On Dris conjecture about odd perfect numbers

Paolo Starni
School of Economics, Management, and Statistics
Rimini Campus, University of Bologna
Via Angherà 22, 47921 Rimini, Italy
e-mail: paolo.starni@unibo.it

Received: 12 June 2017
Accepted: 31 January 2018

Abstract: The Euler’s form of odd perfect numbers, if any, is \(n = \pi^\alpha N^2 \), where \(\pi \) is prime, \((\pi, N) = 1\) and \(\pi \equiv \alpha \equiv 1 \pmod{4} \). Dris conjecture states that \(N > \pi^\alpha \). We find that \(N^2 > \frac{1}{2}\pi\gamma \), with \(\gamma = \max\{\omega(n) - 1, \alpha\} \); \(\omega(n) \geq 10 \) is the number of distinct prime factors of \(n \).

Keywords: Odd perfect numbers, Dris conjecture.

2010 Mathematics Subject Classification: 11A05, 11A25.

1 Introduction

Without explicit definitions all the numbers considered in what follows must be taken as strictly positive integers. Let \(\sigma(n) \) be the sum of the divisors of a number \(n \); \(n \) is said to be perfect if and only if \(\sigma(n) = 2n \). The multiplicative structure of odd perfect numbers, if any, is

\[
n = \pi^\alpha N^2, \tag{1}
\]

where \(\pi \) is prime, \(\pi \equiv \alpha \equiv 1 \pmod{4} \) and \((\pi, N) = 1\) (Euler, cited in [3, p. 19]); \(\pi^\alpha \) is called the Euler’s factor. From equation (1) and from the fact that the \(\sigma \) is multiplicative, it results also

\[
n = \frac{\sigma(\pi^\alpha)}{2} \sigma(N^2), \tag{2}
\]

where \(\sigma(N^2) \) is odd and \(2\|\sigma(\pi^\alpha) \). Many details concerning the Euler’s factor and \(N^2 \) are given, for example, in [2, 5, 8, 9, 10].

Regarding the relation between the magnitude of \(N^2 \) and \(\pi^\alpha \) it has been conjectured by Dris that \(N > \pi^\alpha \) [4]. The result obtained in this paper is a necessary condition for odd perfection (Theorem 2.1) which provides an indication about Dris conjecture.
Indicating with $\omega(n)$ the number of distinct prime factors of n, we prove that (Corollary 2.3):

\[(i) \quad N^2 > \frac{1}{2} \pi \gamma, \text{ where } \gamma = \max \{\omega(n) - 1, \alpha\}.\]

Since $\omega(n) \geq 10$ (Nielsen, [6]), it follows:

\[(i)_1 \quad N^2 > \frac{1}{2} \pi^9; \text{ this improves the result } N > \pi \text{ claimed in [1] by Brown in his approach to Dris conjecture.}\]

Besides

\[(i)_2 \quad \text{If } \omega(n) - 1 > 2\alpha, \text{ then } N > \pi^\alpha,\]

so that

\[(i)_3 \quad \text{If } \omega(n) - 1 > 2\alpha \text{ for each odd perfect number } n, \text{ then Dris conjecture is true.}\]

Now, some questions arise: $\omega(n)$ depends on α? Is there a maximum value of α? The minimum value of α is 1? The only possible value of α is 1 (Sorli, [7, conjecture 2]) so that Dris conjecture is true? Without ever forgetting the main question: do odd perfect numbers exist?

2 The proof

Referring to an odd perfect number n with the symbols used in equation (1), we obtain:

Lemma 2.1. If n is an odd perfect number, then

\[N^2 = A \frac{\sigma(\pi^{\alpha})}{2} \quad \text{and} \quad \sigma(N^2) = A \pi^{\alpha}.\]

Proof. From equation (2) and from the fact that $(\sigma(\pi^{\alpha}), \pi^{\alpha}) = 1$, it follows

\[N^2 = A \frac{\sigma(\pi^{\alpha})}{2}, \tag{3}\]

where A is an odd positive integer given by

\[A = \frac{\sigma(N^2)}{\pi^{\alpha}}. \tag{4}\]

In relation to the odd parameter A in Lemma 2.1, we give two further lemmas:

Lemma 2.2. If $A = 1$, then $\alpha \geq \omega(n) - 1$ and $N^2 > \frac{1}{2} \pi^{\alpha}$.

Proof. Let $q_k, k = 1, 2, ..., \omega(N) = \omega(N^2)$, are the prime factors of N^2; from hypothesis and from (4) we have...
\[\pi^\alpha = \sigma(N^2) = \sigma\left(\prod_{k=1}^{\omega(N)} \frac{q_k^{2^3k}}{2^3} \right) = \prod_{k=1}^{\omega(N)} \frac{\sigma(q_k^{2^3k})}{2^3} = \prod_{k=1}^{\omega(N)} \delta_k \]

in which \(\alpha = \sum_{k=1}^{\omega(N)} \delta_k \geq \sum_{k=1}^{\omega(N)} 1 = \omega(N) \).

Since \(\omega(n) = \omega(N) + 1 \), it results in
\[\alpha \geq \omega(n) - 1. \]

Besides, from Equation (3) it follows
\[N^2 = \frac{1}{2} \sigma(\pi^\alpha) > \frac{1}{2} \pi^\alpha. \]

Lemma 2.3. If \(A > 1 \), then \(N^2 > \frac{3}{2} \pi^\alpha \).

Proof. From Equation (3) it results \(A \geq 3 \). Thus
\[N^2 \geq \frac{3}{2} \sigma(\pi^\alpha) > \frac{3}{2} \pi^\alpha. \]

The following theorem summarizes a necessary condition for odd perfection.

Theorem 2.1. If \(n \) is an odd perfect number, then
\[(\neg a \land d) \lor (a \land b \land c) \lor (b \land c \land d), \]
where: \(a \equiv (A = 1), \neg a \equiv (A > 1) \), \(b \equiv (\alpha \geq \omega(n) - 1) \), \(c \equiv (N^2 > \frac{1}{2} \pi^\alpha) \), \(d \equiv (N^2 > \frac{3}{2} \pi^\alpha) \).

Proof. We combine Lemmas 2.2 and 2.3, setting
\[
\begin{align*}
\text{lemma 2.2 : } & (a \implies b \land c) \text{,} \\
\text{lemma 2.3 : } & (\neg a \implies d) \text{.}
\end{align*}
\]
where, since it cannot be \(A < 1 \), it is \((a) \equiv (A = 1) \) and \((\neg a) \equiv (A > 1) \). One obtains from (5)
\[[\neg a \lor (b \land c)] \land (a \lor d), \]
which is equivalent to
\[(\neg a \land d) \lor (a \land b \land c) \lor (b \land c \land d). \]

Considering cases in which the necessary condition for odd perfection (6) is false, we obtain the following corollaries:

Corollary 2.1. If \(n \) is an odd perfect number, then \(N^2 > \frac{1}{2} \pi^\alpha \).

Proof. We have
\[(\neg c \land \neg d)(\equiv N^2 < \frac{1}{2} \pi^\alpha) \implies n \text{ is not an odd perfect number.} \]

From the contrapositive formulation of (7) it follows the proof.
Corollary 2.2. If n is an odd perfect number, then
\[N^2 > \frac{3}{2} \pi^{\omega(n)-1} > \frac{1}{2} \pi^{\omega(n)-1}. \]

Proof. We have
\[(\neg b \land \neg d)(\equiv N^2 < \frac{3}{2} \pi^{\omega(n)-1}) \implies n \text{ is not an odd perfect number.} \]

From the contrapositive formulation of (8) it follows the proof.

Combining these two corollaries, we have

Corollary 2.3. If n is an odd perfect number, then
\[N^2 > \frac{1}{2} \pi^\gamma, \text{ where } \gamma = \max\{\omega(n) - 1, \alpha\}. \]

Proof. Immediate.

Acknowledgements

I thank Professor P. Plazzi (University of Bologna) for the useful comments and advice.

References

