
J m,
−→
J n ×

−→
J m+1 and

−→
J n+1 ×

−→
J m. Using the

property JmJn−1 − Jm−1Jn = (−1)n 2n−1Jm−n, we get

−→
J n ×

−→
J m = (−1)n+1 2nJm−n(−2 i− j + k)(p2 + pq − 2 q2) (81)

−→
J n ×

−→
J m+1 = (−1)n+1 2n Jm−n+1(−2 i− j + k)(p2 + pq − 2 q2) (82)

and
−→
J n+1 ×

−→
J m = (−1)n+2 2n+1 Jm−n−1(−2 i− j + k)(p2 + pq − 2 q2). (83)

Then from the equations (81), (82) and (83), we obtain the equation (80).

• Special case 3: For p = 1, q = 0 in the equations (80), we have
−→
DJ

n ×
−→
DJ

m = (−1)n+1 2n Jm−n(1 + ε)(−2 i− j + k).

Theorem 10. Let
−→
DJ

n,
−→
DJ

m and
−→
DJ

l be the generalized dual Jacobsthal vectors. The mixed
product of these vectors is 〈−→

DJ
n ×
−→
DJ

m ,
−→
DJ

l

〉
= 0. (84)

Proof. Using the properties
−→
DJ

n ×
−→
DJ

m = (
−→
J n ×

−→
J m) + ε (

−→
J n ×

−→
J m+1 +

−→
J n+1 ×

−→
J m)

and
−→
DJ

l =
−→
J l + ε

−→
J l+1, we can write,〈−→

DJ
n ×
−→
DJ

m,
−→
DJ

l

〉
=
〈−→
J n ×

−→
J m,
−→
J l

〉
+ ε [

〈−→
J n ×

−→
J m,
−→
J l+1

〉
+
〈−→
J n ×

−→
J m+1,

−→
J l

〉
+
〈−→
J n+1 ×

−→
J m,
−→
J l+1

〉
].
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Then from equations (81), (82) and (83), we obtain〈
(−2 i− j + k),

−→
J l

〉
= −2 Jl − Jl+1 + Jl+2 = 0,〈

(−2 i− j + k),
−→
J l+1

〉
= −2 Jl+1 − Jl+2 + Jl+3 = 0.

Thus, we have the equation (84).

6 Conclusions

The generalized Jacobsthal, the generalized complex Jacobsthal and the generalized dual
Jacobsthal sequences have been introduced and studied. The use of such special sequences has
increased significantly in quantum mechanics, quantum physics, etc.
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