Fibonacci and Lucas numbers
via the determinants of tridiagonal matrix

Taras Goy
Department of Mathematics and Informatics
Vasyl Stefanyk Precarpathian National University
57 Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine
e-mail: tarasgoy@yahoo.com

Received: 12 June 2016 Accepted: 31 January 2018

Abstract: Applying the apparatus of triangular matrices, we proved new recurrence formulas
for the Fibonacci and Lucas numbers with even (odd) indices by tridiagonal determinants.

Keywords: Fibonacci numbers, Lucas numbers, Horadam sequence, Triangular matrix, Parapermanent of triangular matrix.
2010 Mathematics Subject Classification: 11B39, 11C20.

1 Triangular matrix and parapermanents of triangular matrix

The functions of triangular matrices are widely used in algebra, combinatorics, number theory
and other branches of mathematics [9, 11, 12].

Definition 1.1. [11]. A triangular number table

\[
A_n = \begin{pmatrix}
 a_{11} & & \\
 a_{21} & a_{22} & \\
 \vdots & \vdots & \ddots \\
 a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix}
\] \hspace{1cm} (1)

is called a \(n \)th-order triangular matrix.

Note that a matrix (1) is not a triangular matrix in the usual sense of this term as it is not a square matrix.
The product $a_{ij} a_{i,j+1} \cdots a_{ii}$ is denoted by $\{a_{ij}\}$ and is called a \textit{factorial product} of the element a_{ij}.

\textbf{Definition 1.2.} [11]. The parapermanent $\text{pper}(A_n)$ of a triangular matrix (1) is the number

$$\text{pper}(A_n) \equiv \begin{bmatrix} a_{11} & a_{21} & \ldots & a_{n1} \\ a_{21} & a_{22} & \ldots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{bmatrix} = \sum_{r=1}^{n} \sum_{p_1, \ldots, p_r = n} \prod_{s=1}^{r} \{a_{p_1+\ldots+p_r, n-s+1}\}, \quad (2)$$

where p_1, p_2, \ldots, p_r are positive integers, $\{a_{ij}\}$ is the factorial product of the element a_{ij}.

\textbf{Example 1.3.} The parapermanent of a 4-th order matrix:

$$\text{pper}(A_4) = \begin{bmatrix} a_{11} & a_{21} & a_{31} & a_{41} \\ a_{21} & a_{22} & a_{32} & a_{42} \\ a_{31} & a_{32} & a_{33} & a_{43} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} = a_{41}a_{42}a_{43}a_{44} + a_{31}a_{32}a_{33}a_{44} + a_{21}a_{22}a_{43}a_{44} + a_{21}a_{22}a_{33}a_{44} + a_{11}a_{42}a_{43}a_{44} + a_{11}a_{32}a_{33}a_{44} + a_{11}a_{22}a_{43}a_{44} + a_{11}a_{22}a_{33}a_{44}.$$

To each element a_{ij} of a matrix (1) we associate the triangular table of elements of matrix A_n that has a_{ij} in the bottom left corner. We call this table a \textit{corner} of the matrix and denote it by $R_{ij}(A_n)$. Corner $R_{ij}(A_n)$ is a triangular matrix of order $(i-j+1)$, and it contains only elements a_{rs} of matrix (1) whose indices satisfy the inequalities $j \leq s \leq r \leq i$.

\textbf{Theorem 1.4.} [11] (Decomposition of a parapermanent $\text{pper}(A_n)$ by elements of the last row). The following formula are valid:

$$\text{pper}(A_n) = \sum_{s=1}^{n} \{a_{ns}\} \text{pper}(R_{s-1,1}(A_n)), \quad (3)$$

where $\text{pper}(R_{0,1}(A_n)) \equiv 1$.

\textbf{Example 1.5.} Decomposition of a parapermanent $\text{pper}(A_4)$ by elements of the last row:

$$\text{pper}(A_4) = a_{44}\text{pper}(A_3) + a_{43}a_{44}\text{pper}(A_2) + a_{42}a_{43}a_{44}\text{pper}(A_1) + a_{41}a_{42}a_{43}a_{44}\text{pper}(A_0),$$

where $\text{pper}(A_1) = a_{11}$, $\text{pper}A_0 \equiv 1$.

R. Zatorsky and I. Lishchynskyy [10, 13] established connection between the paradeterminants and the lower Hessenberg determinants by formula

$$\text{pper}(A_n) = \begin{bmatrix} \{a_{11}\} & 1 & 0 & \ldots & 0 & 0 \\ -\{a_{21}\} & \{a_{22}\} & 1 & \ldots & 0 & 0 \\ -\{a_{31}\} & -\{a_{32}\} & \{a_{33}\} & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -\{a_{n-1,1}\} & -\{a_{n-1,2}\} & -\{a_{n-1,3}\} & \ldots & \{a_{n-1,n-1}\} & 1 \\ -\{a_{n1}\} & -\{a_{n2}\} & -\{a_{n3}\} & \ldots & -\{a_{n,n-1}\} & \{a_{nn}\} \end{bmatrix}, \quad (4)$$

where $\{a_{ij}\}$ is factorial product of the element a_{ij}.

104
A connection between the Horadam numbers with even (odd) indices and parapermanents

In [5] A. Horadam considered the sequence

\[h_1 = p, \ h_2 = q, \ h_n = h_{n-1} + h_{n-2}, \ n \geq 3, \]

where \(p \) and \(q \) are arbitrary integer numbers. This sequence generalized the Fibonacci sequence:

\[F_1 = 1, \ F_2 = 1, \ F_n = F_{n-1} + F_{n-2}, \ n \geq 3, \]

and the Lucas sequence:

\[L_1 = 2, \ L_2 = 1, \ L_n = L_{n-1} + L_{n-2}, \ n \geq 3. \]

Proposition 2.1. The following formula is valid:

\[
h_{2n-1} = \begin{bmatrix}
p & \ h_2 & 1 \\
\ h_1 & 1 & \ h_4 \\
\ h_3 & 1 & \ h_6 & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & \ h_{2n-4}^{\ h_{2n-5}} & 1 \\
0 & 0 & 0 & \cdots & 0 & \ h_{2n-2}^{\ h_{2n-5}} & 1
\end{bmatrix}.
\] (5)

Proof. Expanding the parapermanent (5) by elements of the last raw (see (3)), we have

\[h_{2n-1} = 1 \cdot h_{2n-3} + \ h_{2n-2}^{\ h_{2n-5}} \cdot h_{2n-5} = h_{2n-3} + h_{2n-2}. \]

Obtained equality holds by definition of the sequence \(\{h_n\}_{n \geq 1} \).

Proposition 2.2. The following formula is valid:

\[
h_{2n} = \begin{bmatrix}
q & \ h_3 & 1 \\
\ h_2 & 1 & \ h_5 \\
\ h_4 & 1 & \ h_7 & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & \ h_{2n-3}^{\ h_{2n-5}} & 1 \\
0 & 0 & 0 & \cdots & 0 & \ h_{2n-1}^{\ h_{2n-4}} & 1
\end{bmatrix}.
\] (6)

Proof. Using (3), we have

\[h_{2n} = 1 \cdot h_{2n-2} + \ h_{2n-1}^{\ h_{2n-4}} \cdot h_{2n-4} = h_{2n-2} + h_{2n-1}. \]
3 Main results

In this section we proved two recurrence formulas expressing the Horadam numbers h_n by the determinant of tridiagonal matrix. As a consequence we received the corresponding formulas for the Fibonacci and Lucas numbers.

Proposition 3.1. The following formulas are valid:

\[
\begin{align*}
 h_{2n-1} &= \frac{1}{h_{1}h_{3}\cdots h_{2n-5}} \left| \begin{array}{ccccccc}
p & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
-h_{2} & 1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & -h_{4} & h_{1} & h_{1} & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & -h_{6} & h_{3} & h_{3} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & -h_{2n-4} & h_{2n-7} & h_{2n-7} \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & -h_{2n-2} & h_{2n-5}
\end{array} \right|, \quad (7) \\

h_{2n} &= \frac{1}{h_{2}h_{4}\cdots h_{2n-4}} \left| \begin{array}{ccccccc}
p & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
-h_{3} & 1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & -h_{5} & h_{2} & h_{2} & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & -h_{7} & h_{4} & h_{4} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & -h_{2n-3} & h_{2n-6} & h_{2n-6} \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & -h_{2n-1} & h_{2n-4}
\end{array} \right|. \quad (8)
\end{align*}
\]

Proof. We prove the formula (7). From (5) using (4), we have

\[
 h_{2n-1} = \frac{1}{h_{1}h_{3}\cdots h_{2n-5}} \left| \begin{array}{ccccccc}
p & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
-h_{2} & 1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & -h_{4} & h_{1} & h_{1} & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & -h_{6} & h_{3} & h_{3} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & -h_{2n-4} & h_{2n-7} & h_{2n-7} \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & -h_{2n-2} & h_{2n-5}
\end{array} \right|.
\]

After obvious simple transformations, we get (7).

Formula (8) can be proved similarly. \(
\)

Example 3.2. Fibonacci numbers with odd indices:

\[
 F_{2n-1} = \frac{1}{F_{1}F_{3}\cdots F_{2n-5}} \left| \begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
-F_{2} & 1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & -F_{4} & F_{1} & F_{1} & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & -F_{6} & F_{3} & F_{3} & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & -F_{2n-4} & F_{2n-7} & F_{2n-7} \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & -F_{2n-2} & F_{2n-5}
\end{array} \right|.
\]

\]

106
Example 3.3. The Fibonacci numbers with even indices:

$$F_{2n} = \frac{1}{F_2 F_4 \cdots F_{2n-4}} \begin{vmatrix} 1 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ -F_3 & 1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -F_5 & F_2 & F_2 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & -F_7 & F_4 & F_4 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & -F_{2n-3} & F_{2n-6} & F_{2n-6} \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & -F_{2n-1} & F_{2n-4} \end{vmatrix}.$$

Example 3.4. The Lucas numbers with odd indices:

$$L_{2n-1} = \frac{1}{L_1 L_3 \cdots L_{2n-5}} \begin{vmatrix} 2 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ -L_2 & 1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -L_4 & L_1 & L_1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & -L_6 & L_3 & L_3 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & -L_{2n-4} & L_{2n-7} & L_{2n-7} \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & -L_{2n-2} & L_{2n-5} \end{vmatrix}.$$

Example 3.5. The Lucas numbers with even indices:

$$L_{2n} = \frac{1}{L_2 L_4 \cdots L_{2n-4}} \begin{vmatrix} 1 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ -L_3 & 1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -L_5 & L_2 & L_2 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & -L_7 & L_4 & L_4 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & -L_{2n-3} & L_{2n-6} & L_{2n-6} \\ 0 & 0 & 0 & 0 & 0 & \cdots & 0 & -L_{2n-1} & L_{2n-4} \end{vmatrix}.$$

Note, that determinants of matrices, elements of which are classical or generalized Fibonacci numbers, in particular, studied in [1, 2, 3, 4, 6, 7, 8].

4 Acknowledgements

The author is grateful to professor Roman Zatorsky, Department of Mathematics and Informatics, Vasyl Stefanyk Precarpathian National University (Ukraine), for constant attention to this work and for useful discussions.

References

