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Abstract: The Euler’s form of odd perfect numbers, if any, is n = παN2, where π is prime,
(π,N) = 1 and π ≡ α ≡ 1 (mod 4). Dris conjecture states that N > πα. We find that
N2 > 1

2
πγ , with γ = max{ω(n)− 1, α}; ω(n) ≥ 10 is the number of distinct prime factors of n.
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1 Introduction

Without explicit definitions all the numbers considered in what follows must be taken as strictly
positive integers. Let σ(n) be the sum of the divisors of a number n; n is said to be perfect if and
only if σ(n) = 2n. The multiplicative structure of odd perfect numbers, if any, is

n = παN2, (1)

where π is prime, π ≡ α ≡ 1 (mod 4) and (π,N) = 1 (Euler, cited in [3, p. 19]); πα is called
the Euler’s factor. From equation (1) and from the fact that the σ is multiplicative, it results also

n =
σ(πα)

2
σ(N2), (2)

where σ(N2) is odd and 2‖σ(πα). Many details concerning the Euler’s factor and N2 are given,
for example, in [2, 5, 8, 9, 10].

Regarding the relation between the magnitudo of N2 and πα it has been conjectured by Dris
that N > πα [4]. The result obtained in this paper is a necessary condition for odd perfection
(Theorem 2.1) which provides an indication about Dris conjecture.
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Indicating with ω(n) the number of distinct prime factors of n, we prove that (Corollary 2.3):

(i) N2 > 1
2
πγ , where γ = max{ω(n)− 1, α}.

Since ω(n) ≥ 10 (Nielsen, [6]), it follows:

(i)1 N2 > 1
2
π9; this improves the result N > π claimed in [1] by Brown in his approach

to Dris conjecture.

Besides

(i)2 If ω(n)− 1 > 2α, then N > πα,

so that

(i)3 If ω(n)− 1 > 2α for each odd perfect number n, then Dris conjecture is true.

Now, some questions arise: ω(n) depends on α? Is there a maximum value of α? The
minimum value of α is 1? The only possible value of α is 1 (Sorli, [7, conjecture 2]) so that Dris
conjecture is true? Without ever forgetting the main question: do odd perfect numbers exist?

2 The proof

Referring to an odd perfect number n with the symbols used in equation (1), we obtain:

Lemma 2.1. If n is an odd perfect number, then

N2 = A
σ(πα)

2
and σ(N2) = Aπα.

Proof. From equation (2) and from the fact that (σ(πα), πα) = 1, it follows

N2 = A
σ(πα)

2
, (3)

where A is an odd positive integer given by

A =
σ(N2)

πα
. (4)

In relation to the odd parameter A in Lemma 2.1, we give two further lemmas:

Lemma 2.2. If A = 1, then α ≥ ω(n)− 1 and N2 > 1
2
πα.

Proof. Let qk, k = 1, 2, ..., ω(N) = ω(N2), are the prime factors of N2; from hypothesis and
from (4) we have
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πα = σ(N2) = σ(

ω(N)∏
k=1

q2βkk ) =

ω(N)∏
k=1

σ(q2βkk ) =

ω(N)∏
k=1

πδk

in which α =
∑ω(N)

k=1 δk ≥
∑ω(N)

k=1 1k = ω(N).

Since ω(n) = ω(N) + 1, it results in

α ≥ ω(n)− 1.

Besides, from Equation (3) it follows

N2 =
1

2
σ(πα) >

1

2
πα.

Lemma 2.3. If A > 1, then N2 > 3
2
πα.

Proof. From Equation (3) it results A ≥ 3. Thus

N2 ≥ 3

2
σ(πα) >

3

2
πα.

The following theorem summarizes a necessary condition for odd perfection.

Theorem 2.1. If n is an odd perfect number, then

(¬a ∧ d) ∨ (a ∧ b ∧ c) ∨ (b ∧ c ∧ d),

where: a ∼= (A = 1),¬a ∼= (A > 1), b ∼= (α ≥ ω(n)− 1), c ∼= (N2 > 1
2
πα), d ∼= (N2 > 3

2
πα).

Proof. We combine Lemmas 2.2 and 2.3, setting{
lemma 2.2 : (a =⇒ b ∧ c)
lemma 2.3 : (¬a =⇒ d)

, (5)

where, since it cannot be A < 1, it is (a) ∼= (A = 1) and (¬a) ∼= (A > 1). One obtains from (5)

[¬a ∨ (b ∧ c)] ∧ (a ∨ d),

which is equivalent to
(¬a ∧ d) ∨ (a ∧ b ∧ c) ∨ (b ∧ c ∧ d). (6)

Considering cases in which the necessary condition for odd perfection (6) is false, we obtain
the following corollaries:

Corollary 2.1. If n is an odd perfect number, then N2 > 1
2
πα.

Proof. We have

(7) (¬c ∧ ¬d)(∼= N2 < 1
2
πα) =⇒ n is not an odd perfect number.

From the contrapositive formulation of (7) it follows the proof.
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Corollary 2.2. If n is an odd perfect number, then

N2 >
3

2
πω(n)−1 >

1

2
πω(n)−1.

Proof. We have

(8) (¬b ∧ ¬d)(∼= N2 < 3
2
πω(n)−1) =⇒ n is not an odd perfect number.

From the contrapositive formulation of (8) it follows the proof.

Combining these two corollaries, we have

Corollary 2.3. If n is an odd perfect number, then

N2 >
1

2
πγ, where γ = max{ω(n)− 1, α}.

Proof. Immediate.
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