Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 24, 2018, No. 1, 94–96 DOI: 10.7546/nntdm.2018.24.1.94-96

Short note on a new arithmetic function

Krassimir T. Atanassov

Department of Bioinformatics and Mathematical Modelling Institute of Biophysics and Biomedical Engineering Bulgarian Academy of Sciences Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria e-mail: krat@bas.bg

Received: 4 July 2016

Accepted: 29 October 2017

Abstract: A new arithmetic function is introduced. It is illustrated with some examples with well known arithmetic functions, as, e.g., π - and φ -functions. **Keywords:** Arithmetic functions φ , ψ and σ . **2010 Mathematics Subject Classification:** 11A25.

First, let for every arithmetic function F such that for every natural number $n \ge 1$, $F(n) \le n$, we define:

- 1. $F_0(n) = n$,
- 2. $F_1(n) = F(n)$,
- 3. for every $k \ge 1$: $F_{k+1}(n) = F(F_k(n))$.

Second, let us define the following new arithmetic function f_F , where F is the function, defined above, such that for every natural number $n \ge 2$:

$$f_F(n) = k$$
 if and only if for $k \ge 1, F_{k-1}(n) > 1$ and $F_k(n) = 1$. (1)

For example, if F is the function π , determining the number of primes that are less than or equal to n (see, e.g. [3, 4]), then the values of the new function are given in the following table.

Table 1

n	$\pi(n)$	$f_{\pi}(n)$	n	$\pi(n)$	$f_{\pi}(n)$	n	$\pi(n)$	$f_{\pi}(n)$	n	$\pi(n)$	$f_{\pi}(n)$
1	1	1	9	4	3	126	30	5	5380	708	7
2	1	1	10	4	3	127	31	6	5381	709	8
3	2	2	11	5	4	128	31	6	5382	709	8
4	2	2	:	÷	÷	:	÷	÷	:	:	÷
5	3	3	30	10	4	708	126	6	52710	5380	8
6	3	3	31	11	5	709	127	7	52711	5381	9
7	4	3	32	11	5	710	127	7	52712	5381	9
8	4	3	:	:	÷	:	•	÷	:	:	÷

For the natural number

$$n = \prod_{i=1}^{k} p_i^{\alpha_i},$$

where $k, \alpha_1, \ldots, \alpha_k, k \ge 1$ are natural numbers and p_1, \ldots, p_k are different primes, the following arithmetic functions are defined by:

$$\varphi(n) = \prod_{i=1}^{k} p_i^{\alpha_i - 1}(p_i - 1), \ \varphi(1) = 1,$$

(see, e.g. [3, 4]) and

$$\rho(n) = \prod_{i=1}^{k} (p_i^{\alpha_i} - p_i^{\alpha_i - 1} + \dots + p_i^0 (-1)^{\alpha_i}), \ \rho(1) = 1$$

(see [1, 2]).

Let

$$\Phi(n) = \max_{1 \le k \le n} \varphi(n).$$

Theorem 1. For every natural number $n \ge 2$

$$f_{\pi}(n) \le f_{\Phi}(n). \tag{2}$$

Proof. For n = 2 the assertion is valid, because $f_{\pi}(2) = 1 = f_{\Phi}(2)$. Let us assume that Theorem 1 is valid for some natural number n. We will prove it for n + 1.

For number n + 1 there are two cases.

If n + 1 is a prime number, then

$$f_{\pi}(n+1) = f_{\pi}(n) + 1$$

(by induction assumption)

$$\leq f_{\Phi}(n) + 1 = f_{\Phi}(n+1).$$

If n + 1 is not a prime number, then

$$f_{\pi}(n+1) = f_{\pi}(n)$$

(by (2) and induction assumption)

$$\leq f_{\Phi}(n) = f_{\Phi}(n+1).$$

Let

$$P(n) = \max_{1 \le k \le n} \rho(n).$$

Theorem 2. For every natural number $n \ge 2$

$$f_P(n) = f_\Phi(n). \tag{3}$$

The proof of (3) is similar than the above one.

Function F can have more than one argument. For example, let for the two natural numbers $n \ge 1, s \ge 2$:

- 1. $F_0(n,s) = n$,
- 2. $F_1(n,s) = \left[\frac{n}{s}\right],$
- 3. for every $k \ge 1$: $F_{k+1}(n,s) = F(F_k(n,s))$.

Then for f_F the following theorem is valid.

Theorem 3. For every natural numbers $n \ge 1, s \ge 2$ and for the above defined function F:

$$f_F(n,s) \le \log_s n.$$

Obviously, the equality exists for the case $n = s^k$ for some natural number k.

References

- Atanassov, K. (2001) Remarks on φ, σ, ψ and ρ functions. Notes on Number Theory and Discrete Mathematics, 7, 1, 1–3.
- [2] Atanassov, K. (2009) A remark on an arithmetic function. Part 2. *Notes on Number Theory and Discrete Mathematics*, 15, 3, 21–22.
- [3] Mitrinović, D., & Sándor, J. (1996) *Handbook of Number Theory*, Kluwer Academic Publishers.
- [4] Nagell, T. (1950) Introduction to Number Theory, John Wiley & Sons, New York.