Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 24, 2018, No. 1, 97–102 DOI: 10.7546/nntdm.2018.24.1.97-102

The greatest common divisors of generalized Fibonacci and generalized Pell numbers

Boonyen Thongkam¹ and Nutcha Sailadda²

¹ Department of Mathematics, Faculty of Science Ubon Ratchathani Rajabhat University Ubon Ratchathani, 34000, Thailand e-mail: boonyen.t@ubru.ac.th

² Department of Mathematics, Faculty of Education Ubon Ratchathani Rajabhat University Ubon Ratchathani, 34000, Thailand e-mail: nutchasailadda@gmail.com

Received: 22 September 2017

Accepted: 31 January 2018

Abstract: Abd-Elhameed and Zeyada have introduced the generalized sequence of numbers $(U_n^{a,b,r})_{n\geq 0}$ such that sequence generalizes both generalized Fibonacci numbers $(G_n^{a,b})_{n\geq 0}$ and generalized Pell numbers $(P_n^{a,b})_{n\geq 0}$. In the present paper, we show a study of the greatest common divisors of some $G_n^{a,b}$, $P_n^{a,b}$ and $U_n^{a,b,r}$.

Keywords: Greatest common divisor, Generalized Fibonacci number, Generalized Pell number. **2010 Mathematics Subject Classification:** 11B39, 11A05.

1 Introduction

Let $(F_n)_{n\geq 0}$ be the *Fibonacci sequence* given by $F_0 = 0$, $F_1 = 1$, $F_{n+2} = F_{n+1} + F_n$ for $n \geq 0$ and let $(L_n)_{n\geq 0}$ be the *Lucas sequence* given by $L_0 = 2$, $L_1 = 1$, $L_{n+2} = L_{n+1} + L_n$ for $n \geq 0$. Fibonacci numbers and Lucas numbers are famous for their special and amazing properties. An important identity of Fibonacci and Lucas numbers that they mutually have is $L_n = F_{n-1} + F_{n+1}$ for any $n \geq 1$. Let G_n be the *generalized Fibonacci numbers* given by $G_0^{a,b} = b - a$, $G_1^{a,b} = a$ and $G_{n+2}^{a,b} = G_{n+1}^{a,b} + G_n^{a,b}$ for $n \geq 0$. It is clear that such the generalized Fibonacci numbers are the generalization of both Fibonacci and Lucas numbers. In fact, we have $F_n = G_n^{1,1}$ and $L_n = G_n^{1,3}$. Koshy [5] has already proved that $G_{n+2}^{a,b} = aF_n + bF_{n+1}$. Let $(P_n)_{n\geq 0}$ be the *Pell sequence* given by $P_0 = 0$, $P_1 = 1$, $P_{n+2} = 2P_{n+1} + P_n$ for $n \geq 0$ and let $(Q_n)_{n\geq 0}$ be the *Pell-Lucas sequence* given by $Q_0 = 2$, $Q_1 = 2$, $Q_{n+2} = 2Q_{n+1} + Q_n$ for $n \geq 0$. An important identity of Pell and Pell-Lucas numbers is $Q_n = P_{n-1} + P_{n+1}$ for any $n \geq 1$. Abd-Elhameed and Zeyada [1] have introduced the generalized Pell numbers as $P_0^{a,b} =$ b - 2a, $P_1^{a,b} = a$ and $P_{n+2}^{a,b} = 2P_{n+1}^{a,b} + P_n^{a,b}$ for $n \geq 0$. It is clear that such the generalized Pell numbers are the generalization of both Pell and Pell-Lucas numbers. In fact, we have $P_n = P_n^{1,2}$ and $Q_n = P_n^{2,6}$. Furthermore, the authors [1] have introduced the new sequence of generalized numbers $(U_n^{a,b,r})_{n>0}$ as

$$U_{n+2}^{a,b,r} = rU_{n+1}^{a,b,r} + U_n^{a,b,r}$$
 where $U_0^{a,b,r} = b - ra$ and $U_1^{a,b,r} = a$.

We have $G_n^{a,b} = U_n^{a,b,1}$ and $P_n^{a,b} = U_n^{a,b,2}$. Thus, we have the two sequences $(G_n^{a,b})_{n\geq 0}$ and $(P_n^{a,b})_{n\geq 0}$ are particular sequences of the more general sequence $(U_n^{a,b,r})_{n\geq 0}$.

The greatest common divisor of positive integers a and b is the largest positive integer d such that a and b are both multiples of d. Let gcd(a, b) represent the greatest common divisor of a and b. The greatest common divisors of Fibonacci, Lucas, Pell and generalized Fibonacci numbers have been studied widely, which can be seen in [2, 3, 4, 5, 6]. It is well known that $gcd(F_m, F_n) = F_{gcd(m,n)}$, and $gcd(P_m, P_n) = P_{gcd(m,n)}$.

In this paper, we show our study of the greatest common divisors of $G_n^{a,b}$, $P_n^{a,b}$ and $U_n^{a,b,r}$.

2 The main results

The following theorem is well known and can be found many textbook on number theory.

Theorem 1. [7] For every non-zero integers a and b, then gcd(a, b) = gcd(a + bx, b) for any integer x.

Theorem 2. [4, 5] For every positive integers *m*, *n*, we have

- (1) n|m if and only if $F_n|F_m$,
- (2) n|m if and only if $P_n|P_m$.

Theorem 3. [4, 5] For every positive integers m, n, we have $gcd(F_m, F_n) = F_{gcd(m,n)}$, and $gcd(P_m, P_n) = P_{gcd(m,n)}$. This implies that $gcd(F_n, F_{n+1}) = (P_n, P_{n+1}) = 1$.

Theorem 4. For every non-zero integers *a*, *b*, *r* and non-negative integer *n*, we have

$$gcd(U_n^{a,b,r}, U_{n+1}^{a,b,r}) = gcd(a,b).$$

Proof. We will proceed by induction on n. It is clear in case n = 0. Now, assume that $gcd(U_n^{a,b,r}, U_{n+1}^{a,b,r}) = gcd(a, b)$ for non-negative integer n. Then we have

$$gcd(U_{n+1}^{a,b,r}, U_{n+2}^{a,b,r}) = gcd(U_{n+1}^{a,b,r}, rU_{n+1}^{a,b,r} + U_n^{a,b,r})$$
$$= gcd(U_{n+1}^{a,b,r}, U_n^{a,b,r})$$
$$= gcd(a, b).$$

This completes the proof of Theorem 4.

Let r = 1, 2 in Theorem 4. We can get the corollary.

Corollary 5. For every non-zero integers a, b and non-negative integer n, we have

(1)
$$gcd(G_n^{a,b}, G_{n+1}^{a,b}) = gcd(a,b),$$

(2) $gcd(P_n^{a,b}, P_{n+1}^{a,b}) = gcd(a,b).$

Corollary 6. For non-negative integer n, we have

- (1) $gcd(F_n, F_{n+1}) = 1$,
- (2) $gcd(L_n, L_{n+1}) = 1$,
- (3) $gcd(P_n, P_{n+1}) = 1$,
- (4) $gcd(Q_n, Q_{n+1}) = 2.$

Theorem 7. For every non-zero integer a and non-negative integers n, m, we have

$$gcd(G_n^{a,a}, G_m^{a,a}) = |a| F_{gcd(m,n)}.$$

Proof.

$$gcd(G_m^{a,a}, G_n^{a,a}) = gcd(aF_{m-2} + aF_{m-1}, aF_{n-2} + aF_{n-1})$$
$$= |a| \cdot gcd(F_{m-2} + F_{m-1}, F_{n-2} + F_{n-1})$$
$$= |a| \cdot gcd(F_m, F_n)$$
$$= |a|F_{gcd(m,n)}.$$

Lemma 8. For every non-zero integers a, b, r and non-negative integer n, we have

$$gcd(G_n^{a,b}, G_n^{a,b+r}) = gcd(aF_{n-2} + bF_{n-1}, rF_{n-1}).$$

Proof.

$$gcd(G_n^{a,b}, G_n^{a,b+r}) = gcd(aF_{n-2} + bF_{n-1}, aF_{n-2} + (b+r)F_{n-1})$$

= $gcd(aF_{n-2} + bF_{n-1}, aF_{n-2} + bF_{n-1} + rF_{n-1})$
= $gcd(aF_{n-2} + bF_{n-1}, rF_{n-1}).$

Corollary 9. For every non-zero integers *a*, *b*, *r* and non-negative integer *n*, we have

- (1) $gcd(G_n^{a,b}, G_n^{a,b+1}) = gcd(a, F_{n-1}),$
- (2) if r|b, then $gcd(G_n^{a,b}, G_n^{a,b+r}) = gcd(aF_{n-2}, rF_{n-1}).$

Theorem 10. For every positive integer n, then $gcd(F_n, L_n)$ is 1 or 2. Moreover, we have

 $gcd(F_n, L_n) = 2$ if and only if 3|n.

Proof. We set a = b = 1 and r = 2 in Lemma 8, then $gcd(F_n, L_n) = gcd(G_n^{1,1}, G_n^{1,3}) = gcd(F_{n-2} + F_{n-1}, 2F_{n-1}) = gcd(F_n, 2F_{n-1})$. Since $gcd(F_n, F_{n+1}) = 1$, we have $gcd(F_n, L_n)$ is 1 or 2. By Theorem 2, it is clear that $gcd(F_n, L_n) = 2$ if and only if 3|n.

n	0	1	2	3	4	5	6	7	8	9	10
F_n	0	1	1	2	3	5	8	13	21	34	55
L_n	2	1	3	4	7	11	18	29	47	76	123
$gcd(F_n, L_n)$	2	1	1	2	1	1	2	1	1	2	1

Table 1: $gcd(F_n, L_n)$ for some values of n.

Theorem 11. For every non-zero integers *a*, *b*, *r* and non-negative integer *n*, we have

(1)
$$gcd(U_{2n}^{a,b,r}, U_{2n+2}^{a,b,r}) = gcd(ra, b),$$

(2) $gcd(U_{2n+1}^{a,b,r}, U_{2n+3}^{a,b,r}) = gcd(a, rb).$

Proof. We will proceed by induction on n. It is clear that $gcd(U_0^{a,b,r}, U_2^{a,b,r}) = gcd(b - ra, b) = gcd(ra, b)$ and $gcd(U_1^{a,b,r}, U_3^{a,b,r}) = gcd(a, rb + a) = gcd(a, rb)$.

First, we assume that $gcd(U_{2n}^{a,b,r}, U_{2n+2}^{a,b,r}) = gcd(ra, b)$. Then we have

$$gcd(U_{2n+2}^{a,b,r}, U_{2n+4}^{a,b,r}) = gcd(U_{2n+2}^{a,b,r}, rU_{2n+3}^{a,b,r} + U_{2n+2}^{a,b,r})$$

$$= gcd(U_{2n+2}^{a,b,r}, rU_{2n+3}^{a,b,r})$$

$$= gcd(U_{2n+2}^{a,b,r}, r(rU_{2n+2}^{a,b,r} + U_{2n+1}^{a,b,r}))$$

$$= gcd(U_{2n+2}^{a,b,r}, rU_{2n+1}^{a,b,r})$$

$$= gcd(U_{2n+2}^{a,b,r}, U_{2n+2}^{a,b,r} - U_{2n}^{a,b,r})$$

$$= gcd(U_{2n+2}^{a,b,r}, U_{2n+2}^{a,b,r})$$

$$= gcd(U_{2n+2}^{a,b,r}, U_{2n}^{a,b,r})$$

$$= gcd(ra, b).$$

Finally, we assume that $gcd(U_{2n+1}^{a,b,r}, U_{2n+3}^{a,b,r}) = gcd(a, rb)$. Then we have

$$gcd(U_{2n+3}^{a,b,r}, U_{2n+5}^{a,b,r}) = gcd(U_{2n+3}^{a,b,r}, rU_{2n+4}^{a,b,r} + U_{2n+3}^{a,b,r})$$

$$= gcd(U_{2n+3}^{a,b,r}, rU_{2n+4}^{a,b,r})$$

$$= gcd(U_{2n+3}^{a,b,r}, r(rU_{2n+3}^{a,b,r} + U_{2n+2}^{a,b,r}))$$

$$= gcd(U_{2n+3}^{a,b,r}, rU_{2n+2}^{a,b,r})$$

$$= gcd(U_{2n+3}^{a,b,r}, U_{2n+3}^{a,b,r} - U_{2n+1}^{a,b,r})$$

$$= gcd(U_{2n+3}^{a,b,r}, U_{2n+1}^{a,b,r})$$

$$= gcd(a, rb).$$

This completes the proof of Theorem 11.

Let r = 1, 2 in Theorem 11. We can get the corollary.

Corollary 12. For every non-zero integers a, b and non-negative integer n, we have

(1)
$$\gcd(G_n^{a,b}, G_{n+2}^{a,b}) = \gcd(a, b),$$

(2) $\gcd(P_n^{a,b}, P_{n+2}^{a,b}) = \begin{cases} \gcd(2a, b), & \text{if } n \text{ is even}; \\ \gcd(a, 2b), & \text{if } n \text{ is odd.} \end{cases}$

Corollary 13. For non-negative integer n, we have

(1) $\gcd(F_n, F_{n+2}) = 1$, (2) $\gcd(L_n, L_{n+2}) = 1$, (3) $\gcd(P_n, P_{n+2}) = \begin{cases} 2, & \text{if } n \text{ is even}; \\ 1, & \text{if } n \text{ is odd}, \end{cases}$ (4) $\gcd(Q_n, Q_{n+2}) = 2$.

Theorem 14. For every integers *a*, *b* and non-negative integer *n*, we have

$$P_{n+2}^{a,b} = aP_n + bP_{n+1}.$$

Proof. We will proceed by induction. We will proceed by induction on n. We have $P_2^{a,b} = b = aP_0 + bP_1$ and $P_3^{a,b} = a + 2b = aP_1 + bP_2$. Now, we assume that $P_{k+2}^{a,b} = aP_k + bP_{k+1}$ for every $k \in \{0, 1, 2, ..., n\}$. Then

$$P_{n+3}^{a,b} = 2P_{n+2}^{a,b} + P_{n+1}^{a,b}$$

= 2(aP_n + bP_{n+1}) + (aP_{n-1} + bP_n)
= a(2P_n + P_{n-1}) + b(2P_{n+1} + P_n)
= aP_{n+1} + bP_{n+2}.

This completes the proof of Theorem 14.

Lemma 15. For every non-zero integers a, b, r, s and non-negative integer n, we have

$$gcd(P_n^{a,b}, P_n^{a+r,b+s}) = gcd(aP_{n-2} + bP_{n-1}, rP_{n-2} + sP_{n-1})$$

Proof.

$$gcd(P_n^{a,b}, P_n^{a+r,b+s}) = gcd(aP_{n-2} + bP_{n-1}, (a+r)P_{n-2} + (b+s)P_{n-1})$$

= $gcd(aP_{n-2} + bP_{n-1}, aP_{n-2} + bP_{n-1} + rP_{n-2} + sP_{n-1})$
= $gcd(aP_{n-2} + bP_{n-1}, rP_{n-2} + sP_{n-1}).$

Theorem 16. For every non-negative integer n, then $gcd(P_n, Q_n)$ is 1 or 2. Moreover, we have $gcd(P_n, Q_n) = 2$ if and only if n is even.

Proof. We set a = r = 1, b = 2 and s = 4 in Lemma 15, then

$$gcd(P_n, Q_n) = gcd(P_n^{1,2}, P_n^{2,6}) = gcd(P_{n-2} + 2P_{n-1}, P_{n-2} + 4P_{n-1}) = gcd(P_n, 2P_{n-1}).$$

Since $gcd(P_n, P_{n+1}) = 1$, we have $gcd(P_n, Q_n)$ is 1 or 2. By Theorem 2, it is clear that $gcd(P_n, Q_n) = 2$ if and only if n is even.

n	0	1	2	3	4	5	6	7	8	9	10
P_n	0	1	2	5	12	29	70	169	408	985	2,378
Q_n	2	2	6	14	34	82	198	478	1,154	2,786	6,726
$gcd(P_n,Q_n)$	2	1	2	1	2	1	2	1	2	1	2

Table 2: $gcd(P_n, Q_n)$ for some values of n.

Acknowledgements

The author would like to thank the referee for his/her valuable comments. The author would like to thank the Ubon Ratchathani Rajabhat University for the full support in this research.

References

- [1] Adb-Elhameed, W. M., & Zeyada, N. A. (2015) Some new identities of generalized Fibonacci and generalized Pell numbers via a new type of numbers, preprint, http: //arxiv.org/abs/1511.07588v1.
- [2] Chen, K. W. (2011) Greatest common divisors in shifted Fibonacci sequences. J. Integer Sequences, 14, 1–8 (Article 11.4.7). Available online at: https://cs.uwaterloo. ca/journals/JIS/VOL14/Chen/chen70.pdf.
- [3] Dudley, U., & Tucker, B. (1971) Greatest common divisors in altered Fibonacci sequences, *The Fibonacci Quarterly*, 9, 89–91.
- [4] Koshy, T. (2014) *Pell and Pell–Lucas Numbers with Applications*, Springer, Berlin.
- [5] Koshy, T. (2001) *Fibonacci and Lucas Numbers with Applications*, Wiley–Interscience Publications.
- [6] McDaniel, W. L. (1991) The G.C.D. in Lucas Sequences and Lehmer Number Sequences, *The Fibonacci Quarterly*, 29, 24–29.
- [7] Raji, W. (2004) An introductory course in elementary number theory, Mobius.