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Abstract: Abd-Elhameed and Zeyada have introduced the generalized sequence of numbers
(Ua,b,r

n )n≥0 such that sequence generalizes both generalized Fibonacci numbers (Ga,b
n )n≥0 and

generalized Pell numbers (P a,b
n )n≥0. In the present paper, we show a study of the greatest com-

mon divisors of some Ga,b
n , P a,b

n and Ua,b,r
n .
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1 Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn for n ≥ 0

and let (Ln)n≥0 be the Lucas sequence given by L0 = 2, L1 = 1, Ln+2 = Ln+1 + Ln for n ≥ 0.
Fibonacci numbers and Lucas numbers are famous for their special and amazing properties. An
important identity of Fibonacci and Lucas numbers that they mutually have is Ln = Fn−1+Fn+1

for any n ≥ 1. Let Gn be the generalized Fibonacci numbers given by Ga,b
0 = b−a, Ga,b

1 = a and
Ga,b

n+2 = Ga,b
n+1 + Ga,b

n for n ≥ 0. It is clear that such the generalized Fibonacci numbers are the
generalization of both Fibonacci and Lucas numbers. In fact, we have Fn = G1,1

n and Ln = G1,3
n .

Koshy [5] has already proved that Ga,b
n+2 = aFn + bFn+1.
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Let (Pn)n≥0 be the Pell sequence given by P0 = 0, P1 = 1, Pn+2 = 2Pn+1 + Pn for n ≥ 0

and let (Qn)n≥0 be the Pell–Lucas sequence given by Q0 = 2, Q1 = 2, Qn+2 = 2Qn+1 + Qn

forn ≥ 0. An important identity of Pell and Pell–Lucas numbers is Qn = Pn−1 + Pn+1 for any
n ≥ 1. Abd-Elhameed and Zeyada [1] have introduced the generalized Pell numbers as P a,b

0 =

b − 2a, P a,b
1 = a and P a,b

n+2 = 2P a,b
n+1 + P a,b

n for n ≥ 0. It is clear that such the generalized Pell
numbers are the generalization of both Pell and Pell–Lucas numbers. In fact, we have Pn = P 1,2

n

and Qn = P 2,6
n . Furthermore, the authors [1] have introduced the new sequence of generalized

numbers (Ua,b,r
n )n≥0 as

Ua,b,r
n+2 = rUa,b,r

n+1 + Ua,b,r
n where Ua,b,r

0 = b− ra and Ua,b,r
1 = a.

We have Ga,b
n = Ua,b,1

n and P a,b
n = Ua,b,2

n . Thus, we have the two sequences (Ga,b
n )n≥0 and

(P a,b
n )n≥0 are particular sequences of the more general sequence (Ua,b,r

n )n≥0.
The greatest common divisor of positive integers a and b is the largest positive integer d

such that a and b are both multiples of d. Let gcd(a, b) represent the greatest common divisor
of a and b. The greatest common divisors of Fibonacci, Lucas, Pell and generalized Fibonacci
numbers have been studied widely, which can be seen in [2, 3, 4, 5, 6]. It is well known that
gcd(Fm, Fn) = Fgcd(m,n), and gcd(Pm, Pn) = Pgcd(m,n).

In this paper, we show our study of the greatest common divisors of Ga,b
n , P a,b

n and Ua,b,r
n .

2 The main results

The following theorem is well known and can be found many textbook on number theory.

Theorem 1. [7] For every non-zero integers a and b, then gcd(a, b) = gcd(a + bx, b) for any
integer x.

Theorem 2. [4, 5] For every positive integers m,n, we have

(1) n|m if and only if Fn|Fm,

(2) n|m if and only if Pn|Pm.

Theorem 3. [4, 5] For every positive integers m,n, we have gcd(Fm, Fn) = Fgcd(m,n), and
gcd(Pm, Pn) = Pgcd(m,n). This implies that gcd(Fn, Fn+1) = (Pn, Pn+1) = 1.

Theorem 4. For every non-zero integers a, b, r and non-negative integer n, we have

gcd(Ua,b,r
n , Ua,b,r

n+1 ) = gcd(a, b).

Proof. We will proceed by induction on n. It is clear in case n = 0. Now, assume that
gcd(Ua,b,r

n , Ua,b,r
n+1 ) = gcd(a, b) for non-negative integer n. Then we have

gcd(Ua,b,r
n+1 , U

a,b,r
n+2 ) = gcd(Ua,b,r

n+1 , rU
a,b,r
n+1 + Ua,b,r

n )

= gcd(Ua,b,r
n+1 , U

a,b,r
n )

= gcd(a, b).

This completes the proof of Theorem 4.

98



Let r = 1, 2 in Theorem 4. We can get the corollary.

Corollary 5. For every non-zero integers a, b and non-negative integer n, we have

(1) gcd(Ga,b
n , Ga,b

n+1) = gcd(a, b),

(2) gcd(P a,b
n , P a,b

n+1) = gcd(a, b).

Corollary 6. For non-negative integer n, we have

(1) gcd(Fn, Fn+1) = 1,

(2) gcd(Ln, Ln+1) = 1,

(3) gcd(Pn, Pn+1) = 1,

(4) gcd(Qn, Qn+1) = 2.

Theorem 7. For every non-zero integer a and non-negative integers n,m, we have

gcd(Ga,a
n , Ga,a

m ) = |a|Fgcd(m,n).

Proof.

gcd(Ga,a
m , Ga,a

n ) = gcd(aFm−2 + aFm−1, aFn−2 + aFn−1)

= |a| · gcd(Fm−2 + Fm−1, Fn−2 + Fn−1)

= |a| · gcd(Fm, Fn)

= |a|Fgcd(m,n).

Lemma 8. For every non-zero integers a, b, r and non-negative integer n, we have

gcd(Ga,b
n , Ga,b+r

n ) = gcd(aFn−2 + bFn−1, rFn−1).

Proof.

gcd(Ga,b
n , Ga,b+r

n ) = gcd(aFn−2 + bFn−1, aFn−2 + (b+ r)Fn−1)

= gcd(aFn−2 + bFn−1, aFn−2 + bFn−1 + rFn−1)

= gcd(aFn−2 + bFn−1, rFn−1).

Corollary 9. For every non-zero integers a, b, r and non-negative integer n, we have

(1) gcd(Ga,b
n , Ga,b+1

n ) = gcd(a, Fn−1),

(2) if r|b, then gcd(Ga,b
n , Ga,b+r

n ) = gcd(aFn−2, rFn−1).
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Theorem 10. For every positive integer n, then gcd(Fn, Ln) is 1 or 2. Moreover, we have

gcd(Fn, Ln) = 2 if and only if 3|n.

Proof. We set a = b = 1 and r = 2 in Lemma 8, then gcd(Fn, Ln) = gcd(G1,1
n , G1,3

n ) =

gcd(Fn−2 + Fn−1, 2Fn−1) = gcd(Fn, 2Fn−1). Since gcd(Fn, Fn+1) = 1, we have gcd(Fn, Ln) is
1 or 2. By Theorem 2, it is clear that gcd(Fn, Ln) = 2 if and only if 3|n.

Table 1: gcd(Fn, Ln) for some values of n.

n 0 1 2 3 4 5 6 7 8 9 10

Fn 0 1 1 2 3 5 8 13 21 34 55

Ln 2 1 3 4 7 11 18 29 47 76 123

gcd(Fn, Ln) 2 1 1 2 1 1 2 1 1 2 1

Theorem 11. For every non-zero integers a, b, r and non-negative integer n, we have

(1) gcd(Ua,b,r
2n , Ua,b,r

2n+2) = gcd(ra, b),

(2) gcd(Ua,b,r
2n+1), U

a,b,r
2n+3) = gcd(a, rb).

Proof. We will proceed by induction on n. It is clear that gcd(Ua,b,r
0 , Ua,b,r

2 ) = gcd(b − ra, b) =

gcd(ra, b) and gcd(Ua,b,r
1 , Ua,b,r

3 ) = gcd(a, rb+ a) = gcd(a, rb).
First, we assume that gcd(Ua,b,r

2n , Ua,b,r
2n+2) = gcd(ra, b). Then we have

gcd(Ua,b,r
2n+2, U

a,b,r
2n+4) = gcd(Ua,b,r

2n+2, rU
a,b,r
2n+3 + Ua,b,r

2n+2)

= gcd(Ua,b,r
2n+2, rU

a,b,r
2n+3)

= gcd(Ua,b,r
2n+2, r(rU

a,b,r
2n+2 + Ua,b,r

2n+1))

= gcd(Ua,b,r
2n+2, rU

a,b,r
2n+1)

= gcd(Ua,b,r
2n+2, U

a,b,r
2n+2 − Ua,b,r

2n )

= gcd(Ua,b,r
2n+2, U

a,b,r
2n )

= gcd(ra, b).

Finally, we assume that gcd(Ua,b,r
2n+1, U

a,b,r
2n+3) = gcd(a, rb). Then we have

gcd(Ua,b,r
2n+3, U

a,b,r
2n+5) = gcd(Ua,b,r

2n+3, rU
a,b,r
2n+4 + Ua,b,r

2n+3)

= gcd(Ua,b,r
2n+3, rU

a,b,r
2n+4)

= gcd(Ua,b,r
2n+3, r(rU

a,b,r
2n+3 + Ua,b,r

2n+2))

= gcd(Ua,b,r
2n+3, rU

a,b,r
2n+2)

= gcd(Ua,b,r
2n+3, U

a,b,r
2n+3 − Ua,b,r

2n+1)

= gcd(Ua,b,r
2n+3, U

a,b,r
2n+1)

= gcd(a, rb).

This completes the proof of Theorem 11.
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Let r = 1, 2 in Theorem 11. We can get the corollary.

Corollary 12. For every non-zero integers a, b and non-negative integer n, we have

(1) gcd(Ga,b
n , Ga,b

n+2) = gcd(a, b),

(2) gcd(P a,b
n , P a,b

n+2) =

gcd(2a, b), if n is even;

gcd(a, 2b), if n is odd.

Corollary 13. For non-negative integer n, we have

(1) gcd(Fn, Fn+2) = 1,

(2) gcd(Ln, Ln+2) = 1,

(3) gcd(Pn, Pn+2) =

2, if n is even;

1, if n is odd,

(4) gcd(Qn, Qn+2) = 2.

Theorem 14. For every integers a, b and non-negative integer n, we have

P a,b
n+2 = aPn + bPn+1.

Proof. We will proceed by induction. We will proceed by induction on n. We have P a,b
2 = b =

aP0 + bP1 and P a,b
3 = a+ 2b = aP1 + bP2. Now, we assume that P a,b

k+2 = aPk + bPk+1 for every
k ∈ {0, 1, 2, . . . , n}. Then

P a,b
n+3 = 2P a,b

n+2 + P a,b
n+1

= 2(aPn + bPn+1) + (aPn−1 + bPn)

= a(2Pn + Pn−1) + b(2Pn+1 + Pn)

= aPn+1 + bPn+2.

This completes the proof of Theorem 14.

Lemma 15. For every non-zero integers a, b, r, s and non-negative integer n, we have

gcd(P a,b
n , P a+r,b+s

n ) = gcd(aPn−2 + bPn−1, rPn−2 + sPn−1).

Proof.

gcd(P a,b
n , P a+r,b+s

n ) = gcd(aPn−2 + bPn−1, (a+ r)Pn−2 + (b+ s)Pn−1)

= gcd(aPn−2 + bPn−1, aPn−2 + bPn−1 + rPn−2 + sPn−1)

= gcd(aPn−2 + bPn−1, rPn−2 + sPn−1).

Theorem 16. For every non-negative integer n, then gcd(Pn, Qn) is 1 or 2. Moreover, we have
gcd(Pn, Qn) = 2 if and only if n is even.

Proof. We set a = r = 1, b = 2 and s = 4 in Lemma 15, then

gcd(Pn, Qn) = gcd(P 1,2
n , P 2,6

n ) = gcd(Pn−2 + 2Pn−1, Pn−2 + 4Pn−1) = gcd(Pn, 2Pn−1).

Since gcd(Pn, Pn+1) = 1, we have gcd(Pn, Qn) is 1 or 2. By Theorem 2, it is clear that
gcd(Pn, Qn) = 2 if and only if n is even.
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Table 2: gcd(Pn, Qn) for some values of n.

n 0 1 2 3 4 5 6 7 8 9 10

Pn 0 1 2 5 12 29 70 169 408 985 2, 378

Qn 2 2 6 14 34 82 198 478 1, 154 2, 786 6, 726

gcd(Pn, Qn) 2 1 2 1 2 1 2 1 2 1 2
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