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Abstract: Abd-Elhameed and Zeyada have introduced the generalized sequence of numbers
(U»b7),~ such that sequence generalizes both generalized Fibonacci numbers (G%%),,, and
generalized Pell numbers (P%%),>o. In the present paper, we show a study of the greatest com-
mon divisors of some G%*, P& and U%b",
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1 Introduction

Let (F},)n>0 be the Fibonacci sequence givenby Foy =0, Fy = 1, Fl, 190 = F, 1 + F,, forn > 0
and let (L,,),>0 be the Lucas sequence givenby Lo = 2, Ly = 1, L,,49 = L1 + L, forn > 0.
Fibonacci numbers and Lucas numbers are famous for their special and amazing properties. An
important identity of Fibonacci and Lucas numbers that they mutually have is L,, = F,,_1 + Fj, 41
for any n > 1. Let GG, be the generalized Fibonacci numbers given by G’S’b =b—a, G"f’b = a and
GZﬁQ = GZ’L + G4 for n > 0. It is clear that such the generalized Fibonacci numbers are the
generalization of both Fibonacci and Lucas numbers. In fact, we have F,, = G1' and L,, = G13.
Koshy [5] has already proved that GfL’iQ =al, +bF, .
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Let (P,),>0 be the Pell sequence givenby Py =0, P, = 1, P,y = 2P,;1 + P, forn > 0
and let (Q,,)n>0 be the Pell-Lucas sequence given by Qy = 2, Q1 = 2, Qnia = 2Q,+1 + Qn
forn > 0. An important identity of Pell and Pell-Lucas numbers is ),, = P, 1 + P, for any
n > 1. Abd-Elhameed and Zeyada [1] have introduced the generalized Pell numbers as P b=
b—2a, PM* = aand P*, = 2P, + P%" for n > 0. It is clear that such the generalized Pell
numbers are the generalization of both Pell and Pell-Lucas numbers. In fact, we have P, = P2
and ), = P,%G. Furthermore, the authors [1] have introduced the new sequence of generalized
numbers (U%"),,>¢ as

7b7 ?b) 7b? )b7
Uty =rUpy + UsP" where Uy™" = b — ra and U™ = a.

We have G%° = U2*! and P** = U*»2, Thus, we have the two sequences (G%%),~o and

n

(P®%),>¢ are particular sequences of the more general sequence (U%""),,>o.

n

The greatest common divisor of positive integers a and b is the largest positive integer d
such that a and b are both multiples of d. Let gcd(a, b) represent the greatest common divisor
of a and b. The greatest common divisors of Fibonacci, Lucas, Pell and generalized Fibonacci
numbers have been studied widely, which can be seen in [2, 3, 4, 5, 6]. It is well known that
ged(F, F) = Facd(mn)> and ged(Py,, Py) = Pacd(mn)-

In this paper, we show our study of the greatest common divisors of G%°, P%* and U%"",

2 The main results

The following theorem is well known and can be found many textbook on number theory.

Theorem 1. [7] For every non-zero integers a and b, then gcd(a,b) = ged(a + bz, b) for any
integer .

Theorem 2. [4, 5] For every positive integers m, n, we have
(1) n|m if and only if F,,|F,,,
(2) n|m if and only if P,|P,,.

Theorem 3. [4, 5] For every positive integers m,n, we have gcd(F,,, F,) = Fyedmn), and
ged(Py,, P) = Pycd(m,n)- This implies that gcd(F,, Fr1) = (Pn, Pag) = L
Theorem 4. For every non-zero integers a, b, r and non-negative integer n, we have
ged(U U;:f’f) = ged(a, b).
Proof. We will proceed by induction on n. It is clear in case n = (0. Now, assume that
ged(USP" Uy = ged(a, b) for non-negative integer 7. Then we have
ged(Unty, Uty ) = ged (Ul UL + U™
= ged (U, Up™)
= ged(a, b).

This completes the proof of Theorem 4. [
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Let r = 1,2 in Theorem 4. We can get the corollary.
Corollary 5. For every non-zero integers a, b and non-negative integer n, we have
(1) ged(Ga", Go2,) = ged(a,b)
(2) ged(Py, Paty) = ged(a,b).
Corollary 6. For non-negative integer n, we have
(1) ged(Fy, Frya) =1,
(2) ged(Ln, Lny1) = 1,
(3) ged(Py, Pry1) =1,
(4) ged(Qn, Qu1) = 2.
Theorem 7. For every non-zero integer a and non-negative integers n, m, we have
ged (G5, G2) = Ja] Fyeatmn)-
Proof.

ged(Ge GE) = ged(aF—o + alFy, 1, aF, o+ akF, 1)
= ’a‘ ' ng<Fm—2 + Fm—la Fn—2 + Fn—l)
= |a| - ged(Fn, F)

= |a|Fgcd(m,n)-

Lemma 8. For every non-zero integers a, b, r and non-negative integer n, we have

ged (G2, G = ged(aF, o + bF, 1, 7F, ).
Proof.

ged(G2, GO = ged(aF,_y + bF,y_1,aF,_o + (b + 1) F,_1)
=gcd(aF,_o+bF, 1,aF, o+ bF, 1 +1rF, 1)
= ged(aF,_o + bF,_1,7F,_1).

Corollary 9. For every non-zero integers a, b, r and non-negative integer n, we have
(1) ged(GR?, G = ged(a, Fuov),

(2) ifr|b, then ged(G%Y, GY¥*7) = ged(aF, o, 7F,_1).
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Theorem 10. For every positive integer n, then gcd(F,,, Ly,) is 1 or 2. Moreover, we have

ged(F,, Ly,) = 2 if and only if 3|n.

Proof. We set a = b = 1 and r = 2 in Lemma 8, then gcd(F,,, L,)

1 or 2. By Theorem 2, it is clear that gcd(F,,, L,,) = 2 if and only if 3|n.

Table 1: gcd(F,, L,) for some values of n.

n 01112345 |6 |7 |8]9]10

E, 0|1 (11235 |8 13[21 |34 55

L, 201347111829 47|76 | 123
ged(Fo,Ly) (2111211 2]1]1]2 1

Theorem 11. For every non-zero integers a, b, r and non-negative integer n, we have

(1) ged(Us)", Usiiy) = ged(ra, b),

(2) ged(Ugly,), Usil?y) = ged(a, 1b).

= ged(Gy', GL°) =
ged(Fy_o + Fy1,2F, 1) = ged(F,, 2F,_1). Since ged(F),, Fr1) = 1, we have ged(F,, L,,) is

]

Proof. We will proceed by induction on n. It is clear that ged(Ug"", US™) = ged(b — ra,b) =
ged(ra, b) and ged(UMY", UL = ged(a, rb + a) = ged(a, rb).

a,b,r Uabr

First, we assume that gcd(Uy,,”", Uy."5) = ged(ra, b). Then we have

ged(Usy, Uy = ged(

a,b,r

a,b,r

a,b,

a,b,

r

= ged Uppias T U2n+r3)

= ged

= ged(Uy) 1,
= gcd(ra, b).

Finally, we assume that ged (U3}, Us:""

a,b,r

a,b,r

a,b,r

a,b,r

a,b,r
U2n+27 U2n+3 + U2n+2)

a,b,r

(TU2n+2 + Uyt

a,b,

a,b,r

a,b,r
U2n

(
(
(
= ged Uy, Uspily —
(
(

,
U2n+27 TU2n+1)

)

Us")

)

) = ged(a, 7b). Then we have

a,b,r

TU2n+3 + U2n+2

b b b
Ugn +T1 )

ged(Usts, Usits) = ged(Usyly, rUsp 'y + Usiis)
= ged(Uyfs, rUs )
= gcd(UQn+3, r(rug?:
= ng(UgnlrS? rU. é‘nlfz)
= ng(Ugnb«:& Snlfg
= ged(Usys, Usiiy)
= ged(a, rb).

This completes the proof of Theorem 11.
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Letr = 1,2 in Theorem 11. We can get the corollary.

Corollary 12. For every non-zero integers a, b and non-negative integer n, we have
(1) ged(Gyt, Griy) = ged(a,b),
cd(2a,b), ifniseven,
2) ged(Bet, Piy = B0
ged(a, 2b), ifnis odd.

Corollary 13. For non-negative integer n, we have
(1) ged(F, Fras) =1,
(2) ged(Ly, Lpyo) =1,
2, ifniseven;

1, ifnisodd,

(4) ng(Qna Qn+2) =2

Theorem 14. For every integers a, b and non-negative integer n, we have

P¥, = aP, +bP,,1.

(3) ged(Pr, Proy2) =

Proof. We will proceed by induction. We will proceed by induction on n. We have Pg’b =b=
aPy + bP; and ngb =a+ 2b = aP, + bP,. Now, we assume that P,?f2 = aP}, + bP,,, for every
ke€{0,1,2,...,n}. Then
Pty = 2Py, + Poyy
=2(aP, +bP,s1) + (aP,_1 + bF,)
=a(2P, + Py1) +b(2Py 1 + P)
=alP, i1+ 0P, .
This completes the proof of Theorem 14. [
Lemma 15. For every non-zero integers a, b, r, s and non-negative integer n, we have
ged(Pot Petrbtsy — gcd(aPy_g 4+ bPy_1,7Pu_y + sP,_1).
Proof.
ged(Peb, PATs) = ged(aPy—o + bPy 1, (a + 1) Py + (b+ 8)Py1)
=ged(aP, o+ bP,1,aP, o+ bP, 1 +71P, 5+ sP, 1)
=ged(aP,_o+bP,_1,7Py_o+ sP,_1). 0

Theorem 16. For every non-negative integer n, then gcd(P,, Q) is 1 or 2. Moreover, we have
ged(Py,, Q) = 2 if and only if n is even.

Proof. Weseta =r =1,0=2and s =4 in Lemma 15, then
ged(P,, Q) = ged(PH?, P2 = ged(Py_g + 2P, 1, Py_o +4P,_1) = gcd(P,,2P,_,).

Since ged(P,, P,11) = 1, we have ged(P,,Q,) is 1 or 2. By Theorem 2, it is clear that
ged(P,, Q,) = 2 if and only if n is even. H
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Table 2: gcd (P, Q) for some values of n.

n of1]2]3 456 ] 7] 8 9 10

P, 0[1]2]5 |12]29] 70 [169] 408 | 985 | 2,378

Qn 2[2]6|14]34|82]198]478 1,154 2,786 | 6,726

ged(PQu) 212121 2] 1] 2 1 2
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