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In [1], K. Gaitanas proved that the equality π(n) = n
blogn−1/2c holds for infinitely many integer

values n, where π is the prime counting function. The purpose of this note is to give new examples
of equations of this type.

The proof given by Gaitanas uses two theorems. The first was shown by S. W. Golomb [2]:

Theorem 1. For infinitely many integer values n, n/π(n) is an integer.

The proof is elementary and uses only the facts that π(n) = o(n) and π(n + 1) − π(n) = 0

or 1. The second theorem is much more technically involved and was proven by J. B. Rosser and
L. Schoenfeld [3]:

Theorem 2. For all n > 67,

n

log n− 1
2

< π(n) <
n

log n− 3
2

. (1)

For our purpose, we will need another theorem of Rosser and Schoenfeld:
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Theorem 3. For all n > 59,

|π(x)− li(x)| < 2K
x

log3/4 x
exp(−

√
log x/R) (2)

where R = 9.645908801, K = 0.2197 and li denotes the log-integral function.

The auxiliary li(x) function is defined for x ∈ R+∗ − {1} by:

li(x) =

{ ∫ x
0

dt
log t

if 0 < x < 1,

lim
ε→0

( ∫ 1−ε
0

dt
log t

+
∫ x
1+ε

dt
log t

)
if x > 1.

(3)

The following result will be required.

Theorem 4. Let x be a real number greater than e = exp(1) and k ≥ 1 an integer value. Then if
x > e, we have:

li(e)− e
k∑
i=1

(i− 1)! < li(x)− x
k∑
i=1

(i− 1)!

logi x
(4)

Moreover if x > ek+1, we have:

li(x)− x
k∑
i=1

(i− 1)!

logi x
− x k!

logk x
< li(e)− e

k+1∑
i=1

(i− 1)! (5)

Proof. If we define g1(x) = li(x)− x
∑k

i=1
(i−1)!
logi x

and g2(x) = g1(x)− x k!
logk x

, we have g′1(x) =
k!

logk+1 x
and g′2(x) =

k!
logk+1 x

(k+1− log x). As a consequence, the function g1(x) increases when
x > 1 while the function g2(x) decreases when x > ek+1.

From what precedes, we can prove:

Theorem 5. If k ≥ 1, then for x near infinity, we have:

π(x)− x
k∑
i=1

(i− 1)!

logi x
= o
( x

logk x

)
. (6)

Proof. Theorem 3 can be used to prove that, for any integer k ≥ 1 and x near infinity, we have:

π(x)− li(x) = o
( x

logk x

)
. (7)

Then using theorem 4 for k + 1, we obtain, for x > ek+2:

li(e)− e
k∑
i=1

(i− 1)! + x
(k + 1)!

logk+1 x
< li(x)− x

k∑
i=1

(i− 1)!

logi x
(8)

and

li(x)− x
k∑
i=1

(i− 1)!

logi x
< x

(k + 1)! + (k + 2)!

logk+1 x
+ li(e)− e

k+1∑
i=1

(i− 1)! (9)

so that:

li(x)− x
k∑
i=1

(i− 1)!

logi x
= o
( x

logk x

)
. (10)

The following theorem will also be needed.
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Theorem 6. Let k ≥ 1 be an integer and let ai be real numbers defined by a0 = 1 and ai =
−
∑i−1

j=0(i− j)! aj for i ≥ 1. Then for x near infinity, we have:

( k∑
i=0

i!

logi x

)( k∑
i=0

ai

logi x

)
= 1 + o

( x

logk x

)
. (11)

Proof. We have:( k∑
i=0

i!

logi x

)( k∑
i=0

ai

logi x

)
=

k∑
i=0

( i∑
j=0

i! ai−j

) 1

logi x
+ o
( x

logk x

)
. (12)

By the use of the recurrence equation on the ai values, the result is obtained.
At this point, we can prove the main result of this paper:

Theorem 7. Let k ≥ 2 be an arbitrary integer. Then the equation:

π(n) =
n⌊

log n
(∑k

i=0
ai

logi n

)
+ 1

logk−1 n

⌋ . (13)

holds for infinitely many integer values n.

Proof. From theorem 5, for x near infinity, we have:

π(x) log x

x
=

k−1∑
i=0

i!

logi x
+ o
( 1

logk−1 x

)
. (14)

Multiplying both terms by
∑k−1

i=0
ai

logi x
and using theorem 6, we have then:

π(x) log x

x

( k−1∑
i=0

ai

logi x

)
= 1 + o

( 1

logk−1 x

)
. (15)

and thus:
x

π(x) log x
=
( k−1∑
i=0

ai

logi x

)
+ o
( 1

logk−1 x

)
. (16)

since x
π(x) log x

= O(1) by equation 14.
We suppose now that k ≥ 3. Then for x large enough, we have:

log x
( k−1∑
i=0

ai

logi x

)
−
( 1

logk−2 x

)
<

x

π(x)
< log x

( k−1∑
i=0

ai

logi x

)
+
( 1

logk−2 x

)
. (17)

The difference between the rightmost and the leftmost terms of equation 17 is equal to 2
logk−2 x

and is then strictly inferior to 1 when x is large enough.
Invoking Golomb’s theorem 1, there are infinitely many integer values n such that n/π(n) is

an integer and large enough so that all conditions of size in the preceding equations can be met.
We have then necessarily:

n

π(n)
=
⌊
log n

( k−1∑
i=0

ai

logi n

)
+
( 1

logk−2 n

)⌋
. (18)

Finally, replacing k − 1 by k in the preceding equation proves the theorem.
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