
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Vol. 24, 2018, No. 1, 76–93
DOI: 10.7546/nntdm.2018.24.1.76-93

Fourier series of sums of products
of Bernoulli and Euler/Genocchi functions

Taekyun Kim1, Dae San Kim2,
Toufik Mansour3 and Gwan-Woo Jang4

1 Department of Mathematics, College of Science
Tianjin Polytechnic University

Tianjin 300160, China
and

Department of Mathematics, Kwangwoon University
Seoul 139-701, South Korea
e-mail: tkkim@kw.ac.kr

2 Department of Mathematics, Sogang University
Seoul 121-742, South Korea

e-mail: dskim@sogang.ac.kr
3 Department of Mathematics, University of Haifa

3498838 Haifa, Israel
e-mail: tmansour@univ.haifa.ac.il

4 Department of Mathematics, Kwangwoon University
Seoul 139-701, South Korea

e-mail: jgw5687@naver.com

Received: 28 December 2017 Accepted: 31 January 2018

Abstract: We study the Fourier series of functions related to sum of products of Bernoulli poly-
nomials and either Euler or Genocchi polynomials. As consequences, several new identities for
the Bernoulli, Euler, and Genocchi functions and numbers are derived.
Keywords: Fourier series, Bernoulli polynomials, Euler polynomials, Genocchi polynomials.
2010 Mathematics Subject Classification: 11B68, 42A16.

76



1 Introduction

We know that Bernoulli, Euler and Genocchi numbers and polynomials appear everywhere in
mathematics (for example, see [1,6,14–16,18,21–23]). The Bernoulli, Euler and Genocchi num-
bers have been defined by the generating functions t

et−1 =
∑

m≥0Bm
tm

m!
, 2
et+1

=
∑

m≥0Em
tm

m!
,

and 2t
et+1

=
∑

m≥0Gm
tm

m!
, respectively. The Bernoulli, Euler and Genocchi polynomials Bm(x),

Em(x) and Gm(x) have been given by the generating functions [1, 4–6, 12–19, 21–23])

t

et − 1
ext =

∑
m≥0

Bm(x)
tm

m!
,

2

et + 1
ext =

∑
m≥0

Em(x)
tm

m!
,

2t

et + 1
ext =

∑
m≥0

Gm(x)
tm

m!
,

respectively, for any real number x, namely x ∈ R. For instance, B0(x) = E0(x) = G1(x) = 1,
G0(x) = 0, B1(x) = E1(x) = x−1/2, B2(x) = x2−x+ 1/6, E2(x) = x2−x, G2(x) = 2x−1,
B3(x) = x3 − 3x2/2 + x/2, and E3(x) = x3 − 3x2/2 + 1/4, and G3(x) = 3x2 − 3x. Clearly,
Gm(x) = mEm−1(x), d

dx
Gm(x) = mGm−1(x) and Gm(x + 1) + Gm(x) = 2mxm−1, for all

m ≥ 1. For u ∈ R, we denote the fractional part of u by 〈u〉 = u − buc ∈ [0, 1). In this
paper, we are interested in six functions related to Bernoulli polynomials: α̃m(x) = αm(〈x〉),
β̃m(x) = βm(〈x〉), γ̃m(x) = γm(〈x〉), δ̃m(x) = δm(〈x〉), η̃m(x) = ηm(〈x〉) and θ̃m(x) = θm(〈x〉),
where

αm(x) =
m∑
k=0

Bk(x)Em−k(x), βm(x) =
m−1∑
k=0

Bk(x)Gm−k(x),

γm(x) =
m∑
k=0

1

k!(m− k)!
Bk(x)Em−k(x), δm(x) =

m−1∑
k=0

1

k!(m− k)!
Bk(x)Gm−k(x),

ηm(x) =
m−1∑
k=1

1

k(m− k)
Bk(x)Em−k(x), θm(x) =

m−1∑
k=1

1

k(m− k)
Bk(x)Gm−k(x),

where m ≥ 1, for αm(x), γm(x), and m ≥ 2, for βm(x), δm(x), ηm(x), θm(x). We recall the
following facts about Bernoulli functions:

−m!
∞∑

n=−∞,n 6=0

e2πinx

(2πin)m
= B̃m(x), m ≥ 2, (1)

−
∞∑

n=−∞,n 6=0

e2πinx

2πin
=

{
B̃1(x), x 6∈ Z,
0, x ∈ Z.

(2)

where B̃m(x) = Bm(〈x〉).
The Fourier series of a periodic function f(x) with period 1 is given by

∑∞
n=−∞ fne

2πinx,
where the coefficients fn are given by fn =

∫ 1

0
f(x)e−2πinxdx (for example, see [2, 3, 8–11, 16,

20, 24–26]), where i2 = −1.
The aim of this paper is to consider the Fourier series of α̃m(x), β̃m(x), γ̃m(x), δ̃m(x), η̃m(x)

and θ̃m(x), which lead to several new identities for the Bernoulli functions and numbers, see the
next three sections.
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2 The functions α̃m and β̃m
In this section, we consider the functions α̃m, (m ≥ 1), and β̃m, (m ≥ 2) on R, each of
which is periodic with period 1. The Fourier series of α̃m and β̃m are

∑∞
n=−∞A

(m)
n e2πinx and∑∞

n=−∞ Ã
(m)
n e2πinx, where A

(m)
n =

∫ 1

0
α̃m(x)e−2πinxdx =

∫ 1

0
αm(x)e−2πinxdx and Ã

(m)
n =∫ 1

0
β̃m(x)e−2πinxdx =

∫ 1

0
βm(x)e−2πinxdx, respectively.

Define Λm = 2Bm − Em−1 − 2
∑m

k=0BkEm−k + 2δm,1, for m ≥ 1, and Λ̃m = −Gm−1 −
2
∑m−2

k=0 BkGm−k + 2δm,2, for m ≥ 2. To proceed further, we note the following lemma.

Lemma 1. For m ≥ 1, ∫ 1

0

αm(x)dx =
1

m+ 2
Λm+1,∫ 1

0

βm(x)dx =
1

m+ 2
Λ̃m+1.

Moreover, αm(1) = αm(0) if and only if Λm = 0, and βm(1) = βm(0) if and only if Λ̃m = 0.

Proof. Recall that d
dx
Bk(x) = kBk−1(x) and d

dx
Ek(x) = kEk−1(x), for all k ≥ 1. So, by the

definitions, we have

d

dx
αm(x)dx =

m∑
k=0

kBk−1(x)Em−k(x) +
m∑
k=0

(m− k)Bk(x)Em−1−k(x)

=
m−1∑
k=0

(k + 1)Bk(x)Em−1−k(x) +
m−1∑
k=0

(m− k)Bk(x)Em−1−k(x)

= (m+ 1)αm−1(x).

Thus, αm(x) = 1
m+2

d
dx
αm+1(x), which implies∫ 1

0

αm(x)dx =
1

m+ 2
(αm+1(1)− αm+1(0)) =

1

m+ 2
Λm+1,

as claimed.
Recall that d

dx
Gk(x) = kGk−1(x), for all k ≥ 1. So, by the definitions,

d

dx
βm(x) =

m∑
k=0

kBk−1(x)Gm−k(x) +
m∑
k=0

(m− k)Bk(x)Gm−1−k(x)

=
m−1∑
k=0

(k + 1)Bk(x)Gm−1−k(x) +
m−1∑
k=0

(m− k)Bk(x)Gm−1−k(x)

= (m+ 1)βm−1(x).

Thus, βm(x) = 1
m+2

d
dx
βm+1(x), which implies∫ 1

0

βm(x)dx =
1

m+ 2
(βm+1(1)− βm+1(0)) =

1

m+ 2
Λ̃m+1,

as claimed.
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Now, we are ready to determine the Fourier coefficients A(m)
n and Ã(m)

n . The case n = 0

follows from Lemma 1, that is,

A
(m)
0 =

1

m+ 2
Λm+1, Ã

(m)
0 =

1

m+ 2
Λ̃m+1. (3)

Thus, let us assume that n 6= 0. By Lemma 1, we have

A(m)
n =

∫ 1

0

αm(x)e−2πinxdx =
1

2πin

∫ 1

0

d

dx
αm(x)e−2πinxdx− 1

2πin
αm(x)e−2πinx

∣∣x=1

x=0

=
m+ 1

2πin

∫ 1

0

αm−1(x)e−2πinxdx− 1

2πin
(αm(1)− αm(0))

=
m+ 1

2πin
A(m−1)
n − Λm

2πin
.

Note that A(1)
n =

∫ 1

0
(2x − 1)e−2πinxdx = − 2

2πin
and Ã(2)

n =
∫ 1

0
(3x − 3/2)e−2πinxdx = − 3

2πin
.

So, by induction on m, we obtain

A(m)
n = −(m+ 1)!

(2πin)m
− 1

m+ 2

m−1∑
j=1

(m+ 2)j
(2πin)j

Λm+1−j, (4)

where m ≥ 1 and (x)j = x(x− 1) · · · (x− j + 1) with (x)0 = 1. Similarly, one can show that

Ã(m)
n = −(m+ 1)m−1

(2πin)m−1
−

m−2∑
j=1

(m+ 1)j−1
(2πin)j

Λ̃m+1−j, (5)

for m ≥ 2.
Note that the functions α̃m and β̃m(x) are piecewise C∞. Moreover, the functions α̃m and β̃m

are continuous for those integers m with Λm = 0, (m ≥ 1), and Λ̃m = 0, (m ≥ 2), respectively,
and discontinuous with jump discontinuities at integers for those integers m with Λm 6= 0, (m ≥
1), and Λ̃m 6= 0, (m ≥ 2), respectively.

2.1 Case Λm = 0 (Λ̃m = 0)

Assume first that m is an integer with Λm = 0, (m ≥ 1) (Λ̃m = 0, (m ≥ 2)). Then αm(1) =

αm(0) (βm(1) = βm(0)). So, the functions α̃m and β̃m are piecewise C∞ and continuous. Thus,
the Fourier series of α̃m and β̃m converge uniformly to α̃m and β̃m, respectively. So, by (3), (4)
and (5), we have

α̃m(x) =
Λm+1

m+ 2
+
∑
n∈Z′

{
−(m+ 1)!

(2πin)m
− 1

m+ 2

m−1∑
j=1

(m+ 2)j
(2πin)j

Λm+1−j

}
e2πinx

=
Λm+1

m+ 2
− 1

m+ 2

m−1∑
j=1

(
m+ 2

j

)
Λm+1−jj!

∑
n∈Z′

e2πinx

(2πin)j
− (m+ 1)!

∑
n∈Z′

e2πinx

(2πin)m
,

β̃m(x) =
Λ̃m+1

m+ 2
+
∑
n∈Z′

{
−(m+ 1)m−1

(2πin)m−1
− 1

m+ 2

m−2∑
j=1

(m+ 2)j
(2πin)j

Λ̃m+1−j

}
e2πinx

=
Λ̃m+1

m+ 2
− 1

m+ 2

m−2∑
j=1

(
m+ 2

j

)
Λ̃m+1−jj!

∑
n∈Z′

e2πinx

(2πin)j
− (m+ 1)!

2

∑
n∈Z′

e2πinx

(2πin)m−1
,
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where we define Z′ = Z\{0}. Thus, by (1) and (2), we obtain

α̃m(x) =
Λm+1

m+ 2
+

1

m+ 2

m−1∑
j=2

(
m+ 2

j

)
Λm+1−jB̃j(x) + (m+ 1)B̃m(x)

+ Λm

{
B̃1(x), x 6∈ Z,
0, x ∈ Z,

β̃m(x) =
Λ̃m+1

m+ 2
+

1

m+ 2

m−2∑
j=2

(
m+ 2

j

)
Λ̃m+1−jB̃j(x) +

(
m+ 1

2

)
B̃m−1(x)

+ Λ̃m

{
B̃1(x), x 6∈ Z,
0, x ∈ Z.

for all x ∈ R. Thus, we can state the following results.

Theorem 2. Let m be a positive integer with Λm = 0. Then the function α̃m(x) has the Fourier
series expansion

α̃m(x) =
Λm+1

m+ 2
+
∑
n∈Z′

{
−(m+ 1)!

(2πin)m
− 1

m+ 2

m−1∑
j=1

(m+ 2)j
(2πin)j

Λm+1−j

}
e2πinx,

for all x ∈ R, where the convergence is uniform. Moreover,

α̃m(x) =
Λm+1

m+ 2
+

1

m+ 2

m−1∑
j=2

(
m+ 2

j

)
Λm+1−jB̃j(x) + (m+ 1)B̃m(x).

Theorem 3. Let m be an integer ≥ 2, with Λ̃m = 0. Then the function β̃m(x) has the Fourier
series expansion

β̃m(x) =
Λ̃m+1

m+ 2
+
∑
n∈Z′

{
−(m+ 1)m−1

(2πin)m−1
− 1

m+ 2

m−2∑
j=1

(m+ 2)j
(2πin)j

Λ̃m+1−j

}
e2πinx,

for all x ∈ R, where the convergence is uniform. Moreover,

β̃m(x) =
Λ̃m+1

m+ 2
+

1

m+ 2

m−2∑
j=2

(
m+ 2

j

)
Λ̃m+1−jB̃j(x) +

(
m+ 1

2

)
B̃m−1(x).

2.2 Case Λm 6= 0 (Λ̃m 6= 0)

Assume next that m is an integer with Λm 6= 0, (m ≥ 1) (Λ̃m 6= 0, (m ≥ 2)). Then αm(1) 6=
αm(0) (β(1) 6= β(0)). So, the functions α̃m and β̃m are pointwise C∞ and discontinuous with
jump discontinuities at integers. Thus, the Fourier series of α̃m(x) and β̃m converge pointwise to
α̃m(x) and β̃m for all x 6∈ Z, and converge to

αm(1) + αm(0)

2
= Bm −

1

2
Em−1,

βm(1) + βm(0)

2
= Bm−1 −

1

2
Gm−1,

for all x ∈ Z. Then, by Theorems 2 and 3, we obtain the following results.
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Theorem 4. Let m be a positive integer with Λm 6= 0. Then

Λm+1

m+ 2
+
∑
n∈Z′

{
−(m+ 1)!

(2πin)m
− 1

m+ 2

m−1∑
j=1

(m+ 2)j
(2πin)j

Λm+1−j

}
e2πinx

equals α̃m(x) for all x 6∈ Z and Bm − 1
2
Em−1 for all x ∈ Z, where the convergence is pointwise.

Moreover,

Λm+1

m+ 2
+

1

m+ 2

m−1∑
j=1

(
m+ 2

j

)
Λm+1−jB̃j(x) + (m+ 1)B̃m(x)

equals α̃m(x) for all x 6∈ Z and

Λm+1

m+ 2
+

1

m+ 2

m−1∑
j=2

(
m+ 2

j

)
Λm+1−jB̃j(x) + (m+ 1)B̃m(x)

equals Bm − 1
2
Em−1 for all x ∈ Z.

Theorem 5. Let m be an integer ≥ 2 with Λ̃m 6= 0. Then

Λ̃m+1

m+ 2
+
∑
n∈Z′

{
−(m+ 1)m−1

(2πin)m−1
− 1

m+ 2

m−1∑
j=1

(m+ 2)j
(2πin)j

Λ̃m+1−j

}
e2πinx

equals β̃m(x) for all x 6∈ Z andBm−1− 1
2
Gm−1 for all x ∈ Z, where the convergence is pointwise.

Moreover,

Λ̃m+1

m+ 2
+

1

m+ 2

m−2∑
j=1

(
m+ 2

j

)
Λ̃m+1−jB̃j(x) +

(
m+ 1

2

)
B̃m−1(x)

equals β̃m(x) for all x 6∈ Z and

Λ̃m+1

m+ 2
+

1

m+ 2

m−2∑
j=2

(
m+ 2

j

)
Λ̃m+1−jB̃j(x) +

(
m+ 1

2

)
B̃m−1(x)

equals Bm−1 − 1
2
Gm−1 for all x ∈ Z.

In [13, 19, 20], it has been shown that∫ 1

0

αm(x)dx = −2Em+1

m+ 1
+

2

m+ 1

m−1∑
k=1

m∑
`=k+1

(−1)k+`
(
m+1
`

)(
m
k

) B`Em+1−`.

Thus, by Lemma 1, we establish the following identity∫ 1

0

αm(x)dx = −2Em+1

m+ 1
+

2

m+ 1

m−1∑
k=1

m∑
`=k+1

(−1)k+`
(
m+1
`

)(
m
k

) B`Em+1−` =
Λm+1

m+ 2
.

Theorems 2, 3, 4 and 5 suggest the following question: For what values of integers m ≥ 1

does Λm = 0 (Λ̃m = 0) hold?
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3 The functions γ̃m and δ̃m
In this section, we consider the functions γ̃m, (m ≥ 1), and δ̃m, (m ≥ 2) on R, each of which is
periodic with period 1.

The Fourier series of γ̃m and δ̃m are
∞∑

n=−∞
B

(m)
n e2πinx and

∞∑
n=−∞

B̃
(m)
n e2πinx, where B(m)

n =∫ 1

0
γ̃m(x)e−2πinxdx =

∫ 1

0
γm(x)e−2πinxdx and B̃(m)

n =
∫ 1

0
δ̃m(x)e−2πinxdx =

∫ 1

0
δm(x)e−2πinxdx,

respectively.

Define Ωm = 2Bm

m!
− Em−1

(m−1)! −2
m∑
k=0

BkEm−k

k!(m−k)! + 2δm,1

(m−1)! , for m ≥ 1, and Ω̃m = −2
m−2∑
k=0

BkGm−k

k!(m−k)! −
Gm−1

(m−1)! + 2δm,2

(m−1)! , for m ≥ 2.
To proceed further, we note the following lemma.

Lemma 6. For m ≥ 1, ∫ 1

0

γm(x)dx =
1

2
Ωm+1,∫ 1

0

δm(x)dx =
1

2
Ω̃m+1,

Moreover, γm(1) = γm(0) if and only if Ωm = 0, and δm(1) = δm(0) if and only if Ω̃m = 0.

Proof. Recall that d
dx
Bk(x) = kBk−1(x) and d

dx
Ek(x) = kEk−1(x), for all k ≥ 1. So, by the

definitions, we have

d

dx
γm(x) =

m∑
k=0

kBk−1(x)Em−k(x)

k!(m− k)!
+

m∑
k=0

(m− k)Bk(x)Em−1−k(x)

k!(m− k)!

=
m−1∑
k=0

Bk(x)Em−1−k(x)

k!(m− 1− k)!
+

m−1∑
k=0

Bk(x)Em−1−k(x)

k!(m− 1− k)!
= 2γm−1(x).

Thus, γm(x) = 1
2
d
dx
γm+1(x), which gives

∫ 1

0
γm(x) = 1

2
(γm+1(1) − γm+1(0)) = 1

2
Ωm+1, as

claimed.
Recall that d

dx
Gk(x) = kGk−1(x), for all k ≥ 1. So, by the definitions,

d

dx
δm(x) =

m−1∑
k=0

kBk−1(x)Gm−k(x)

k!(m− k)!
+

m−1∑
k=0

(m− k)Bk(x)Gm−1−k(x)

k!(m− k)!

=
m−2∑
k=0

Bk(x)Gm−1−k(x)

k!(m− 1− k)!
+

m−2∑
k=0

Bk(x)Gm−1−k(x)

k!(m− 1− k)!
= 2δm−1(x).

Thus, δm(x) = 1
2
d
dx
δm+1(x), which implies

∫ 1

0
δm(x) = 1

2
(δm+1(1) − δm+1(0)) = 1

2
Ω̃m+1, as

claimed.

Now, we are ready to determine the Fourier coefficients B(m)
n , and B̃(m)

n . The case n = 0

follows from Lemma 6, that is,

B
(m)
0 =

1

2
Ωm+1, B̃

(m)
0 =

1

m+ 2
Ω̃m+1. (6)
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Thus, let us assume that n 6= 0. By Lemma 6, we have

B(m)
n =

∫ 1

0

γm(x)e−2πinxdx =
1

2πin

∫ 1

0

d

dx
γm(x)e−2πinxdx− 1

2πin
γm(x)e−2πinx

∣∣x=1

x=0

=
2

2πin

∫ 1

0

γm−1(x)e−2πinxdx− 1

2πin
(γm(1)− γm(0))

=
2

2πin
B(m−1)
n − Ωm

2πin
.

Similarly,

B̃(m)
n =

2

2πin
B̃(m−1)
n − Ω̃m

2πin
.

Note that B(1)
n =

∫ 1

0
(2x− 1)e−2πinxdx = − 2

2πin
and B̃(2)

n =
∫ 1

0
(2x− 1)e−2πinxdx = − 2

2πin
. So,

by induction on m, we obtain

B(m)
n = − 1

(πin)m
−

m−1∑
j=1

2j−1

(2πin)j
Ωm+1−j, (7)

where m ≥ 1 and (x)j = x(x− 1) · · · (x− j + 1) with (x)0 = 1. Similarly, one can show that

B̃(m)
n = − 1

(πin)m−1
−

m−2∑
j=1

2j−1

(2πin)j
Ω̃m+1−j, (8)

for m ≥ 2.
Note that the functions γ̃m, and δ̃m are piecewise C∞. Moreover, the functions γ̃m and δ̃m are

continuous for those integers m with Ωm = 0, (m ≥ 1), and Ω̃m = 0, (m ≥ 2), respectively, and
discontinuous with jump discontinuities at integers for those integers m with Ωm 6= 0, (m ≥ 1),
and Ω̃m 6= 0, (m ≥ 2), respectively.

3.1 Case Ωm = 0 (Ω̃m = 0)

Assume first that m is a positive integer with Ωm = 0 (Ω̃m = 0). Then γm(1) = γm(0) (δm(1) =

δm(0)). So, the functions γ̃m and δ̃m are piecewise C∞ and continuous. Thus, the Fourier series
of γ̃m and δ̃m converge uniformly to γ̃m and δ̃m, respectively. So, by (6), (7) and (8), we have

γ̃m(x) =
Ωm+1

2
−
∑
n∈Z′

{
1

(πin)m
+

m−1∑
j=1

2j−1

(2πin)j
Ωm+1−j

}
e2πinx

=
Ωm+1

2
+

m−1∑
j=1

2j−1

j!
Ωm+1−j(−j!)

∑
n∈Z′

e2πinx

(2πin)j
− 2m

∑
n∈Z′

e2πinx

(2πin)m
,

δ̃m(x) =
Ω̃m+1

2
+
∑
n∈Z′

{
− 2m−1

(2πin)m−1
−

m−2∑
j=1

2j−1

(2πin)j
Ω̃m+1−j

}
e2πinx

=
Ω̃m+1

2
−

m−2∑
j=1

2j−1

j!
Ω̃m+1−jj!

∑
n∈Z′

e2πinx

(2πin)j
− 2m−1

∑
n∈Z′

e2πinx

(2πin)m−1
.
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Thus, by (1) and (2), we obtain

γ̃m(x) =
Ωm+1

2
+

m−1∑
j=2

2j−1

j!
Ωm+1−jB̃j(x) +

2m

m!
B̃m(x) + Ωm

{
B̃1(x), x 6∈ Z,
0, x ∈ Z,

δ̃m(x) =
Ω̃m+1

2
+

m−2∑
j=2

2j−1

j!
Ω̃m+1−jB̃j(x) +

2m−1

(m− 1)!
B̃m−1(x) + Ω̃m

{
B̃1(x), x 6∈ Z,
0, x ∈ Z.

for all x ∈ R. Thus, we can state the following results.

Theorem 7. Let m be a positive integer with Ωm = 0. Then the function γ̃m(x) has the Fourier
series expansion

γ̃m(x) =
Ωm+1

2
+
∑
n∈Z′

{
− 1

(πin)m
−

m−1∑
j=1

2j−1

(2πin)j
Ωm+1−j

}
e2πinx,

for all x ∈ R, where the convergence is uniform. Moreover,

γ̃m(x) =
m−1∑

j=0,j 6=1

2j−1

j!
Ωm+1−jB̃j(x) +

2m

m!
B̃m(x),

for all x ∈ R.

Theorem 8. Let m be an integer ≥ 2 with Ω̃m = 0. Then the function δ̃m(x) has the Fourier
series expansion

δ̃m(x) =
Ω̃m+1

2
+
∑
n∈Z′

{
− 1

(πin)m−1
−

m−2∑
j=1

2j−1

(2πin)j
Ω̃m+1−j

}
e2πinx,

for all x ∈ R, where the convergence is uniform. Moreover,

δ̃m(x) =
Ω̃m+1

2
+

m−2∑
j=2

2j−1

j!
Ω̃m+1−jB̃j(x) +

2m−1

(m− 1)!
B̃m−1(x),

for all x ∈ R.

3.2 Case Ωm 6= 0 (Ω̃m 6= 0)

Assume next that m is a positive integer with Ωm 6= 0, (m ≥ 1) (Ω̃m 6= 0, (m ≥ 2)). Then
γm(1) 6= γm(0) (δ(1) 6= δ(0)). So, the functions γ̃m and δ̃m are piecewise C∞ and discontinuous
with jump discontinuities at integers. Thus, the Fourier series of γ̃m(x) and δ̃m converge pointwise
to γ̃m(x) and δ̃m for all x 6∈ Z, and converge to

γm(1) + γm(0)

2
=
Bm

m!
− Em−1

2(m− 1)!
=

2m

m!
Bm,

δm(1) + δm(0)

2
=

Bm−1

(m− 1)!
− Gm−1

2(m− 1)!
=

2m−1

(m− 1)!
Bm−1,

for all x ∈ Z. Then, by Theorems 7 and 8, we obtain the following results.
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Theorem 9. Let m be a positive integer with Ωm 6= 0. Then

Ωm+1

2
−
∑
n∈Z′

{
1

(πin)m
+

m−1∑
j=1

2j−1

(2πin)j
Ωm+1−j

}
e2πinx

equals γ̃m(x) for all x 6∈ Z and 2m

m!
Bm for all x ∈ Z, where the convergence is pointwise.

Moreover,

m−1∑
j=0

2j−1

j!
Ωm+1−jB̃j(x) +

2m

m!
B̃m(x)

equals γ̃m(x) for all x 6∈ Z and

m−1∑
j=0,j 6=1

2j−1

j!
Ωm+1−jB̃j(x) +

2m

m!
B̃m(x)

equals 2m−1

(m−1)!Bm−1 for all x ∈ Z.

Theorem 10. Let m be an integer m ≥ 2 with Ω̃m 6= 0. Then

Ω̃m+1

2
−
∑
n∈Z′

{
1

(πin)m−1
+

m−2∑
j=1

2j−1

(2πin)j
Ω̃m+1−j

}
e2πinx

equals δ̃m(x) for all x 6∈ Z and 2m−1Bm−1

(m−1)! for all x ∈ Z, where the convergence is pointwise.
Moreover,

Ω̃m+1

2
+

m−2∑
j=1

2j−1

j!
Ω̃m+1−jB̃j(x) +

2m−1

(m− 1)!
B̃m−1(x)

equals δ̃m(x) for all x 6∈ Z and

Ω̃m+1

2
+

m−2∑
j=2

2j−1

j!
Ω̃m+1−jB̃j(x) +

2m−1

(m− 1)!
B̃m−1(x)

equals 2m−1Bm−1

(m−1)! for all x ∈ Z.

In [13, 19, 20], it has been shown that∫ 1

0

γm(x)dx = −2Em+1

m+ 1
+

2

m+ 1

m−1∑
k=1

m∑
`=k+1

(−1)k+`
(
m+ 1

`

)
B`Em+1−`.

Thus, by Lemma 6, we establish the following identity

− 2Em+1

m+ 1
+

2

m+ 1

m−1∑
k=1

m∑
`=k+1

(−1)k+`
(
m+ 1

`

)
B`Em+1−` =

Ωm+1

2
.

Theorems 7, 8, 9 and 10 suggest the following question: For what values of integers m ≥ 1

does Ωm = 0 (Ω̃m = 0) hold?
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4 The functions η̃m and θ̃m
In this section, we consider the functions η̃m, (m ≥ 2) and θ̃m, (m ≥ 2) on R, each of which is pe-

riodic with period 1. The Fourier series of η̃m and θ̃m are
∞∑

n=−∞
C

(m)
n e2πinx and

∞∑
n=−∞

C̃
(m)
n e2πinx,

where C(m)
n =

∫ 1

0
η̃m(x)e−2πinxdx =

∫ 1

0
ηm(x)e−2πinxdx and C̃

(m)
n =

∫ 1

0
θ̃m(x)e−2πinxdx =∫ 1

0
θm(x)e−2πinxdx, respectively.

Define ∆m = −2
m−1∑
k=1

BkEm−k

k(m−k) −
Em−1

m−1 and ∆̃m = −2
m−2∑
k=1

BkGm−k

k(m−k) −
Gm−1

m−1 + 2δm,2

m−1 , for all

m ≥ 2. To proceed further, we note the following lemma.

Lemma 11. For m ≥ 2, ∫ 1

0

ηm(x)dx =
∆m+1 + 2

m(m+1)
Em+1

m
,∫ 1

0

θm(x)dx =
∆̃m+1 + 2

m(m+1)
Gm+1

m
.

Moreover, ηm(1) = ηm(0) if and only if ∆m = 0, and θm(1) = θm(0) if and only if ∆̃m = 0.

Proof. Recall that d
dx
Bk(x) = kBk−1(x) and d

dx
Ek(x) = kEk−1(x), for all k ≥ 1. So, by the

definitions, we have

d

dx
ηm(x) =

m−1∑
k=1

kBk−1(x)Em−k(x)

k(m− k)
+

m−1∑
k=1

(m− k)Bk(x)Em−1−k(x)

k(m− k)

= (m− 1)
m−2∑
k=1

Bk(x)Em−1−k(x)

k(m− 1− k)
+
Em−1(x) +Bm−1(x)

m− 1

= (m− 1)ηm−1(x) +
Em−1(x) +Bm−1(x)

m− 1
.

Thus, ηm(x) = d
dx

(ηm+1(x)/m− (Em+1(x) +Bm+1(x))/(m2(m+ 1))), which gives∫ 1

0

ηm(x) =
∆m+1 + 2

m(m+1)
Em+1

m
,

as claimed.
Recall that d

dx
Gk(x) = kGk−1(x), for all k ≥ 1. So, by the definitions,

d

dx
θm(x) =

m−1∑
k=1

kBk−1(x)Gm−k(x)

k(m− k)
+

m−1∑
k=1

(m− k)Bk(x)Gm−1−k(x)

k(m− k)

= (m− 1)
m−2∑
k=1

Bk(x)Gm−1−k(x)

k(m− 1− k)
+
Gm−1(x)

m− 1

= (m− 1)θm−1(x) +
Gm−1(x)

m− 1
.
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Thus, θm(x) = d
dx

(θm+1(x)/m−Gm+1(x)/(m2(m+ 1))), which implies∫ 1

0

θm(x) =
∆̃m+1 + 2

m(m+1)
Gm+1

m
,

as claimed.

Now, we are ready to determine the Fourier coefficients C(m)
n and C̃(m)

n . The case n = 0

follows from Lemma 11, that is,

C
(m)
0 =

∆m+1 + 2
m(m+1)

Em+1

m
, C̃

(m)
0 =

∆̃m+1 + 2
m(m+1)

Gm+1

m
. (9)

Thus, let us assume that n 6= 0. By Lemma 11, we have

C(m)
n =

∫ 1

0

ηm(x)e−2πinxdx =
1

2πin

∫ 1

0

d

dx
ηm(x)e−2πinxdx− 1

2πin
ηm(x)e−2πinx

∣∣x=1

x=0

=
m− 1

2πin

∫ 1

0

ηm−1(x)e−2πinxdx− 1

2πin
(ηm(1)− ηm(0))

+
1

2πin(m− 1)

∫ 1

0

(Bm−1(x) + Em−1(x))e−2πinxdx.

One shows that for ` ≥ 1,∫ 1

0

B`(x)e−2πinxdx =

{
− `!

(2πin)`
, n 6= 0,

0, n = 0,∫ 1

0

E`(x)e−2πinxdx =

{
2
∑`

k=1
(`)k−1

(2πin)k
E`−k+1, n 6= 0,

− 2
`+1

E`+1, n = 0,∫ 1

0

G`(x)e−2πinxdx =

{
2
∑`−1

k=1
(`)k−1

(2πin)k
G`−k+1, n 6= 0,

− 2
`+1

G`+1, n = 0.

Thus,

C(m)
n =

m− 1

2πin
C(m−1)
n − ∆m

2πin
− (m− 2)!

(2πin)m
+

2

2πin(m− 1)
Φm,

where Φm =
m−1∑
k=1

(m−1)k−1

(2πin)k
Em−k. Similarly,

C̃(m)
n =

m− 1

2πin
C̃(m−1)
n − ∆̃m

2πin
+

2

2πin(m− 1)
Φ̃m,

where Ω̃m =
m−2∑
k=1

(m−1)k−1

(2πin)k
Gm−k. Note that C(2)

n =
∫ 1

0
(x2 − x + 1/4)e−2πinxdx = − 2

(2πin)2
and

C̃
(2)
n =

∫ 1

0
(x− 1/2)e−2πinxdx = − 1

2πin
. So, by induction on m, we obtain

C(m)
n =− (m− 1)!

(2πin)m
−

m−2∑
j=1

(m− 1)j−1
(2πin)j

∆m+1−j

− (m− 1)!

(2πin)m
Hm−1 +

m−2∑
j=1

2(m− 1)j−1
(2πin)j(m− j)

Φm+1−j,

(10)
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where m ≥ 2. Similarly, one can show that

C̃(m)
n = − (m− 1)!

(2πin)m−1
−

m−2∑
j=1

(m− 1)j−1
(2πin)j

∆̃m+1−j +
m−2∑
j=1

2(m− 1)j−1
(2πin)j(m− j)

Φ̃m+1−j, (11)

for m ≥ 2.

Lemma 12. We have

m−2∑
j=1

2(m− 1)j−1
(2πin)j(m− j)

Φm+1−j

=
2

m

m−1∑
s=1

(m)s
(2πin)s

Em−s+1

m− s+ 1
(Hm−1 −Hm−s)−

(m− 1)!

(2πin)m
(Hm−1 − 1),

m−2∑
j=1

2(m− 1)j−1
(2πin)j(m− j)

Φ̃m+1−j

=
2

m

m−1∑
s=1

(m)s
(2πin)s

Gm−s+1

m− s+ 1
(Hm−1 −Hm−s).

Proof. We present only the proof of the first identity, as that of the second one is analogous. By
the definitions, we have

m−2∑
j=1

2(m− 1)j−1
(2πin)j(m− j)

Φm+1−j =
m−2∑
j=1

2(m− 1)j−1
(2πin)j(m− j)

m−j∑
k=1

(m− 1)k−1
(2πin)k

Em−j−k+1

=
m−2∑
j=1

m−j∑
k=1

2(m− 1)j+k−2
(2πin)j+k(m− j)

Em−j−k+1

=
2

m

m−2∑
j=1

m−j∑
k=1

(m)j+k−1
(2πin)j+k(m− j)

Em−j−k+1

=
2

m

m−2∑
j=1

m∑
s=j+1

(m)s−1
(2πin)s(m− j)

Em−s+1.

Thus by interchanging the order of the sums, we obtain

m−2∑
j=1

2(m− 1)j−1
(2πin)j(m− j)

Φm+1−j =
2

m


m−1∑
s=2

(m)s−1
(2πin)s

Em−s+1

s−1∑
j=1

1

m− j
+

m−2∑
j=1

m!

(2πin)m(m− j)
E1


=

2

m

m−1∑
s=1

(m)s
(2πin)s

Em−s+1

m− s+ 1
(Hm−1 −Hm−s)−

(m− 1)!

(2πin)m
(Hm−1 − 1),

as required.
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Hence, by (10) and (11) with using Lemma 12, we obtain

C(m)
n =

−1

m

m−2∑
s=1

(m)s
(2πin)s

∆m+1−s −
2(m− 1)!

(2πin)m
Hm−1

+
2

m

m−2∑
s=1

(m)s
(2πin)s

Em−s+1

m+ 1− s
(Hm−1 −Hm−s), (12)

C̃(m)
n =

−1

m

m−2∑
s=1

(m)s
(2πin)s

∆̃m+1−s −
(m− 1)!

(2πin)m−1
Hm−1

+
2

m

m−2∑
s=1

(m)s
(2πin)s

Gm−s+1

m+ 1− s
(Hm−1 −Hm−s), (13)

for m ≥ 2.
Note that the functions η̃m and θ̃m(x), m ≥ 2, are piecewise C∞. Moreover, the functions

η̃m and θ̃m are continuous for those integers m ≥ 2 with ∆m = 0 and ∆̃m = 0, respectively, and
discontinuous with jump discontinuities at integers for those integers m ≥ 2 with ∆m 6= 0 and
∆̃m 6= 0, respectively.

4.1 Case ∆m = 0 (∆̃m = 0)
Assume first that m is an integer ≥ 2 with ∆m = 0 (∆̃m = 0). Then ηm(1) = ηm(0) (θm(1) =

θm(0)). So, the functions η̃m and θ̃m are piecewise C∞ and continuous. Thus, the Fourier series
of η̃m and θ̃m converge uniformly to η̃m and θ̃m, respectively. So, by (9), (12) and (13), we have

η̃m(x) =
∆m+1

m
+

2Em+1

m2(m+ 1)

+
∑
n∈Z′

{
−2(m− 1)!

(2πin)m
Hm−1 +

1

m

m−2∑
s=1

(m)s
(2πin)s

(
2
Em+1−s

m+ 1− s
(Hm−1 −Hm−s)−∆m+1−s

)}
e2πinx

=
∆m+1

m
+

2Em+1

m2(m+ 1)

+
1

m

m−2∑
s=1

(
m

s

)(
2
Em+1−s

m+ 1− s
(Hm−1 −Hm−s)−∆m+1−s

)
s!
∑
n∈Z′

e2πinx

(2πin)s

− 2Hm−1(m− 1)!
∑
n∈Z′

e2πinx

(2πin)m

and

θ̃m(x) =
∆̃m+1

m
+

2Gm+1

m2(m+ 1)

+
∑
n∈Z′

{
− (m− 1)!

(2πin)m−1
Hm−1 +

1

m

m−2∑
s=1

(m)s
(2πin)s

(
2
Gm+1−s

m+ 1− s
(Hm−1 −Hm−s)− ∆̃m+1−s

)}
e2πinx

=
∆̃m+1

m
+

2Gm+1

m2(m+ 1)

+
1

m

m−2∑
s=1

(
m

s

)(
2
Gm+1−s

m+ 1− s
(Hm−1 −Hm−s)− ∆̃m+1−s

)
s!
∑
n∈Z′

e2πinx

(2πin)s

−Hm−1(m− 1)!
∑
n∈Z′

e2πinx

(2πin)m−1
.
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Thus, by (1) and (2), we obtain

η̃m(x) =
∆m+1

m
+

2Em+1

m2(m+ 1)

− 1

m

m−1∑
s=2

(
m

s

)(
2Em+1−s

m+ 1− s
(Hm−1 −Hm−s)−∆m+1−s

)
B̃s(x) +

2

m
Hm−1B̃m(x)

+ ∆m

{
B̃1(x), x 6∈ Z,
0, x ∈ Z,

θ̃m(x) =
∆̃m+1

m
+

2Gm+1

m2(m+ 1)

− 1

m

m−1∑
s=2

(
m

s

)(
2Gm+1−s

m+ 1− s
(Hm−1 −Hm−s)− ∆̃m+1−s

)
B̃s(x) +Hm−1B̃m−1(x)

+ ∆̃m

{
B̃1(x), x 6∈ Z,
0, x ∈ Z,

for all x ∈ R. Thus, we can state the following results.

Theorem 13. Let m ≥ 2 be an integer with ∆m = 0. Then the function η̃m(x) has the Fourier
series expansion

η̃m(x) =
∆m+1

m
+

2Em+1

m2(m+ 1)

+
∑
n∈Z′

{
−2(m− 1)!

(2πin)m
Hm−1 +

1

m

m−2∑
s=1

(m)s
(2πin)s

(
2
Em+1−s

m+ 1− s
(Hm−1 −Hm−s)−∆m+1−s

)}
e2πinx,

for all x ∈ R, where the convergence is uniform. Moreover,

η̃m(x) =
∆m+1

m
+

2Em+1

m2(m+ 1)

− 1

m

m−1∑
s=2

(
m

s

)(
2Em+1−s

m+ 1− s
(Hm−1 −Hm−s)−∆m+1−s

)
B̃s(x) +

2

m
Hm−1B̃m(x),

for all x ∈ R.

Theorem 14. Let m ≥ 2 be an integer with ∆̃m = 0. Then the function θ̃m(x) has the Fourier
series expansion

θ̃m(x) =
∆̃m+1

m
+

2Gm+1

m2(m+ 1)

+
∑
n∈Z′

{
− (m− 1)!

(2πin)m
Hm−1 +

1

m

m−2∑
s=1

(m)s
(2πin)s

(
2
Gm+1−s

m+ 1− s
(Hm−1 −Hm−s)− ∆̃m+1−s

)}
e2πinx,

for all x ∈ R, where the convergence is uniform. Moreover,

θ̃m(x) =
∆̃m+1

m
+

2Gm+1

m2(m+ 1)

− 1

m

m−2∑
s=2

(
m

s

)(
2Gm+1−s

m+ 1− s
(Hm−1 −Hm−s)− ∆̃m+1−s

)
B̃s(x) +Hm−1B̃m−1(x),

for all x ∈ R.
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4.2 Case ∆m 6= 0 (∆̃m 6= 0)

Assume next that m is an integer ≥ 2 with ∆m 6= 0 (∆̃m 6= 0). Then ηm(1) 6= ηm(0) (θ(1) 6=
θ(0)). So, the functions η̃m and θ̃m are piecewiseC∞ and discontinuous with jump discontinuities
at integers. Thus, the Fourier series of η̃m(x) and θ̃m converge pointwise to η̃m(x) and θ̃m for all
x 6∈ Z, and converge to

ηm(1) + ηm(0)

2
= − Em−1

2(m− 1)
,

θm(1) + θm(0)

2
=

2m−1

m− 1
Bm−1,

for all x ∈ Z. Then, by Theorems 13 and 14, we obtain the following results.

Theorem 15. Let m ≥ 2 be an integer with Λm 6= 0. Then
∆m+1

m
+

2Em+1

m2(m+ 1)

+
∑
n∈Z′

{
−2(m− 1)!

(2πin)m
Hm−1 +

1

m

m−2∑
s=1

(m)s
(2πin)s

(
2
Em+1−s
m+ 1− s

(Hm−1 −Hm−s)−∆m+1−s

)}
e2πinx,

equals η̃m(x) for all x 6∈ Z and − Em−1

2(m−1) for all x ∈ Z, where the convergence is pointwise.
Moreover,

∆m+1

m
+

2Em+1

m2(m+ 1)

− 1

m

m−1∑
s=1

(
m

s

)(
2Em+1−s

m+ 1− s
(Hm−1 −Hm−s)−∆m+1−s

)
B̃s(x) +

2

m
Hm−1B̃m(x),

equals η̃m(x) for all x 6∈ Z and
∆m+1

m
+

2Em+1

m2(m+ 1)

− 1

m

m−1∑
s=2

(
m

s

)(
2Em+1−s

m+ 1− s
(Hm−1 −Hm−s)−∆m+1−s

)
B̃s(x) +

2

m
Hm−1B̃m(x),

equals − Em−1

2(m−1) for all x ∈ Z.

Theorem 16. Let m ≥ 2 be an integer with ∆̃m 6= 0. Then

∆̃m+1

m
+

2Gm+1

m2(m+ 1)

+
∑
n∈Z′

{
−(m− 1)!

(2πin)m
Hm−1 +

1

m

m−2∑
s=1

(m)s
(2πin)s

(
2
Gm+1−s
m+ 1− s

(Hm−1 −Hm−s)− ∆̃m+1−s

)}
e2πinx,

equals θ̃m(x) for all x 6∈ Z and 2m−1Bm−1

m−1 for all x ∈ Z, where the convergence is piecewise.
Moreover,

∆̃m+1

m
+

2Gm+1

m2(m+ 1)

− 1

m

m−2∑
s=1

(
m

s

)(
2Gm+1−s

m+ 1− s
(Hm−1 −Hm−s)− ∆̃m+1−s

)
B̃s(x) +Hm−1B̃m−1(x)
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equals θ̃m(x) for all x 6∈ Z and

∆̃m+1

m
+

2Gm+1

m2(m+ 1)
− 1

m

m−2∑
s=1

(
m

s

)(
2Gm+1−s

m+ 1− s
(Hm−1 −Hm−s)− ∆̃m+1−s

)
B̃s(x) +Hm−1B̃m−1(x)

equals 2m−1Bm−1

m−1 for all x ∈ Z.

In [13, 19, 20] has been shown that∫ 1

0
ηm(x)dx =

2

m(m2 − 1)

m−2∑
k=0

m∑
`=k+2

(−1)k+`+1

(
m+1
`

)(
m−2
k

)B`Em+1−`.

Thus, by Lemma 11, we establish the following identity

2

m(m2 − 1)

m−2∑
k=0

m∑
`=k+2

(−1)k+`+1

(
m+1
`

)(
m−2
k

)B`Em+1−` =
∆m+1

m
+

2Em+1

m2(m+ 1)
.

Theorems 13, 14, 15 and 16 suggest the following question: For what values of integers m ≥ 2

does ∆m = 0 (∆̃m = 0) hold?
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