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Abstract: In this paper, we define the arrowhead-Pell-random-type sequence and then we ob-

tain the generating function and the generating matrix of the sequence. Also, we derive the

permanental, determinantal, combinatorial and exponential representations and the sums of the

arrowhead-Pell-random-type numbers using the generating function and the generating matrix of

the sequence.
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1 Introduction

In [13], Kilic and Tasci defined k sequences of the generalized order-%£ Pell numbers as shown:

PL=2P,  + P, 5+ + Py

forn > 0 and 1 <1 < k, with initial conditions

pi— 11fn:.1—z, | _k<n<o,
0 otherwise,

where P! is the n-th term of the i-th sequence.

It is clear that the characteristic polynomial of the generalized order-%£ Pell sequence is as

follows:
P(z)=aF —22F 1 —ah2 ... 1,

109



In [1], Akiiziim et al. defined the arrowhead-Pell sequence for n > 1 as follows:
agr1(n+k+1)=ar1(n+k)—2a, 1 (n+k—1)—ap1(n+k—2) —--- —agyq (n)

with integer constants a1 (1) = -+ = a1 (k) = 0and agyq (kK + 1) = 1, where k > 2.
Shannon and Horadam [17] also developed arrowhead curves in the context of recursive se-
quences.
Hofstadter’s integer sequences defined [10] by

hn - hn—hn,1 + hn—hnfg

where hy = hy = 1.

The random Fibonacci sequences defined [6] by the random recurrence z; = 1, zo = 2 and
forn > 2, v, = +x, 1 + x, o, where each & sign is independent and either 4+ or — with
probability 1/2.

Atanassov et al. [2] have, to some extent, systematized aspects of these sequences through
pulsated sequences.

Suppose that the (n + k)th term of a sequence is defined recursively by a linear combination
of the preceding £ terms:

ik = Colp + C1Gp41 + -+ + Ck—10p k-1

where cg,cq,...,cp_1 are real constants. In [11], Kalman derived a number of closed-form
formulas for the generalized sequence by the companion matrix method as follows:

(0010 - 0 0 ]
o o0 1 -+ 0 0
o 0 0 . 0 0

A = aiglj =

0o 00 -~ 0 1

| G0 @1 &2 Ck—2 Cr—1 |

Then by an inductive argument he obtained that
Qo Qp
A (1'1 _ Ap41
Ap—1 Aptk—1

forn > 0.

Number theoretic properties such as these obtained from homogeneous linear recurrence
relations relevant to this paper have been studied by many authors [4, 7, 8, 9, 12, 16, 18, 19,
20, 21, 22, 23]. In this paper, we define a new sequence which is called the arrowhead-Pell-
random-type sequence. Then we give relationships among the arrowhead-Pell-random-type num-
bers and the permanents and the determinants of certain matrices which are produced by using the
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generating matrix of the arrowhead-Pell-random-type sequence. Also, we obtain the combinato-
rial representations, the exponential representation and the sums of the arrowhead-Pell-random-
type numbers by the aid of the generating function and the generating matrix of the arrowhead-
Pell-random-type sequence.

2 The arrowhead-Pell-random-type sequence

We now define the arrowhead-Pell-random-type sequence by the following recurrence relations

forn > u
ap o (n+k+1)=a;  (n+k—u)—2a,,, (n+k—u—1) o
—apy (n+k—u—2)—- —agy, (n—u)
with initial conditions a}’,, (0) = --- = aj,; (u+k—1) = O and af,, (u+k) = 1, where

1<u<k+1landk > 2.
By (2.1), we can write a generating matrix for the arrowhead-Pell-random-type sequence as

follows:
(u+1)th
— l’ -
0 0 1 -2 -1 —1
1 0 0 O 0 0 0
0O 1 0 O 0 0 0
0O 0 1 0 0 0 0
Ak,u —
0 0 01 0 0 0
o o o0 - 0 1 0 0
6000 -0 1 0 (utk+1)x (utk+1)

The companion matrix A** is called the arrowhead-Pell-random-type matrix. It is clear that

aj, . (u+k) aj,q (a+u+k)

(Ak,u)a G;i_’_l (U +k— 1) a%+1 (Oé +u+k— 1)

A4y (0) A1y ()

for a > u. Let a}’, (a) be denoted by a,}";. By induction on o, we derive that
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r u,a+u+k u,a+u+k+1 u,o+2u+k u,o+2u+k+1 u,a+utk T
A1 i1 (gt At1 — Qpyq
u,a+u+k—1 u,a+u+k u,a+2u+k—1 u,a+2utk  u,atutk—1
Apy1 Apyq Apy1 Ay k+1
kau\® __ u,a+u u,a+u+1 u,a+2u u,a+2u+1 u,a+u u,k) %
(A ) = g1 gt Gptq Gpiq — gt (M )
u,a+u—1 u,o+u u,a+2u—1 u,+2u u,a+u—1
Qg1 g1 g1 Appr = O
U0 u,0+1 u,o+u u,atu+l  wua
L (k4 gy gy (i1 gy i
a . .
for k > 2. Where (M**)" isa (u+ k + 1) x (k — 2) matrix as follows:
(Ak)°
u,a+u+1 u,a+u+2 u,a+u+k—1 u,a+u+2 u,a+u+3 u,a+ut+k—1 T
~ Ot ~ Q1 T T O = Okt ~ Oq T T O
_uwoatu  watutl u,atut+k—2  wotut+l  watut2 _u,atu+k—2
Q1 Qg1 k+1 k+1 Qg1 Qg1
- (M*k,u) @
u,a—k+1 u,a—k+2 _uw,a—1  w,a—k+2  u,a—k+3 o u,a—1
L —ak+1 —ak+1 (Ik+1 ak+1 ak+1 ak+1 ]
such that
u,a+u+k—1
1
au,a+u+k—2
o T Yk
(M*k,u) — .
_au,a—l
k+1 (u+k+1)x1

from which it is clear that det (A%*)* = (—1)*"H*0)

Now we consider the permanental representations of the arrowhead-Pell-random-type se-
quence.

Definition 2.1. A u X v real matrix M = [m; ;| is called a contractible matrix in the k™ column

(resp. row.) if the k™ column (resp. row.) contains exactly two non-zero entries.

Suppose that 1, 7o, . . ., 7, are Tow vectors of the matrix M. If M is contractible in the k™"
column such that m; ;, # 0, m;; # 0 and i # j, then the (v — 1) x (v — 1) matrix A;;.;, obtained
from M by replacing the i row with m; yx; + m; ;z; and deleting the j™ row. The k™ column is
called the contraction in the k™ column relative to the i row and the j® row.

In [3], Brualdi and Gibson obtained that per (M) = per (N) if M is a real matrix of order
a > 1and N is a contraction of M.

Letm > u + k + 1 be a positive integer and suppose that H** (m) = [h%k“} isthe m x m
super-diagonal matrix, defined by:

112



ifir=randj=r+uforl<r<m-u-—=~k
1 and
t=r+landj=rforl <r<m-—1,
ifi=rand j=r4+u+2forl <r<m-—u-—=k,
h?fj’k’“:< i=rand j=r+u+3forl <r<m-—u-—Ek,

t=rand j=r+u+kforl <r<m-—u-—E£k,
—2 ifi=randj=r+uforl <r<m-—u-—1,

(0 otherwise.
That is,
(u+1)th (u+k+1)th
\J x
0 1 -2 -1 ... =1 0 0 O 0
1 0 1 -2 -1 -1 0 O 0
1 0 0 1 -2 -1 -1 0 0
0 0 1 0 1 -2 -1 -1 0
0 O 0 1 0 0 1 -2 -1 -1
HA (m)= |+ & .
o o o o0 - 0 1 0 0 1 -2 -1
0O 0 0 0 0 1 0 0 1 -2
o 0 0 0 0 O 0 1 0 0 1
o 0o o0 0 0 0 0 0 1 0 0
L o o o o o o o o 0 - 0 1 0 |

Then we have the following Theorem.

Theorem 2.1. Form > u+k+1and k > 2,
perHM" (m) = aj ., (m+u+k).

Proof. Let the equation hold for m > u + k + 1, then we show that the equation holds for m + 1.
If we expand the per H** (m) by the Laplace expansion of permanent with respect to the first
row, then we obtain

per H*" (m + 1) = per H*" (m — u) — 2per H*" (m — u — 1) — per H** (m — u — 2)
— o —perH M (m —u — k).

Since
per HM (m —u) = ajiy (m + k),

perH (m —u—1)=ap,, (m+k—1),
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p@THkVU(m_U_2>:az+1(m+k_2)7"'7p6er7u(m_u_k):az'i‘l(m)’

we easily obtain that per H** (m + 1) = af,; (m+u+k+1).
So the proof is complete. ]

Let m > u + k + 1 such that £ > 2 and let L*% (m) = [l;’;k"] be the m X m matrix, defined
by
( ifi=randj=r+uforl<r<m-—u—=k
1 and
t=r4+landj=rforl <r<m-—1,
ifi=rand j=r+u+2forl <r<m-—u-—E=k,
li’j”“’“: i=rand j=r+u+3forl <r<m-—u-—£k,
t=rand j=r+u+kforl <r<m-—u-—Ek,
-2 ifitr=randj=r+uforl <r<m-—u-—=k,

\ 0 otherwise.
That is,
(u+1)th (u+k+1)th
{ {
0 0 1 -2 -1 ... =1 0 0 0 0
1 0 0o 1 -2 -1 -1 0 0 0
0 1 0 0 1 -2 -1 -1 0 0
0 0 1 0o 1 -2 -1 -1 0
0 0 0 1 0 0o 1 -2 -1 -1
L*m)={ 0 0 0 0 1 0 0 0 0 0 0 [ (m—u—~k)th
00 0 0 0 o 1 0 0 0 0 0
00 0 0 0 0 O 1 0 0 0 0
00 0 0 0 0 0 0O 1 0 0 0
0O 0 0 0O 0 0 0 0 0O 1 0 0
00 0 0 0 0 0 0 0 0 1 0

Assume that the m x m matrix K*% (m) = [k:’;k “} is defined by
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!
[ —1 —1 0 0|
1
0
KR m) =1 LF (m — 1)
L 0 .

Then we can give more general results by using other permanental representations than the
above.

Theorem 2.2. Let aj.,, (m) be the mth the arrowhead-Pell-random-type number for k > 2. Then
(i). Form >u+k+1,

perLM" (m) = —aj., (m —1).

(17). Form > u+k + 2,

m—2
perk™ (m) = 3 af, (i).
i=1

Proof. (i). Let the equation hold for m > u + k + 1, then we show that the equation holds for
m + 1. If we expand the per L¥“ (m) by the Laplace expansion of permanent with respect to the
first row, then we obtain

perLF" (m + 1) = per LF* (m — u) — 2per L** (m — u — 1) — per L** (m — u — 2)
— o —perLF" (m —u — k).

Also, since
per L (m — w) = —ajoy (m —u—1),
perLP (m —u—1)=—a},, (m—u—2),
perLP" (m —u—2)=—af,, (m—u—3),...,
perLP" (m —u—k) = —aj; (m—u—k—1),

it is clear that
perLP" (m+1) = —aj,, (m).

(i1). It is clear that expanding the per K** (m) by the Laplace expansion of permanent with
respect to the first row, gives us

per K% (m) = per K** (m — 1) + per L** (m — 1).

By induction on m, taking into consideration the result of Theorem 2.1 and part (i) in Theorem
2.2, the conclusion is easily seen. L]
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Let the notation A o K denotes the Hadamard product of A and K. A matrix A is called
convertible if there is an m x m (1, -1)-matrix K such that per A = det(A o K).
Letm > u+ k + 2 and let R be the m x m matrix, defined by

1 1 1 --- 1 1
-1 1
1 -1

R: .
1 1 -1 1 1
1 1 1 -1 1

It is easy to see that per H*" (m) = det (H*" (m) o R), perL*" (m) = det (L*" (m) o R)
and per K*" (m) = det (K*" (m) o R) for m > u + k + 2. Then we have the following useful
results.

Corollary 2.3. Form > u + k + 2,
det (H** (m)o R) = aj,, (m+u+k),

det (L**(m) o R) = —aj,; (m — 1)

and

m—2
det (K*" (m)o R) = ajyq (7).

i=1
Let C (¢y,¢9,...,¢,) be av X v companion matrix as follows:
1 G Cy
1 0 0

C(cr,coy. .. ) =

0 -~~~ 1 0

See [14, 15] for more information about the companion matrix.

Theorem 2.4 (Chen and Louck [5]). The (i, j) entry cg}) (c1,¢2,...,¢) inmatrix C"(c1, ¢, . . .,
cv) is given by the following formula:

. tittpat++te (it tty
Cz( j) (Clv C2; .- 7Cv) = : 7+ X ! Ctll s Cf}v (22)
: . tzt) bt tat+ -+t ety

150250005 v

where the summation is over nonnegative integers satisfying t| + 2to + --- +vt, = n — i+ j,

(it = (tatetto)!

T 18 a multinomial coefficient, and the coefficients in (2.2) are defined to be

Then we give the combinatorial representations for the arrowhead-Pell-random-type numbers.
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Corollary 2.5. Let aj!,, (o) be the ath the arrowhead-Pell-random-type number for k > 2. Then

- “ f et ) N
(@) g (@) = Z ( ! + +1) (—2)lr? (—1)furstturatHupni

t1, .o btk
(t1,t2. byt k1) ’ ki

where the summation is over nonnegative integers satisfying t1 +2to+- -+ (u+k + 1)ty g1 =

a—u—Ek.

(47) Ay (@)

_ Z tu+k+1 o (tl _|_ e + tu-‘,—k’—‘rl) (_2)tu+2 (_1)tu,+3+tu+4+~--+tu+k+l
ti+to+ -+ tuyrsr Ty byt

(t1,t2eestugrt1)

where the summation is over nonnegative integers satisfying t| +2to+- -+ (u+k + 1)ty py1 =
a4+ 1.

Proof. Ifwetakei =u+k+1,j=1c1=--=c,=0,c401 =1, Cp10 = —2,Cpi3 ==
Cutkt1 = —1forthecase (i).andi = u+k,j=u+k+1,¢ =" =c¢c, =0,cu41 = 1,
Cur2 = —2,C4y3 = -+ = Cyspr1 = —1 for the case (i7) . in Theorem 2.4, then the proof is
immediately seen from (M k’“)a. [

It is easy to show that the generating function of the arrowhead-Pell-random-type sequence is

as follows:
xu—i—k

k. _
(x) = 1 — gutl 1 Qput2 1 put3 4 ... gutk+l’

where k£ > 2.
Now we give an exponential representation for the arrowhead-Pell-random-type numbers by
the aid of the generating function with the following Theorem.

Theorem 2.6. The arrowhead-Pell-random-type numbers have the following exponential repre-

g™ (z) = 2" exp (Z ($u+ ) (1—z—-- xk)z> ,

- 7
=1

sentation:

where k > 2.

Proof. Since
Ing"* (z) = Inz"™* — In (1 — T 2pu R gt x“+k+1)
and
—1In (1 — Ut g2t S g x“+k+1) = [zt (1 — 2 — % — .. xk) -
%(xuﬂ)Q (1—2:c—x2—~-:zk)2—---
1

E(:Equl)n(1—2x—x2—‘-'xk>n—"'},
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it is clear that

Ing"* (z) — Inz"** =In

g (1) (iv“fl)i

g = (1—2x—x2—---xk)i.

7

i=1

Thus we have the conclusion. ]

Now we consider the sums of arrowhead-Pell-random-type numbers.
Let

Sa = Z g (1)
i=1

for « > 1 and k > 2, and suppose that E*“* is the (u + k + 2) x (u + k + 2) matrix such that

10 --- 0
1
Ek’u = O Ak7u
— O -
Then it can be shown by induction that
i 1 0o ... 0]
Sa+u+k—1

(Ek’u)a = Soz+u+k72 (Ak,u)a

Safl
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