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1 Introduction

In [13], Kılıc and Tasci defined k sequences of the generalized order-k Pell numbers as shown:

P i
n = 2P i

n−1 + P i
n−2 + · · ·+ P i

n−k

for n > 0 and 1 ≤ i ≤ k, with initial conditions

P i
n =

{
1 if n = 1− i,
0 otherwise,

1− k ≤ n ≤ 0,

where P i
n is the n-th term of the i-th sequence.

It is clear that the characteristic polynomial of the generalized order-k Pell sequence is as
follows:

P (x) = xk − 2xk−1 − xk−2 − · · · − 1.
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In [1], Aküzüm et al. defined the arrowhead-Pell sequence for n ≥ 1 as follows:

ak+1 (n+ k + 1) = ak+1 (n+ k)− 2ak+1 (n+ k − 1)− ak+1 (n+ k − 2)− · · · − ak+1 (n)

with integer constants ak+1 (1) = · · · = ak+1 (k) = 0 and ak+1 (k + 1) = 1, where k ≥ 2.
Shannon and Horadam [17] also developed arrowhead curves in the context of recursive se-

quences.
Hofstadter’s integer sequences defined [10] by

hn = hn−hn−1 + hn−hn−2

where h1 = h2 = 1.

The random Fibonacci sequences defined [6] by the random recurrence x1 = 1, x2 = 2 and
for n > 2, xn = ±xn−1 ± xn−2, where each ± sign is independent and either + or − with
probability 1/2.

Atanassov et al. [2] have, to some extent, systematized aspects of these sequences through
pulsated sequences.

Suppose that the (n+ k)th term of a sequence is defined recursively by a linear combination
of the preceding k terms:

an+k = c0an + c1an+1 + · · ·+ ck−1an+k−1

where c0, c1, . . . , ck−1 are real constants. In [11], Kalman derived a number of closed-form
formulas for the generalized sequence by the companion matrix method as follows:

A = [ai,j]k×k =



0 1 0 · · · 0 0

0 0 1 · · · 0 0

0 0 0
. . . 0 0

...
...

...
...

...
0 0 0 · · · 0 1

c0 c1 c2 ck−2 ck−1


.

Then by an inductive argument he obtained that

An


a0
a1
...

ak−1

 =


an
an+1

...
an+k−1


for n > 0.

Number theoretic properties such as these obtained from homogeneous linear recurrence
relations relevant to this paper have been studied by many authors [4, 7, 8, 9, 12, 16, 18, 19,
20, 21, 22, 23]. In this paper, we define a new sequence which is called the arrowhead-Pell-
random-type sequence. Then we give relationships among the arrowhead-Pell-random-type num-
bers and the permanents and the determinants of certain matrices which are produced by using the
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generating matrix of the arrowhead-Pell-random-type sequence. Also, we obtain the combinato-
rial representations, the exponential representation and the sums of the arrowhead-Pell-random-
type numbers by the aid of the generating function and the generating matrix of the arrowhead-
Pell-random-type sequence.

2 The arrowhead-Pell-random-type sequence

We now define the arrowhead-Pell-random-type sequence by the following recurrence relations
for n ≥ u

auk+1 (n+ k + 1) = auk+1 (n+ k − u)− 2auk+1 (n+ k − u− 1)

− auk+1 (n+ k − u− 2)− · · · − auk+1 (n− u)
(2.1)

with initial conditions auk+1 (0) = · · · = auk+1 (u+ k − 1) = 0 and auk+1 (u+ k) = 1 , where
1 ≤ u ≤ k + 1 and k ≥ 2.

By (2.1), we can write a generating matrix for the arrowhead-Pell-random-type sequence as
follows:

(u+ 1) th
↓

Ak,u =



0 · · · 0 1 −2 −1 · · · −1
1 0 0 0 0 0 · · · 0

0 1 0 0 0 0 · · · 0

0 0 1 0 0 0 · · · 0

0 0 0 1 0 0 · · · 0
...

...
... . . . . . . . . . ...

0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 1 0


(u+k+1)×(u+k+1)

.

The companion matrix Ak,u is called the arrowhead-Pell-random-type matrix. It is clear that

(
Ak,u

)α


auk+1 (u+ k)

auk+1 (u+ k − 1)
...

auk+1 (0)

 =


auk+1 (α + u+ k)

auk+1 (α + u+ k − 1)
...

auk+1 (α)


for α ≥ u. Let auk+1 (α) be denoted by au,αk+1. By induction on α, we derive that
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(
Ak,u

)α
=

(u+ 1) th

↓

au,α+u+kk+1 au,α+u+k+1
k+1 · · · au,α+2u+k

k+1 au,α+2u+k+1
k+1 − au,α+u+kk+1

au,α+u+k−1k+1 au,α+u+kk+1 · · · au,α+2u+k−1
k+1 au,α+2u+k

k+1 − au,α+u+k−1k+1
...

...
...

...
au,α+uk+1 au,α+u+1

k+1 · · · au,α+2u
k+1 au,α+2u+1

k+1 − au,α+uk+1

(
Mu,k

)α
au,α+u−1k+1 au,α+uk+1 · · · au,α+2u−1

k+1 au,α+2u
k+1 − au,α+u−1k+1

...
... . . . ...

...
au,αk+1 au,α+1

k+1 · · · au,α+uk+1 au,α+u+1
k+1 − au,αk+1


for k ≥ 2. Where

(
Mk,u

)α is a (u+ k + 1)× (k − 2) matrix as follows:(
Mk,u

)α

=


− au,α+u+1

k+1 − au,α+u+2
k+1 − ...− au,α+u+k−1k+1 − au,α+u+2

k+1 − au,α+u+3
k+1 − ...− au,α+u+k−1k+1 · · ·

− au,α+uk+1 − au,α+u+1
k+1 − ...− au,α+u+k−2k+1 − au,α+u+1

k+1 − au,α+u+2
k+1 − ...− au,α+u+k−2k+1 · · ·

...
...

(
M∗k,u

)α
− au,α−k+1

k+1 − au,α−k+2
k+1 − ...− au,α−1k+1 − au,α−k+2

k+1 − au,α−k+3
k+1 − ...− au,α−1k+1 · · ·


such that

(
M∗k,u)α =


−au,α+u+k−1k+1

−au,α+u+k−2k+1
...

−au,α−1k+1


(u+k+1)×1

from which it is clear that det
(
Ak,u

)α
= (−1)α(u+k+1) .

Now we consider the permanental representations of the arrowhead-Pell-random-type se-
quence.

Definition 2.1. A u× v real matrix M = [mi,j] is called a contractible matrix in the kth column
(resp. row.) if the kth column (resp. row.) contains exactly two non-zero entries.

Suppose that x1, x2, . . . , xu are row vectors of the matrix M . If M is contractible in the kth

column such that mi,k 6= 0, mj,k 6= 0 and i 6= j, then the (u− 1)× (v − 1) matrix Mij:k obtained
from M by replacing the ith row with mi,kxj +mj,kxi and deleting the j th row. The kth column is
called the contraction in the kth column relative to the ith row and the j th row.

In [3], Brualdi and Gibson obtained that per (M) = per (N) if M is a real matrix of order
α > 1 and N is a contraction of M .

Let m > u+ k + 1 be a positive integer and suppose that Hk,u (m) =
[
hm,k,ui,j

]
is the m×m

super-diagonal matrix, defined by:
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hm,k,ui,j =



1

if i = r and j = r + u for 1 ≤ r ≤ m− u− k
and

i = r + 1 and j = r for 1 ≤ r ≤ m− 1,

−1

if i = r and j = r + u+ 2 for 1 ≤ r ≤ m− u− k,
i = r and j = r + u+ 3 for 1 ≤ r ≤ m− u− k,

...
i = r and j = r + u+ k for 1 ≤ r ≤ m− u− k,

−2 if i = r and j = r + u for 1 ≤ r ≤ m− u− 1,
0 otherwise.

That is,

Hk,u (m) =

(u+ 1) th (u+ k + 1) th
↓ ↓

0 . . . 0 1 −2 −1 . . . −1 0 0 0 . . . 0

1 0 . . . 0 1 −2 −1 . . . −1 0 0 · · · 0

0 1 0 · · · 0 1 −2 −1 . . . −1 0 · · · 0
... . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
0 · · · 0 1 0 · · · 0 1 −2 −1 · · · −1 0

0 0 · · · 0 1 0 · · · 0 1 −2 −1 · · · −1
...

... . . . . . . . . . . . . . . . . . . . . . . . . ...
0 0 0 0 · · · 0 1 0 · · · 0 1 −2 −1
0 0 0 0 0 · · · 0 1 0 · · · 0 1 −2
0 0 0 0 0 0 · · · 0 1 0 · · · 0 1

0 0 0 0 0 0 0 · · · 0 1 0 · · · 0
...

...
...

...
...

...
... . . . . . . . . . . . . ...

0 0 0 0 0 0 0 0 0 · · · 0 1 0


Then we have the following Theorem.

Theorem 2.1. For m > u+ k + 1 and k ≥ 2,

perHk,u (m) = auk+1 (m+ u+ k) .

Proof. Let the equation hold for m > u+ k+1, then we show that the equation holds for m+1.
If we expand the perHk,u (m) by the Laplace expansion of permanent with respect to the first
row, then we obtain

perHk,u (m+ 1) = perHk,u (m− u)− 2perHk,u (m− u− 1)− perHk,u (m− u− 2)

− · · · − perHk,u (m− u− k) .

Since
perHk,u (m− u) = auk+1 (m+ k) ,

perHk,u (m− u− 1) = auk+1 (m+ k − 1) ,
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perHk,u (m− u− 2) = auk+1 (m+ k − 2) , . . . , perHk,u (m− u− k) = auk+1 (m) ,

we easily obtain that perHk,u (m+ 1) = auk+1 (m+ u+ k + 1) .

So the proof is complete.

Let m > u+ k+ 1 such that k ≥ 2 and let Lk,u (m) =
[
lm,k,ui,j

]
be the m×m matrix, defined

by

lm,k,ui,j =



1

if i = r and j = r + u for 1 ≤ r ≤ m− u− k
and

i = r + 1 and j = r for 1 ≤ r ≤ m− 1,

−1

if i = r and j = r + u+ 2 for 1 ≤ r ≤ m− u− k,
i = r and j = r + u+ 3 for 1 ≤ r ≤ m− u− k,

...
i = r and j = r + u+ k for 1 ≤ r ≤ m− u− k,

−2 if i = r and j = r + u for 1 ≤ r ≤ m− u− k,
0 otherwise.

That is,

(u+ 1) th (u+ k + 1) th
↓ ↓

Lk,u (m)=



0 . . . 0 1 −2 −1 . . . −1 0 0 0 . . . 0

1 0 . . . 0 1 −2 −1 . . . −1 0 0 · · · 0

0 1 0 · · · 0 1 −2 −1 . . . −1 0 · · · 0
... . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
0 · · · 0 1 0 · · · 0 1 −2 −1 · · · −1 0

0 0 · · · 0 1 0 · · · 0 1 −2 −1 · · · −1
0 0 0 · · · 0 1 0 · · · 0 0 0 0 0
...

...
... . . . . . . . . . . . . ...

...
...

...
...

0 0 0 0 0 · · · 0 1 0 0 0 0 0

0 0 0 0 0 0 · · · 0 1 0 0 0 0

0 0 0 0 0 0 0 · · · 0 1 0 0 0

0 0 0 0 0 0 0 0 · · · 0 1 0 0

0 0 0 0 0 0 0 0 0 · · · 0 1 0



←(m−u−k) th.

Assume that the m×m matrix Kk,u (m) =
[
km,k,ui,j

]
is defined by
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(m− u− k − 1) th
↓

Kk,u (m) =



−1 · · · −1 0 0

1

0

0 Lk,u (m− 1)
...
0


Then we can give more general results by using other permanental representations than the

above.

Theorem 2.2. Let auk+1 (m) be themth the arrowhead-Pell-random-type number for k ≥ 2. Then
(i). For m > u+ k + 1,

perLk,u (m) = −auk+1 (m− 1) .

(ii). For m > u+ k + 2,

perKk,u (m) =
m−2∑
i=1

auk+1 (i) .

Proof. (i). Let the equation hold for m > u + k + 1, then we show that the equation holds for
m+ 1. If we expand the perLk,u (m) by the Laplace expansion of permanent with respect to the
first row, then we obtain

perLk,u (m+ 1) = perLk,u (m− u)− 2perLk,u (m− u− 1)− perLk,u (m− u− 2)

− · · · − perLk,u (m− u− k) .

Also, since
perLk,u (m− u) = −auk+1 (m− u− 1) ,

perLk,u (m− u− 1) = −auk+1 (m− u− 2) ,

perLk,u (m− u− 2) = −auk+1 (m− u− 3) , . . . ,

perLk,u (m− u− k) = −auk+1 (m− u− k − 1) ,

it is clear that
perLk,u (m+ 1) = −auk+1 (m) .

(ii). It is clear that expanding the perKk,u (m) by the Laplace expansion of permanent with
respect to the first row, gives us

perKk,u (m) = perKk,u (m− 1) + perLk,u (m− 1) .

By induction on m, taking into consideration the result of Theorem 2.1 and part (i) in Theorem
2.2, the conclusion is easily seen.
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Let the notation A ◦ K denotes the Hadamard product of A and K. A matrix A is called
convertible if there is an m×m (1, -1)-matrix K such that per A = det(A ◦K).

Let m > u+ k + 2 and let R be the m×m matrix, defined by

R =



1 1 1 · · · 1 1

−1 1 1 · · · 1 1

1 −1 1 · · · 1 1
...

. . . . . . . . . . . .
...

1 · · · 1 −1 1 1

1 · · · 1 1 −1 1


.

It is easy to see that perHk,u (m) = det
(
Hk,u (m) ◦R

)
, perLk,u (m) = det

(
Lk,u (m) ◦R

)
and perKk,u (m) = det

(
Kk,u (m) ◦R

)
for m > u + k + 2. Then we have the following useful

results.

Corollary 2.3. For m > u+ k + 2,

det
(
Hk,u (m) ◦R

)
= auk+1 (m+ u+ k) ,

det
(
Lk,u (m) ◦R

)
= −auk+1 (m− 1)

and

det
(
Kk,u (m) ◦R

)
=

m−2∑
i=1

auk+1 (i) .

Let C (c1, c2, . . . , cv) be a v × v companion matrix as follows:

C (c1, c2, . . . , cv) =


c1 c2 · · · cv
1 0 · · · 0
... . . . ...

...
0 · · · 1 0

 .

See [14, 15] for more information about the companion matrix.

Theorem 2.4 (Chen and Louck [5]). The (i, j) entry c(n)i,j (c1, c2, . . . , cv) in matrix Cn
(
c1, c2, . . . ,

cv
)

is given by the following formula:

c
(n)
i,j (c1, c2, . . . , cv) =

∑
(t1,t2,...,tv)

tj + tj+1 + · · ·+ tv
t1 + t2 + · · ·+ tv

×
(
t1 + · · ·+ tv
t1, . . . , tv

)
ct11 · · · ctvv (2.2)

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · + vtv = n − i + j,(
t1+···+tv
t1,...,tv

)
= (t1+···+tv)!

t1!···tv ! is a multinomial coefficient, and the coefficients in (2.2) are defined to be
1 if n = i− j.

Then we give the combinatorial representations for the arrowhead-Pell-random-type numbers.
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Corollary 2.5. Let auk+1 (α) be the αth the arrowhead-Pell-random-type number for k ≥ 2. Then

(i) auk+1 (α) =
∑

(t1,t2...,tu+k+1)

(
t1 + · · ·+ tu+k+1

t1, . . . , tu+k+1

)
(−2)tu+2 (−1)tu+3+tu+4+···+tu+k+1

where the summation is over nonnegative integers satisfying t1+2t2+ · · ·+(u+ k + 1) tu+k+1 =

α− u− k.

(ii) auk+1 (α)

= −
∑

(t1,t2...,tu+k+1)

tu+k+1

t1 + t2 + · · ·+ tu+k+1

×
(
t1 + · · ·+ tu+k+1

t1, . . . , tu+k+1

)
(−2)tu+2 (−1)tu+3+tu+4+···+tu+k+1

where the summation is over nonnegative integers satisfying t1+2t2+ · · ·+(u+ k + 1) tu+k+1 =

α + 1.

Proof. If we take i = u + k + 1, j = 1, c1 = · · · = cu = 0, cu+1 = 1, cu+2 = −2, cu+3 = · · · =
cu+k+1 = −1 for the case (i) . and i = u + k, j = u + k + 1, c1 = · · · = cu = 0, cu+1 = 1,
cu+2 = −2, cu+3 = · · · = cu+k+1 = −1 for the case (ii) . in Theorem 2.4, then the proof is
immediately seen from

(
Mk,u

)α.

It is easy to show that the generating function of the arrowhead-Pell-random-type sequence is
as follows:

gk,u (x) =
xu+k

1− xu+1 + 2xu+2 + xu+3 + · · ·+ xu+k+1
,

where k ≥ 2.
Now we give an exponential representation for the arrowhead-Pell-random-type numbers by

the aid of the generating function with the following Theorem.

Theorem 2.6. The arrowhead-Pell-random-type numbers have the following exponential repre-
sentation:

gk,u (x) = xu+k exp

(
∞∑
i=1

(xu+1)
i

i

(
1− x− · · ·xk

)i)
,

where k ≥ 2.

Proof. Since

ln gk,u (x) = ln xu+k − ln
(
1− xu+1 + 2xu+2 + xu+3 + · · ·+ xu+k+1

)
and

− ln
(
1− xu+1 + 2xu+2 + xu+3 + · · ·+ xu+k+1

)
= −[−xu+1

(
1− 2x− x2 − · · ·xk

)
−

1

2

(
xu+1

)2 (
1− 2x− x2 − · · ·xk

)2
− · · ·

− 1

n

(
xu+1

)n (
1− 2x− x2 − · · ·xk

)n
− · · · ],
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it is clear that

ln gk,u (x)− lnxu+k = ln
gk,u (x)

xu+k
=
∞∑
i=1

(xu+1)
i

i

(
1− 2x− x2 − · · · xk

)i
.

Thus we have the conclusion.

Now we consider the sums of arrowhead-Pell-random-type numbers.
Let

Sα =
α∑
i=1

auk+1 (i)

for α > 1 and k ≥ 2, and suppose that Eu,k is the (u+ k + 2)× (u+ k + 2) matrix such that

Ek,u =


1 0 · · · 0

1

0 Ak,u

...
0

 .

Then it can be shown by induction that

(
Ek,u

)α
=


1 0 · · · 0

Sα+u+k−1
Sα+u+k−2

(
Ak,u

)α
...

Sα−1

 .
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