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Abstract: For k ∈ N ∪ {0} and r ∈ Z/pZ \ {0}, we say that a subset X of Z/pZ is a k−almost
arithmetic progression with difference r if there is an arithmetic progression Y with difference r
containing X such that |Y \X| ≤ k. Let X be a k−almost arithmetic progression with difference
r such that k + 2 < |X| < p − 4k − 9. The main result of this paper is following: if there is
t ∈ Z/pZ \ {0} such that X is also a k−almost arithmetic progression with difference t, then
t ∈ {±r}. Moreover, we will show that our result is sharp.
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1 Introduction

In this paper, p is a prime number. We denote by Z/pZ the set of congruence classes modulo p
with its usual field structure, and we write (Z/pZ)∗ := Z/pZ \ {0}. For all m ∈ Z, we denote by
m its projection in Z/pZ. For any X and Y subsets of Z/pZ and r ∈ (Z/pZ)∗, set

X + Y := {x+ y : x ∈ X, y ∈ Y } and rX := {rx : x ∈ X}.

Given r ∈ (Z/pZ)∗, we say that Y is an arithmetic progression with difference r if there is
y ∈ Z/pZ such that Y =

{
y+ ir : 0 ≤ i ≤ |Y |−1

}
. For k ∈ N∪{0}, we say that a subset X of

Z/pZ is a k−almost arithmetic progression with difference r if there is an arithmetic progression
Y with difference r such that X ⊆ Y and |Y \ X| ≤ k. The family of k−almost arithmetic
progressions with difference r will be denoted by AAP(r, k).

In additive number theory, it has been shown that the study of k-almost arithmetic progres-
sions is very important. For instance, some of the most important inverse theorems in Z/pZ can
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be stated in terms of k-almost arithmetic progressions, see [5],[1],[2]. Also the study of k−almost
arithmetic progressions has applications in anti-Ramsey theory, see [3]. The purpose of this paper
is to continue with the study of k-almost arithmetic progressions. Specifically, given a subset X
of Z/pZ, we are interested in determine how many s ∈ (Z/pZ)∗ can be found such that X is a
k−almost arithmetic progression with difference s. The main result of this paper is the following.

Theorem 1.1. Let r, t ∈ (Z/pZ)∗ and k ∈ N ∪ {0}. Let X be a subset of Z/pZ such that
X ∈ AAP(r, k) ∩ AAP(t, k). If

k + 2 < |X| < p− 4k − 9,

then t ∈ {±r}.

This paper is organized as follows. In Section 2 we define the m−almost equidistributed
subsets and we start studying them. In Section 3 we state and prove a property of the m−almost
equidistributed subsets that is used in the proof of Theorem 1.1. In Section 4 we give two families
of almost equidistributed subsets; these families are the ones used in proof of Theorem 1.1, and
the theory developed in the previous sections will be used in these two cases. In Section 5 we
complete the proof of Theorem 1.1; furthermore, at the end of this section, we present some
examples which show that Theorem 1.1 is sharp.

To avoid confusion, we remark that in this paper the symbols . . . ,−1, 0, 1, 2, . . . will be el-
ements of Z while . . . ,−1, 0, 1, 2, . . . are their respective projections into Z/pZ. For all s ∈
(Z/pZ)∗, s−1 is its multiplicative inverse.

2 Almost equidistribution

In this section we define the almost equidistributed subsets, and we study some of their properties
that will be used in the forthcoming sections. Recall thatm is the projection ofm ∈ Z into Z/pZ.
Define Γ := {m ∈ Z : 0 ≤ m ≤ p − 1}; thus there is one and only one representative of each
class of Z/pZ in Γ. For any x, y ∈ Z/pZ, let m ∈ Γ be such that m = y − x and set

[x, y] :=
{
x+ i ∈ Z/pZ : i ∈ Γ, i ≤ m

}
which is called an interval. Hence, for all r ∈ (Z/pZ)∗ and X an nonempty subset of Z/pZ, X
is an arithmetic progression with common difference r if and only if there are x, y ∈ Z/pZ such
that r[x, y] = X . For any a ∈ R, we denote by [a] the greatest integer less than or equal to a.

Let m ∈ Γ \ {0} and x ∈ Z/pZ. We write

Im(x) :=
[
x, x+m− 1

]
.

We say that a subset Y of Z/pZ ism−almost equidistributed if it satisfies the following property:
for any x, y ∈ Z/pZ such that Im(x) and Im(y) are disjoint, we have that∣∣∣∣∣Im(x) ∩ Y

∣∣− ∣∣Im(y) ∩ Y
∣∣∣∣∣ ≤ 1.
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Notice that if Y is m−almost equidistributed, then Z/pZ \ Y is also m−almost equidistributed.
Whenever Y is an m−almost equidistributed subset of Z/pZ, we define

indm(Y ) := max
0≤i≤[ p

m
]−1

∣∣∣Im(im) ∩ Y ∣∣∣.
Until the end this section, we fixm ∈ Γ\{0}, and we write I(x) := Im(x) for each x ∈ Z/pZ and
ind(Y ) := indm(Y ). The subsets I

(
0
)
, I
(
m
)
, I
(
2m
)
, . . . , I

(
([ p
m

]− 1)m
)

are pairwise disjoint;
thus, for all 0 ≤ i ≤ [ p

m
]− 1, we have that

ind(Y )− 1 ≤
∣∣I(im) ∩ Y ∣∣ ≤ ind(Y ). (1)

We need four technical lemmas that will be used in the forthcoming results.

Lemma 2.1. Let Z and W be subsets of Z/pZ, k ∈ N ∪ {0}, n ∈ Γ and Y be an m−almost
equidistributed subset of Z/pZ. Assume that

[
0, n
]
\ Z = Y \W and |Y \W | > k + 2. Define

α1 :=

∣∣∣∣∣I
(
m

[
n

m

])
∩
[
0, n
]
∩ Y

∣∣∣∣∣,
α2 :=

∣∣∣∣∣
[
m

[
p

m

]
, p− 1

]
∩
[
0, n
]
∩ Y

∣∣∣∣∣.
(i) If n < m

[
p
m

]
, then

α1 +

[
n

m

]
ind(Y ) > k + 2.

(ii) If n ≥ m
[
p
m

]
, then

α2 +

[
n

m

]
ind(Y ) > k + 2.

Proof. Inasmuch as Y \W ⊆
[
0, n
]
, we conclude that

Y \W ⊆
[
0, n
]
∩ Y. (2)

Since
[
m
[
p
m

]
, p− 1

]
∪
⋃[ p

m
]−1

i=0 I(im) is a partition of Z/pZ, we get from (2) that

k + 2 < |Y \W | ≤ α2 +

[ p
m
]−1∑

i=0

∣∣∣I(im) ∩ [0, n] ∩ Y ∣∣∣. (3)

If n < m
[
p
m

]
, then

∣∣∣[m[ pm], p− 1
]
∩
[
0, n
]∣∣∣ =

∣∣I(im) ∩ [0, n]∣∣ = 0 for all
[
n
m

]
< i <

[
p
m

]
,

and then (i) is true by (1) and (3). If n ≥ m
[
p
m

]
, then

[
n
m

]
=
[
p
m

]
and (ii) follows from (1) and

(3).

Lemma 2.2. Let Z and W be subsets of Z/pZ, k ∈ N ∪ {0}, n ∈ Γ and Y be an m−almost
equidistributed subset of Z/pZ. Assume that

[
0, n
]
\ Z = Y \W and |Z| ≤ k. Define

β1 :=

∣∣∣∣∣I
(
m

[
n

m

])
∩
[
0, n
]
∩ (Z/pZ \ Y )

∣∣∣∣∣,
β2 :=

∣∣∣∣∣
[
m

[
p

m

]
, p− 1

]
∩
[
0, n
]
∩ (Z/pZ \ Y )

∣∣∣∣∣.
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(i) If n < m
[
p
m

]
, then β1 +

[
n
m

]
(m− ind(Y )) ≤ k.

(ii) If n ≥ m
[
p
m

]
, then β2 +

[
n
m

]
(m− ind(Y )) ≤ k.

Proof. Since
[
0, n
]
\ Z ⊆ Y , we have that[

0, n
]
∩ (Z/pZ \ Y ) ⊆ Z. (4)

Insomuch as
[
m
[
p
m

]
, p− 1

]
∪
⋃[ p

m
]−1

i=0 I(im) is a partition of Z/pZ, we get from (4) that

k ≥ |Z| ≥ β2 +

[ p
m
]−1∑

i=0

∣∣∣I(im) ∩ [0, n] ∩ (Z/pZ \ Y )
∣∣∣. (5)

If n < m
[
p
m

]
, then

∣∣∣[m[ pm], p− 1
]
∩
[
0, n
]∣∣∣ =

∣∣I(im) ∩ [0, n]∣∣ = 0 for all
[
n
m

]
< i <

[
p
m

]
,

and then (i) is true by (1) and (5). If n ≥ m
[
p
m

]
, then

[
n
m

]
=
[
p
m

]
and (ii) follows from (1) and

(5).

Lemma 2.3. Let Z and W be subsets of Z/pZ, k ∈ N ∪ {0}, n ∈ Γ and Y be an m−almost
equidistributed subset of Z/pZ. Assume that

[
0, n
]
\ Z = Y \W and |W | ≤ k. Define

γ1 :=

∣∣∣∣∣I
(
m

[
n

m

])
∩
(
Z/pZ \

[
0, n
])
∩ Y

∣∣∣∣∣,
γ2 :=

∣∣∣∣∣
[
m

[
p

m

]
, p− 1

]
∩
(
Z/pZ \

[
0, n
])
∩ Y

∣∣∣∣∣.
(i) If n < m

[
p
m

]
, then

γ1 + γ2 +

([
p

m

]
−
[
n

m

]
− 1

)
(ind(Y )− 1) ≤ k.

(ii) If n ≥ m
[
p
m

]
, then

γ2 ≤ k.

Proof. Since Y \W ⊆
[
0, n
]
, we get that(

Z/pZ \
[
0, n
])
∩ Y ⊆ W. (6)

Insomuch as
[
m
[
p
m

]
, p− 1

]
∪
⋃[ p

m
]−1

i=0 I(im) is a partition of Z/pZ, we get from (6) that

k ≥ |W |

≥ γ2 +

[ p
m
]−1∑

i=0

∣∣∣I(im) ∩ (Z/pZ \ [0, n]) ∩ Y ∣∣∣
= γ2 +

[ p
m
]−1∑

i=[ n
m
]

∣∣∣I(im) ∩ (Z/pZ \ [0, n]) ∩ Y ∣∣∣.
Then the statements follow from (1).
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Lemma 2.4. Let Z and W be subsets of Z/pZ, k ∈ N ∪ {0}, n ∈ Γ and Y be an m−almost
equidistributed subset of Z/pZ. Assume that

[
0, n
]
\ Z = Y \W , |Y \W | < p − 4k − 9 and

max{|W |, |Z|} ≤ k. Define

δ1 :=

∣∣∣∣∣I
(
m

[
n

m

])
∩
(
Z/pZ \

[
0, n
])
∩ (Z/pZ \ Y )

∣∣∣∣∣,
δ2 :=

∣∣∣∣∣
[
m

[
p

m

]
, p− 1

]
∩
(
Z/pZ \

[
0, n
])
∩ (Z/pZ \ Y )

∣∣∣∣∣.
(i) If n < m

[
p
m

]
, then

δ1 + δ2 +

([
p

m

]
−
[
n

m

]
− 1

)
(m− ind(Y ) + 1) > 2k + 9.

(ii) If n ≥ m
[
p
m

]
, then

δ2 > 2k + 9.

Proof. Insomuch as |Y \W | < p− 4k − 9 and |W | ≤ k, we have that

p− |Y | ≥ p− (|Y \W |+ |W |) > 3k + 9. (7)

Furthermore, since Y \W =
[
0, n
]
\ Z, we have that

[
0, n
]
∩ (Z/pZ \ Y ) ⊆ Z, so∣∣∣[0, n] ∩ (Z/pZ \ Y )

∣∣∣ ≤ |Z| ≤ k. (8)

Since (
Z/pZ \

[
0, n
])
∩ (Z/pZ \ Y ) = (Z/pZ \ Y ) \

[
0, n
]
,

we get that ∣∣∣(Z/pZ \ [0, n]) ∩ (Z/pZ \ Y )
∣∣∣ = p− |Y | −

∣∣∣[0, n] ∩ (Z/pZ \ Y )
∣∣∣. (9)

We conclude that

2k + 9 <p− |Y | −
∣∣[0, n] ∩ (Z/pZ \ Y )

∣∣ by (7) and (8)

=
∣∣∣(Z/pZ \ [0, n]) ∩ (Z/pZ \ Y )

∣∣∣ by (9). (10)

Inasmuch as
[
m
[
p
m

]
, p− 1

]
∪
⋃[ p

m
]−1

i=0 I(im) is a partition of Z/pZ, we get from (10) that

2k + 9 <
∣∣∣(Z/pZ \ [0, n]) ∩ (Z/pZ \ Y )

∣∣∣
≤ δ2 +

[ p
m
]−1∑

i=0

∣∣∣I(im) ∩ (Z/pZ \ [0, n]) ∩ (Z/pZ \ Y )
∣∣∣

= δ2 +

[ p
m
]−1∑

i=[ n
m
]

∣∣∣I(im) ∩ (Z/pZ \ [0, n]) ∩ (Z/pZ \ Y )
∣∣∣.

Hence the claims follow from (1).
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A consequence of the previous lemmas is the following corollary.

Corollary 2.5. Let Z and W be subsets of Z/pZ, k ∈ N ∪ {0} , n ∈ Γ and Y be an m−almost
equidistributed subset of Z/pZ. Assume:

•
[
p
m

]
> 1.

•
[
0, n
]
\ Z = Y \W .

• k + 2 < |Y \W | < p− 4k − 9.

• max{|W |, |Z|} ≤ k.

Then we have the following inequalities.

(i)
[
p
m

]
−
[
n
m

]
> 0.

(ii)
([

n
m

]
+ 1
)
ind(Y ) > k + 2.

(iii)
[
n
m

]
(m− ind(Y )) ≤ k.

(iv)
([

p
m

]
−
[
n
m

]
− 1
)
(ind(Y )− 1) ≤ k.

(v)
([

p
m

]
−
[
n
m

]
+ 1
)
(m− ind(Y ) + 1) > 2k + 8.

Proof. Before we start with the proofs of the claims, recall that Z/pZ \ Y is m−almost equidis-
tributed since Y is an m−almost equidistributed subset of Z/pZ. First we show (i) assuming
it is false and arriving at a contradiction. Thus we assume that

[
n
m

]
=
[
p
m

]
and consequently

n ≥ m
[
p
m

]
. Proceeding as in the first part of Lemma 2.4 (until (10)), we obtain that

2k + 9 <
∣∣∣(Z/pZ \ [0, n]) ∩ (Z/pZ \ Y )

∣∣∣
=

∣∣∣∣∣
[
m

[
p

m

]
, p− 1

]
∩
(
Z/pZ \

[
0, n
])
∩ (Z/pZ \ Y )

∣∣∣∣∣,
and therefore

2k + 9 <

∣∣∣∣∣
[
m

[
p

m

]
, p− 1

]
∩
(
Z/pZ \

[
0, n
])
∩ (Z/pZ \ Y )

∣∣∣∣∣
≤

∣∣∣∣∣I
(
m

[
p

m

])
∩
(
Z/pZ \

[
0, n
])
∩ (Z/pZ \ Y )

∣∣∣∣∣
≤

∣∣∣∣∣I
(
m

[
p

m

])
∩ (Z/pZ \ Y )

∣∣∣∣∣
=

∣∣∣∣∣I
(
m

[
n

m

])
∩ (Z/pZ \ Y )

∣∣∣∣∣. (11)
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Now, since
[
n
m

]
=
[
p
m

]
> 1, we have that I

(
m
([

n
m

]
− 1
))

and I
(
m
[
n
m

])
are disjoint. Inasmuch

as Z/pZ \ Y is m−almost equidistributed, we conclude that∣∣∣∣∣I
(
m

[
n

m

])
∩ (Z/pZ \ Y )

∣∣∣∣∣ ≤
∣∣∣∣∣I
(
m

([
n

m

]
− 1

))
∩ (Z/pZ \ Y )

∣∣∣∣∣+ 1. (12)

On the other hand, as a consequence of Lemma 2.2 (ii), we get that∣∣∣∣∣I
(
m

([
n

m

]
− 1

))
∩ (Z/pZ \ Y )

∣∣∣∣∣+ 1 ≤
[
n

m

]
(m− ind(Y )) + 1 ≤ k + 1. (13)

From (11), (12) and (13), notice that 2k + 9 < k + 1 which is impossible.
To show (ii), we use that

[
n
m

]
<
[
p
m

]
by (i); thus n < m

[
p
m

]
. From this fact, we get that∣∣∣∣∣I

(
m

[
n

m

])
∩
[
0, n
]
∩ Y

∣∣∣∣∣ ≤
∣∣∣∣∣I
(
m

[
n

m

])
∩ Y

∣∣∣∣∣ ≤ ind(Y ). (14)

Then, from Lemma 2.1 (i) and (14), we have proven (ii).
Since n < m

[
p
m

]
by (i), we get that (iii) is a consequence of Lemma 2.2 (i) (since β1 ≥ 0).

Also, insomuch as n < m
[
p
m

]
by (i), we have that (iv) is a straight consequence of Lemma

2.3 (i) (since γ1, γ2 ≥ 0).
We prove (v). From (i), n < m

[
p
m

]
. Insomuch as Z/pZ \ Y is almost equidistributed and[

n
m

]
<
[
p
m

]
, we conclude that∣∣∣∣∣I

(
m

[
n

m

])
∩
(
Z/pZ \

[
0, n
])
∩ (Z/pZ \ Y )

∣∣∣∣∣
≤

∣∣∣∣∣I
(
m

[
n

m

])
∩ (Z/pZ \ Y )

∣∣∣∣∣
≤m− ind(Y ) + 1. (15)

Furthermore, the inequality
[
p
m

]
> 1 yields I

(
m
[
p
m

])
and I

(
m
([

p
m

]
− 1
))

are disjoint. Thus,
inasmuch as Z/pZ \ Y is almost equidistributed, we conclude that∣∣∣∣∣

[
m

[
p

m

]
, p− 1

]
∩
(
Z/pZ \

[
0, n
])
∩ (Z/pZ \ Y )

∣∣∣∣∣
≤

∣∣∣∣∣I
(
m

[
p

m

])
∩
(
Z/pZ \

[
0, n
])
∩ (Z/pZ \ Y )

∣∣∣∣∣
≤

∣∣∣∣∣I
(
m

[
p

m

])
∩ (Z/pZ \ Y )

∣∣∣∣∣
≤

∣∣∣∣∣I
(
m

([
p

m

]
− 1

))
∩ (Z/pZ \ Y )

∣∣∣∣∣+ 1

≤m− ind(Y ) + 2. (16)

As a consequence of Lemma 2.4 (i), (15) and (16), we have shown (v).
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3 Main property

In this section we state and prove Lemma 3.2 which is the main property of the almost equidis-
tributed subsets that we need in the proof of Theorem 1.1. Before we present Lemma 3.2, we
need a particular case of it.

Lemma 3.1. Let Z and W be subsets of Z/pZ, k ∈ N ∪ {0} , n ∈ Γ, m ∈ Γ \ {0} and Y be an
m−almost equidistributed subset of Z/pZ. Assume:

•
[
p
m

]
≥ m.

•
[
0, n
]
\ Z = Y \W .

• k + 2 < |Y \W | < p− 4k − 9.

• max{|W |, |Z|} ≤ k.

If min
{[

n
m

]
,
[
p
m

]
−
[
n
m

]
, indm(Y ),m− indm(Y )

}
= 0, then m = 1.

Proof. Write l := min
{[

n
m

]
,
[
p
m

]
−
[
n
m

]
, indm(Y ),m− indm(Y )

}
. Since

[
p
m

]
≥ m and p 6= 1,

we conclude that
[
p
m

]
> 1, and then the assumptions of Corollary 2.5 are satisfied. On one hand,

Corollary 2.5 (i) yields
[
p
m

]
−
[
n
m

]
> 0. On the other hand, the definition of indm(Y ) implies it

is not zero and therefore we have to study two cases:

• Suppose that l =
[
n
m

]
. Then Corollary 2.5 (ii) implies that indm(Y ) > k + 2. Hence

Corollary 2.5 (iv) leads to
[
p
m

]
−
[
n
m

]
− 1 = 0 and thereby Corollary 2.5 (v) yields m −

indm(Y ) > k + 3. Adding
[
n
m

]
with

[
p
m

]
−
[
n
m

]
and indm(Y ) with m− indm(Y ), we get

that

1 =

[
p

m

]
≥ m > 2k + 5,

which is impossible.

• Suppose that l = m − indm(Y ). Corollary 2.5 (v) yields
[
p
m

]
−
[
n
m

]
> 2k + 7. Then

Corollary 2.5 (iv) implies that indm(Y )− 1 = 0 and consequently m = 1.

Lemma 3.2. Let Z and W be subsets of Z/pZ, k ∈ N ∪ {0} , n ∈ Γ, m ∈ Γ \ {0} and Y be an
m−almost equidistributed subset of Z/pZ. Assume:

•
[
p
m

]
≥ m.

•
[
0, n
]
\ Z = Y \W .

• k + 2 < |Y \W | < p− 4k − 9.

• max{|W |, |Z|} ≤ k.

Then m = 1.
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Proof. Write l := min
{[

n
m

]
,
[
p
m

]
−
[
n
m

]
, indm(Y ),m− indm(Y )

}
. We shall show that if l > 0,

then we contradict one of the assumptions; this will be enough to conclude the proof since we will
have that l = 0 and hence the assertion will be a consequence of Lemma 3.1. Assume, from now
on, that l > 0. Insomuch as

[
p
m

]
≥ m and p 6= 1, we have that

[
p
m

]
> 1, and then the assumptions

of Corollary 2.5 are satisfied. Now see that l2 ≤ k by Corollary 2.5 (iii). We proceed studying
four cases:

• Suppose that l =
[
n
m

]
. Corollary 2.5 (ii) yields indm(Y ) > k+2

l+1
. Hence

indm(Y )− 1 ≥
[
k + 2

l + 1

]
.

Then Corollary 2.5 (iv) leads to

k ≥ (indm(Y )− 1)

([
p

m

]
−
[
n

m

]
− 1

)
≥
[
k + 2

l + 1

]([
p

m

]
−
[
n

m

]
− 1

)
;

thus, inasmuch as l2 ≤ k, we get that
[
p
m

]
−
[
n
m

]
− 1 ≤ l+ 1. Insomuch as

[
p
m

]
−
[
n
m

]
≥ l,

we have that there is δ ∈ {0, 1, 2} such that
[
p
m

]
−
[
n
m

]
= l + δ. Corollary 2.5 (iii) implies

thatm−indm(Y ) ≤ k
l
. Corollary 2.5 (v) lets us conclude thatm−indm(Y ) > 2k+8−(l+δ+1)

l+δ+1
,

and thus
2k + 8− (l + δ + 1)

l + δ + 1
< m− indm(Y ) ≤ k

l
. (17)

Nonetheless, insomuch as l2 ≤ k and δ ∈ {0, 1, 2}, (17) is false.

• Suppose that l =
[
p
m

]
−
[
n
m

]
. If l =

[
n
m

]
, we proceed as above; then we assume that

[
n
m

]
≥

l + 1. Corollary 2.5 (v) implies that m − indm(Y ) > 2k+7−l
l+1

. Insomuch as
[
n
m

]
≥ l + 1,

Corollary 2.5 (iii) leads to m− indm(Y ) ≤ k
l+1

. Thus

2k + 7− l
l + 1

< m− indm(Y ) ≤ k

l + 1

which is impossible since l2 ≤ k.

• Suppose that l = indm(Y ). From Corollary 2.5 (ii), we get that
[
n
m

]
> k+2−l

l
. Corollary

2.5 (iii) leads to

k ≥
[
n

m

]
(m− indm(Y )) >

(
k + 2− l

l

)
(m− indm(Y ));

thus, inasmuch as l2 ≤ k, we get m − indm(Y ) ≤ l. Therefore m − indm(Y ) = l by the
definition of l. Thus, insomuch as m − indm(Y ) = l = indm(Y ), Corollary 2.5 (ii) and
Corollary 2.5 (iii) yield l ≥ 2. On one hand, Corollary 2.5 (iv) leads to

[
p
m

]
−
[
n
m

]
≤ k+l−1

l−1 .
On the other hand, Corollary 2.5 (v) implies that

[
p
m

]
−
[
n
m

]
> 2k+7−l

l+1
. Thus

2k + 7− l
l + 1

<

[
p

m

]
−
[
n

m

]
≤ k + l − 1

l − 1
; (18)

however, (18) is impossible since l2 ≤ k and l ≥ 2.
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• Suppose that l = m − indm(Y ). If l = indm(Y ), then we proceed as above. Thus we
assume that indm(Y )− 1 ≥ l. From Corollary 2.5 (v), we have that

[
p
m

]
−
[
n
m

]
> 2k+7−l

l+1
;

then, from this inequality and Corollary 2.5 (iv), we conclude that indm(Y )− 1 < k(l+1)
2k+6−2l .

Hence

l ≤ indm(Y )− 1 <
k(l + 1)

2k + 6− 2l

which is impossible since l2 ≤ k.

4 Examples of almost equidistributed subsets

In this section we show two families of examples of almost equidistributed subsets. Throughout
this section, s ∈ (Z/pZ)∗, m ∈ Γ is such that m = s and l := min{m, p−m}. Furthermore, for
any n ∈ Z and x ∈ Z/pZ, if confusion is possible with the overline, we write x · n (resp. n · x)
instead of xn (resp. nx).

Lemma 4.1. Let x ∈ Z/pZ and X ∈ AAP
(
1, 0
)
.

(i) If |X| ≤
[
p
l

]
, then |Il(x) ∩ sX| ≤ 1.

(ii) If |X| ≥
[
p
l

]
+ 1, then |Il(x) ∩ sX| ≥ 1.

Proof. Let n ∈ Z be such that X =
{
n, n+ 1, . . . , n+ |X| − 1

}
. First we show (i). Since

|X| ≤
[
p
l

]
, there is q ∈ Z such that

{ln, l(n+ 1), . . . l(n+ |X| − 1)} ⊆ {q, q + 1, . . . , q + p− 1}.

As a consequence of this fact, for all j, k ∈ {0, . . . , |X| − 1} such that j 6= k, we have that

l ≤ |l(n+ j)− l(n+ k)| < p.

Thus, for any w ∈ Z/pZ and y, z ∈ X , if l ·y, l ·z ∈
[
w,w+ l − 1

]
, then y = z. Since l ∈ {±s},

claim (i) follows.
We assume that (ii) is false and we will arrive at a contradiction. Thus assume that Il(x) ∩

sX = ∅. Write Y :=
{
n, n+ 1, . . . , n+

[
p
l

]}
, Y ′ := Y \

{
n+

[
p
l

]}
and Y ′′ := Y \

{
n
}

; hence

|Y ′| = |Y ′′| = [p
l
]. Since x is arbitrary in (i), we may apply (i) with Y ′ (resp. Y ′′) and x + jl for

each 1 ≤ j ≤ [p
l
]; consequently, for each 1 ≤ j ≤ [p

l
],∣∣Il(x+ jl

)
∩ sY ′

∣∣ ≤ 1 and
∣∣Il(x+ jl

)
∩ sY ′′

∣∣ ≤ 1. (19)

On the other hand,

Z/pZ =

[ p
l
]⋃

j=0

Il
(
x+ jl

)
,

and then

sY =

[ p
l
]⋃

j=0

(
Il
(
x+ jl

)
∩ sY

)
. (20)
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Note that Il(x) ∩ sY ⊆ Il(x) ∩ sX = ∅. Since |Y | =
[
p
l

]
+ 1, the Pigeonhole Principle and the

equalities in (20) yield at least one of the following cases:

• There is 1 ≤ j ≤ [p
l
] such that

∣∣Il(x+ jl
)
∩ sY

∣∣ ≥ 3.

• There are 1 ≤ j < k ≤ [p
l
] such that min

{∣∣Il(x+ jl
)
∩ sY

∣∣, ∣∣Il(x+ kl
)
∩ sY

∣∣} ≥ 2.

Inasmuch as |Y \ Y ′| = |Y \ Y ′′| = 1, in any of these cases we contradict (19), and hence (ii) is
true.

Lemma 4.2. Let X ∈ AAP
(
1, 0
)
. Then sX is l−almost equidistributed.

Proof. Let n ∈ Z be such that X =
{
n, n+ 1, . . . , n+ |X| − 1

}
. We prove the statement by

induction on |X|. If |X| ≤
[
p
l

]
, then the claim is true by Lemma 4.1 (i). From now on, we

assume that |X| >
[
p
l

]
and that the statement is true for all Z ⊆ Z/pZ such that |Z| < |X|.

Define X ′ := X \ {n}. To complete the induction, we assume that the claim is false and we will
arrive at a contradiction; thus we assume that there are x, y ∈ Z/pZ such that Il(x) ∩ Il(y) = ∅
and |Il(x) ∩ sX| > |Il(y) ∩ sX|+ 1. Since |X ′| < |X|, the induction basis yields∣∣∣|Il(x) ∩ sX ′| − |Il(y) ∩ sX ′|

∣∣∣ ≤ 1.

Thus s · n ∈ Il(x). Define Y ′ :=
{
n, n+ 1, . . . , n+

[
p
l

]}
and Y ′′ := Y ′ \

{
n+

[
p
l

]}
. From

Lemma 4.1 (ii), we have that
|Il(y) ∩ sY ′| ≥ 1;

hence there is 0 ≤ k ≤
[
p
l

]
such that s · n+ k ∈ Il(y). Let k0 be the smallest k ∈ N ∪ {0} such

that s · n+ k ∈ Il(y), so 0 < k0 ≤
[
p
l

]
. From Lemma 4.1 (i), we obtain that

|Il(x) ∩ sY ′′| ≤ 1;

since s ·n ∈ Il(x), s ·n+ k 6∈ Il(x) for all 1 ≤ k ≤
[
p
l

]
− 1. Thus, insomuch as Il(x)∩ Il(y) = ∅,

we conclude that s · n+ k 6∈ Il(x) for all 0 < k ≤ k0. Hence, defining

Y :=
{
n+ k0 + 1, n+ k0 + 2, . . . , n+ |X| − 1

}
,

we have by induction that

|Il(x) ∩ sY | =
∣∣(Il(x) ∩ sX) \

{
s · n

}∣∣ = |Il(x) ∩ sX| − 1

and
|Il(y) ∩ sY | =

∣∣(Il(y) ∩ sX) \
{
s · n+ k0

}∣∣ = |Il(y) ∩ sX| − 1

so |Il(x) ∩ sY | > |Il(y) ∩ sY |+ 1; however, since |Y | < |X|, we have that∣∣∣|Il(x) ∩ sY | − |Il(y) ∩ sY |
∣∣∣ ≤ 1,

and this contradiction completes the proof.
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We start the construction of the second family of examples of almost equidistributed subsets.

Lemma 4.3. Let x ∈ Z/pZ and X ∈ AAP
(
1, 0
)
.

(i) If |X| ≤ l, then |I[ p
l
](x) ∩ s−1X| ≤ 1.

(ii) If |X| ≥ l + 1, then |I[ p
l
](x) ∩ s−1X| ≥ 1.

Proof. Let n ∈ Z be such that X =
{
n, n+ 1, . . . , n+ |X| − 1

}
and h ∈ Γ such that h = s−1.

Assume that l = m (the case l = p − m is solved in the same way changing the signs where
it is necessary). First we show (i). Suppose that there are 0 ≤ k ≤ j ≤ l − 1 such that
h(n+ j), h(n+ k) ∈ I[ p

l
](x). This means that there is q ∈ Z with 0 ≤ q ≤

[
p
l

]
such that

q = h(k − j) or q = h(j − k); without loss of generality, we assume that q = h(j − k). On one
hand, l = m = s; thus there is g ∈ Γ such that

hl = gp+ 1. (21)

On the other hand, since q = h(j − k), there is f ∈ Γ such that

h(j − k) = fp+ q. (22)

Inasmuch as j−k < l, we get that f ≤ g. If we multiply (21) by j−k and (22) by l, we conclude
that

(j − k)gp+ (j − k) = hl(j − k) = flp+ lq. (23)

Since q ≤
[
p
l

]
, we have that j − k, lq ∈ Γ and therefore (23) yields j − k = lq. Moreover,

by this equality and (23), we have that (j − k)gp = flp. From the equalities j − k = lq and
(j − k)gp = flp, we deduce that f = gq. Since gq = f ≤ g and j − k < l, we obtain from (21)
and (22) that q = 0. Therefore h(n+ j) = h(n+ k) and (i) is proven.

We assume that (ii) is false and we will arrive at a contradiction. Thus assume that I[ p
l
](x) ∩

s−1X = ∅. Write Y :=
{
n, n+ 1, . . . , n+ l

}
, Y ′ := Y \

{
n+ l

}
and Y ′′ := Y \ {n}; hence

|Y ′| = |Y ′′| = l. Since x is arbitrary in (i), we may apply (i) with Y ′ (resp. Y ′′) and x + jl for
each 1 ≤ j ≤ l; consequently, for each 1 ≤ j ≤ l,∣∣∣∣∣I[ pl ]

(
x+ j

[
p

l

])
∩ s−1Y ′

∣∣∣∣∣ ≤ 1 and

∣∣∣∣∣I[ pl ]
(
x+ j

[
p

l

])
∩ s−1Y ′′

∣∣∣∣∣ ≤ 1. (24)

See that

Z/pZ =
l⋃

j=0

I[ p
l
]

(
x+ j

[
p

l

])
,

and then

sY =
l⋃

j=0

(
I[ p

l
]

(
x+ j

[
p

l

])
∩ s−1Y

)
. (25)

Notice that I[ p
l
](x) ∩ s−1Y ⊆ I[ p

l
](x) ∩ s−1X = ∅. Insomuch as |Y | = l + 1, the Pigeonhole

Principle and (25) imply that at least one of the following assertions holds:
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• The existence of 1 ≤ j ≤ l such that
∣∣∣I[ p

l
]

(
x+ j

[
p
l

])
∩ s−1Y

∣∣∣ ≥ 3.

• The existence of 1 ≤ j < k ≤ l such that min
{∣∣∣I[ p

l
]

(
x+j

[
p
l

])
∩s−1Y

∣∣∣, ∣∣∣I[ p
l
]

(
x+k

[
p
l

])
∩

s−1Y
∣∣∣} ≥ 2.

Inasmuch as |Y \ Y ′| = |Y \ Y ′′| = 1, any of these assertions contradicts (24); hence (ii) is
true.

Lemma 4.4. Let X ∈ AAP
(
1, 0
)
. Then s−1X is

[
p
l

]
−almost equidistributed.

Proof. Let n ∈ Z be such thatX =
{
n, n+ 1, . . . , n+ |X| − 1

}
. The proof is done by induction

on |X|. If |X| ≤ l, then the claim is true by Lemma 4.3 (i). We assume that |X| > l and that
the statement is true for all Z ⊆ Z/pZ such that |Z| < |X|. Define X ′ := X \ {n}. We
complete the induction assuming that the claim is false and, as a consequence of this, arriving at
a contradiction. Let x, y ∈ Z/pZ be such that I[ p

l
](x) ∩ I[ p

l
](y) = ∅, and assume, without loss of

generality, that |I[ p
l
](x) ∩ s−1X| > |I[ p

l
](y) ∩ s−1X|+ 1. Insomuch as |X ′| < |X|, we notice that∣∣∣∣∣I[ p

l
](x) ∩ s−1X ′

∣∣− ∣∣I[ p
l
](y) ∩ s−1X ′

∣∣∣∣∣ ≤ 1,

and therefore s−1 · n ∈ I[ p
n
](x). Define Y ′ :=

{
n, n+ 1, . . . , n+ l

}
and Y ′′ := Y \

{
n+ l

}
.

Lemma 4.3 (ii) yields ∣∣I[ p
l
](y) ∩ s−1Y ′

∣∣ ≥ 1;

hence there is 0 ≤ k ≤ l such that s−1 · n+ k ∈ I[ p
l
](y). Let k0 be the smallest k ∈ N ∪ {0} such

that s−1 · n+ k ∈ I[ p
l
](y) so 0 < k0 ≤ l. On the other hand, Lemma 4.3 (i) implies that∣∣I[ p

l
](x) ∩ s−1Y ′′

∣∣ ≤ 1;

since s−1·n ∈ I[ p
l
](x), s−1·n+ k 6∈ I[ p

l
](x) for all 1 ≤ k ≤ l−1. Insomuch as I[ p

l
](x)∩I[ p

l
](y) = ∅,

we conclude that s−1 · n+ k 6∈ I[ p
l
](x) for all 0 < k ≤ k0. Set

Y :=
{
n+ k0 + 1, n+ k0 + 2, . . . , n+ |X| − 1

}
,

and note that∣∣I[ p
l
](x) ∩ s−1Y

∣∣ =
∣∣(I[ p

l
](x) ∩ s−1X) \ {s−1 · n}

∣∣ =
∣∣I[ p

l
](x) ∩ s−1X

∣∣− 1

and ∣∣I[ p
l
](y) ∩ s−1Y

∣∣ =
∣∣∣(I[ p

l
](y) ∩ s−1X) \

{
s−1 · n+ k0

}∣∣∣ =
∣∣I[ p

l
](y) ∩ s−1X

∣∣− 1.

This means that |I[ p
l
](x) ∩ s−1Y | > |I[ p

l
] ∩ s−1Y | + 1; nevertheless, insomuch as |Y | < |X|, this

contradicts the induction hypothesis and the proof is completed.
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5 Proof of Theorem 1.1

In this section we complete the proof of Theorem 1.1 and we show that it is sharp. Before we
complete its proof, we need the following remark.

Remark 5.1. Let X be a nonempty subset of Z/pZ, k ∈ N ∪ {0}, s ∈ (Z/pZ)∗ and u ∈ Z/pZ.
The following statements are equivalent:

• X ∈ AAP(s, k).

• X + u ∈ AAP(s, k).

• s−1X ∈ AAP
(
1, k
)
.

We start with the proof of our main theorem.

Proof. (Theorem 1.1) Let s := rt−1, q ∈ Γ be such that q = s and l := min{q, p − q}. First we
shall show that

[
p
l

]
≥ l; we assume that

[
p
l

]
< l and we arrive at a contradiction. Since X ∈

AAP(r, k) ∩ AAP(t, k), Remark 5.1 yields r−1X ∈ AAP
(
1, k
)
∩ AAP(s−1, k). Furthermore,

inasmuch as r−1X ∈ AAP
(
1, k
)
, Remark 5.1 lets us translate r−1X , if necessary, so we may

assume that there are n ∈ N ∪ {0} and Z ⊆ Z/pZ such that r−1X =
[
0, n
]
\ Z and |Z| ≤ k.

Insomuch as r−1X ∈ AAP(s−1, k), there are Y ∈ AAP(s−1, 0) and W ⊆ Z/pZ such that
r−1X = Y \ W and |W | ≤ k. Inasmuch as Y ∈ AAP(s−1, 0), Remark 5.1 and Lemma 4.4
yield Y is

[
p
l

]
−almost equidistributed. Since

[
p
l

]
< l, we have that

[
p
[ p
l
]

]
≥
[
p
l

]
. Thus all the

assumptions of Lemma 3.2 are fulfilled by m =
[
p
l

]
and the subsets

[
0, n
]
, Z, Y,W . Lemma 3.2

leads to
[
p
l

]
= 1; however, inasmuch as l = min{q, p − q} ≤ p

2
, we have that

[
p
l

]
≥ 2 and this

contradiction implies that
[
p
l

]
≥ l.

We conclude the proof with a very similar idea to the one of the previous paragraph. Insomuch
X ∈ AAP(r, k) ∩ AAP(t, k), Remark 5.1 yields t−1X ∈ AAP(s, k) ∩ AAP

(
1, k
)
. Moreover,

inasmuch as t−1X ∈ AAP
(
1, k
)
, Remark 5.1 lets us translate t−1X , if necessary, so we may

assume that there are n′ ∈ N ∪ {0} and Z ′ ⊆ Z/pZ such that t−1X =
[
0, n′

]
\ Z ′ and |Z ′| ≤ k.

Since t−1X ∈ AAP(s, k), there are Y ′ ∈ AAP(s, 0) and W ′ ⊆ Z/pZ such that t−1X = Y ′ \W ′

and |W ′| ≤ k. Insomuch as Y ′ ∈ AAP(s, 0), Remark 5.1 and Lemma 4.2 imply that Y ′ is
l−almost equidistributed. Inasmuch as

[
p
l

]
≥ l, all the assumptions of Lemma 3.2 are fulfilled

by m = l and the subsets
[
0, n′

]
, Z ′, Y ′,W ′. Lemma 3.2 implies that l = 1; hence t ∈ {±r}.

We conclude this section with examples which show that Theorem 1.1 is sharp.

Example 5.2. Let p > 91 be such that there is q ∈ N ∪ {0} satisfying that p = 12q + 7 (there is
an infinite number of these primes by Dirichlet’s prime number theorem, see [4]). Set k := 2q+2

and define

Z :=
{

4m+ 2, 4m+ 3 : m ∈ Z, 0 ≤ m ≤ q
}

W := 4
[
q + 2, 3q + 1

]
Y := 4

[
0, 4q + 3

]
.
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Then
[
0, 4q + 5

]
\Z = Y \W . This means that if X :=

[
0, 4q + 5

]
\Z, then X ∈ AAP

(
4, k
)
∩

AAP
(
1, k
)
. Finally

k + 2 = |X| = p− 5k + 7 < p− 4k − 9

where the inequality is a consequence of p > 91.

Example 5.2 shows that the lower bound |X| > k + 2 in Theorem 1.1 is optimal. The next
example shows that the upper bound |X| < p− 4k − 9 in Theorem 1.1 is sharp; however, we do
not know if it is optimal.

Example 5.3. Let p > 11 be such that there is k ∈ N ∪ {0} satisfying that p = 6k − 1. Define

Z :=
{

3m+ 2 : m ∈ Z, 0 ≤ m ≤ k − 2
}

W := 3
[
k, 2k − 1

]
Y := 3

[
0, 3k − 1

]
.

Then
[
0, 3k − 2

]
\Z = Y \W . This means that if X :=

[
0, 3k − 2

]
\Z, then X ∈ AAP

(
3, k
)
∩

AAP
(
1, k
)
. Hence

k + 2 < 2k = |X| = p− 4k + 1

where the inequality comes from the fact p > 11.
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