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Abstract: The Euler’s form of odd perfect numbers, if any, is n = 7*N?, where 7 is prime,
(m,N) = land 7 = o = 1 (mod 4). Dris conjecture states that N > 7®. We find that
N? > 177, with v = maz{w(n) — 1, a}; w(n) > 10 is the number of distinct prime factors of n.
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1 Introduction

Without explicit definitions all the numbers considered in what follows must be taken as strictly
positive integers. Let o(n) be the sum of the divisors of a number n; n is said to be perfect if and
only if o(n) = 2n. The multiplicative structure of odd perfect numbers, if any, is

n=m*N2, (1)

where 7 is prime, 7 = « = 1 (mod 4) and (7w, N) = 1 (Euler, cited in [3, p. 19]); 7 is called
the Euler’s factor. From equation (1) and from the fact that the o is multiplicative, it results also

n= @UW), )

where o(N?) is odd and 2|/ (7®). Many details concerning the Euler’s factor and N? are given,
for example, in [2, 5, 8, 9, 10].

Regarding the relation between the magnitudo of N? and 7 it has been conjectured by Dris
that N > 7 [4]. The result obtained in this paper is a necessary condition for odd perfection
(Theorem 2.1) which provides an indication about Dris conjecture.
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Indicating with w(n) the number of distinct prime factors of n, we prove that (Corollary 2.3):
(7) N? > 77, where v = maz{w(n) — 1,a}.
Since w(n) > 10 (Nielsen, [6]), it follows:

(i) N? > 17 this improves the result N > 7 claimed in [1] by Brown in his approach
to Dris conjecture.

Besides

(1) Ifw(n)—1>2a,then N > 7,

()3 If w(n) — 1 > 2« for each odd perfect number n, then Dris conjecture is true.

Now, some questions arise: w(n) depends on «? Is there a maximum value of «? The
minimum value of « is 1?7 The only possible value of « is 1 (Sorli, [7, conjecture 2]) so that Dris
conjecture is true? Without ever forgetting the main question: do odd perfect numbers exist?

2 The proof

Referring to an odd perfect number n with the symbols used in equation (1), we obtain:

Lemma 2.1. Ifn is an odd perfect number; then

o(r?)

N?=A and o(N?) = Ar®.

Proof. From equation (2) and from the fact that (o (7®), 7*) = 1, it follows

Nt = 2?0 3
where A is an odd positive integer given by
N2
PGl )
7-‘-06
[]

In relation to the odd parameter A in Lemma 2.1, we give two further lemmas:
Lemma 2.2. If A = 1, then o > w(n) — 1 and N? > 1x°.

Proof. Let g,k = 1,2,...,w(N) = w(N?), are the prime factors of N?; from hypothesis and
from (4) we have



w(N) w(N)

w(N)
m =o(N) =o([[ &™) = ] o™ = ][] =*

k=1 k=1

in which o = Y90 6, > S0 1, — w(N).

Since w(n) = w(N) + 1, it results in

Besides, from Equation (3) it follows
1
N? = —g(n%) > 57?“. u
Lemma 2.3. If A > 1, then N* > %W"‘.

Proof. From Equation (3) it results A > 3. Thus
N? > ga(ﬂa) > gﬂ'a. [
The following theorem summarizes a necessary condition for odd perfection.
Theorem 2.1. If n is an odd perfect number, then
(maANd)V(aANbAc)V (DAcNA),
where: a = (A=1),a = (A>1),b= (0 >wn)—1), c= (N? > ix%), d = (N? > 319).
Proof. We combine Lemmas 2.2 and 2.3, setting

{ lemma22:(a = bAc) 5)

lemma?2.3: (~a = d)
where, since it cannot be A < 1, itis (a) = (A = 1) and (—a) = (A > 1). One obtains from (5)
[maV (bAc)| A (aVd),

which is equivalent to
(maANd)V(aNbAc)V (DA cNA). (6)

O

Considering cases in which the necessary condition for odd perfection (6) is false, we obtain
the following corollaries:

Corollary 2.1. If n is an odd perfect number, then N? > %W"‘.

Proof. We have
(7) (—cA~d)(= N? < 37®) = nisnot an odd perfect number.

From the contrapositive formulation of (7) it follows the proof. [
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Corollary 2.2. Ifn is an odd perfect number, then

3 1
N2 > 2 w(n)—1 > - w(n)—l'
2" 2"

Proof. We have
(8) (=bA-d)(=2 N* < 37MW=1) — pis not an odd perfect number.

From the contrapositive formulation of (8) it follows the proof.

Combining these two corollaries, we have

Corollary 2.3. If n is an odd perfect number, then

1
N? > §7r7,wh6refy = maz{w(n) —1,a}.

Proof. Immediate. O
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