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Abstract: Let An be a strictly increasing sequence of positive integers such that

An ∼ nsf(n),

where f(x) is a function of slow increase and s is a positive real number. In this article we obtain
some limits and asymptotic formulae where appear functions of slow increase. As example, we
apply the obtained results to the sequence of numbers with exactly k prime factors in their prime
factorization, in particular to the sequence of prime numbers (k = 1).
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1 Main results

Definition 1.1. Let f(x) be a function defined on the interval [a,∞) such that f(x) > 0,
limx→∞ f(x) = ∞ and with continuous derivative f ′(x) > 0 . The function f(x) is of slow
increase if and only if the following condition holds

lim
x→∞

f ′(x)
f(x)
x

= 0 (1)
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Typical functions of slow increase are f(x) = log x, f(x) = log2 x, f(x) = log log x, etc.
Let An be a strictly increasing sequence of positive integers such that

An ∼ nsf(n),

where f(x) is a function of slow increase. For example, the sequence cn,k of numbers that have
exactly k prime factors in their prime factorization. In particular, if k = 1 then cn,1 = pn is the
sequence of prime numbers. Since (see [2]) we have

cn,k ∼ n
(k − 1)! log n

(log log n)k−1

and the function

f(x) =
(k − 1)! log x

(log log x)k−1

is of slow increase. Here s = 1.
In [2], we prove the limit

lim
n→∞

(A1A2 · · ·An)
1
n

An

=
1

es
(2)

For example

lim
n→∞

(c1,kc2,k · · · cn,k)
1
n

cn,k
=

1

e

The case k = 1, namely

lim
n→∞

(p1p2 · · · pn)
1
n

pn
=

1

e

has been studied in [1, 4, 5].
In the following theorem we generalize limit (2). We have the following theorem.

Theorem 1.2. Let An be a strictly increasing sequence of positive integers such that

An ∼ nsf(n), (3)

where f(x) is a function of slow increase and s is a positive real number.
Let k be a fixed but arbitrary nonnegative integer. We prove the limit

lim
n→∞

(
A

(1k)
1 A

(2k)
2 · · ·A(nk)

n

) k+1

nk+1

An

=
1

e
s

k+1

. (4)

Proof. If k = 0, then the theorem is true (see (2)). Suppose that k is a positive integer. Note that
without loss of generality we can suppose in Definition 1.1 that a = 1 and f(1) ≥ 1. We have
(see (3))

Ai ∼ isf(i) (i ≥ 1)

Therefore

logAi = s log i+ log f(i) + g(i) (i ≥ 1), (5)
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where

g(i)→ 0. (6)

Now, we have (see (5))

log
(
A

(1k)
1 A

(2k)
2 · · ·A(nk)

n

)
=

n∑
i=1

ik logAi =
n∑

i=1

(
sik log i+ ik log f(i) + g(i)ik

)
= s

n∑
i=1

ik log i+
n∑

i=1

ik log f(i) +
n∑

i=1

g(i)ik. (7)

The function xk log x is nonnegative and strictly increasing on the interval [1,∞). Conse-
quently

s
n∑

i=1

ik log i = s

∫ n

1

xk log x dx+O(nk log n) (8)

Note that the sum in the left side is a sum of rectangles of basis 1 and height ik log i.
The function xk log f(x) is nonnegative and strictly increasing on the interval [1,∞). Conse-

quently

n∑
i=1

ik log f(i) =

∫ n

1

xk log f(x) dx+O(nk log f(n)). (9)

Note that the sum in the left side is a sum of rectangles of basis 1 and height ik log f(i).
We have (use integration by parts)

s

∫ n

1

xk log x dx = s
nk+1

k + 1
log n− s

(k + 1)2
nk+1 +O(1). (10)

On the other hand, we have (use integration by parts)∫ n

1

xk log f(x) dx =
nk+1

k + 1
log f(n) +O(1)− 1

k + 1

∫ n

1

xk+1f ′(x)

f(x)
dx. (11)

If the integral ∫ x

1

tk+1f ′(t)

f(t)
dt (12)

is divergent then we have (L’Hospital’s rule and Equation (1))

lim
x→∞

∫ x

1
tk+1f ′(t)

f(t)
dt

xk+1
= lim

x→∞

xk+1f ′(x)
f(x)

(k + 1)xk
= 0 (13)

Therefore, (13) gives

lim
n→∞

∫ n

1
xk+1f ′(x)

f(x)
dx

nk+1
= 0
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That is ∫ n

1

xk+1f ′(x)

f(x)
dx = o

(
nk+1

)
. (14)

On the other hand, if the integral (12) is convergent, clearly (14) also holds.
Equations (11) and (14) give∫ n

1

xk log f(x) dx =
nk+1

k + 1
log f(n) + o

(
nk+1

)
. (15)

Note that (L’Hospital rule and (1)) we have

lim
x→∞

log f(x)

x
= lim

x→∞

f ′(x)

f(x)
= lim

x→∞

xf ′(x)

f(x)

1

x
= 0.0 = 0. (16)

Equations (8) and (10) give

s
n∑

i=1

ik log i = s
nk+1

k + 1
log n− s

(k + 1)2
nk+1 + o(nk+1). (17)

Equations (9), (15) and limit (16) give

n∑
i=1

ik log f(i) =
nk+1

k + 1
log f(n) + o(nk+1). (18)

Given ε > 0, there exist n0 such that if n ≥ n0 we have |g(i)| < ε (see (6)). Therefore,∣∣∣∣∣
n∑

i=1

g(i)ik

∣∣∣∣∣ ≤
n∑

i=1

|g(i)| ik ≤
n0−1∑
i=1

|g(i)| ik + ε
n∑

i=n0

ik ≤
n0−1∑
i=1

|g(i)| ik + ε
n∑

i=1

ik. (19)

Now
n∑

i=1

ik =

∫ n

1

xk dx+O(nk) =
nk+1

k + 1
+ o(nk+1). (20)

Therefore (see (19) and (20)) from a certain value of n we have∣∣∣∣∑n
i=1 g(i)i

k

nk+1

∣∣∣∣ ≤ ∑n0−1
i=1 |g(i)| ik

nk+1
+ ε

∑n
i=1 i

k

nk+1
≤ ε.

That is
n∑

i=1

g(i)ik = o(nk+1). (21)

Substituting (17), (18) and (21) into (7) we obtain

log
(
A

(1k)
1 A

(2k)
2 · · ·A(nk)

n

)
= s

nk+1

k + 1
log n+

nk+1

k + 1
log f(n)

− s
nk+1

(k + 1)2
+ o(nk+1). (22)
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Therefore (see (22), (5) and (6)) we have

log


(
A

(1k)
1 A

(2k)
2 · · ·A(nk)

n

) k+1

nk+1

An

 =
k + 1

nk+1
log
(
A

(1k)
1 A

(2k)
2 · · ·A(nk)

n

)
− logAn = − s

k + 1
+ o(1). (23)

That is, limit (4).

For example, we have

lim
n→∞

(
c
(1k)
1,k c

(2k)
2,k · · · c

(nk)
n,k

) k+1

nk+1

cn,k
=

1

e
1

k+1

.

In particular

lim
n→∞

(
p
(1k)
1 p

(2k)
2 · · · p(n

k)
n

) k+1

nk+1

pn
=

1

e
1

k+1

.

This limit was proved in a former article, see [3].
Let An be a strictly increasing sequence of positive integers such that

An ∼ nsf(n),

where f(x) is a function of slow increase. In a previous article [2], we prove the asymptotic
formula

n∑
i=1

logAi = sn log n+ n log f(n)− sn+ o(n). (24)

Theorem 1.3. Let An be a strictly increasing sequence of positive integers such that

An ∼ nsf(n), (25)

where f(x) is a function of slow increase and s is a positive real number.
The following asymptotic formula holds

n∑
i=1

logAi

i
=
s

2
log2 n+

∫ n

b

log f(x)

x
dx+ o(log n) (26)

Proof. Let b > a a positive integer such that f(b) > 1. Equation (25) gives

logAi = s log i+ log f(i) + g(i) (i ≥ b),

where g(i)→ 0. Therefore,

n∑
i=b

logAi

i
= s

n∑
i=b

log i

i
+

n∑
i=b

log f(i)

i
+

n∑
i=b

g(i)
1

i
. (27)
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Now
n∑
i=b

log i

i
=

∫ n

b

log x

x
dx+O(1) =

log2 n

2
+O(1). (28)

Note that the function log x
x

is strictly decreasing from a certain value of x and the left side of
(28) is a sum of rectangles of basis 1 and height log i

i
.

On the other hand, we have
n∑
i=b

log f(i)

i
=

∫ n

b

log f(x)

x
dx+O(1). (29)

Note that the integral
∫∞
b

log f(x)
x

dx diverges and the function log f(x)
x

is strictly decreasing
from a certain value of x, since its derivative is negative from a certain value of x (use Equation
(1)).

Note also that
n∑
i=b

g(i)
1

i
= o(log n). (30)

Substituting (28), (29) and (30) into (27) we obtain (26). Note that (L’Hospital’s rule and (1))

lim
n→∞

∫ n

b
log f(x)

x
dx

log2 n
= 0,

lim
n→∞

∫ n

b
log f(x)

x
dx

log n
=∞.

Theorem 1.4. The following asymptotic formula holds

n∑
i=1

log pi
i

=
1

2
log2 n+ log n log log n− log n+ o(log n). (31)

Proof. Here we have f(x) = log x and s = 1, therefore∫ n

b

log f(x)

x
dx =

∫ n

b

log log x

x
dx = [log x log log x− log x]nb

= log n log log n− log n+O(1). (32)

Substituting (32) into (26) we obtain (31).

Now, we establish the following corollary to Theorem 1.4.

Corollary 1.5. The following limit holds

lim
n→∞

(∏n
i=1 p

1
i
i

) 1
logn

√
n log n

=
1

e
.
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Proof. We have

n∏
i=1

p
1
i
i = exp

(
n∑

i=1

log pi
i

)
.

We have the following theorem.

Theorem 1.6. Let An be a strictly increasing sequence of positive integers such that

An ∼ nsf(n) (A1 > 1), (33)

where f(x) is a function of slow increase and s is a positive real number.
The following limit holds

lim
n→∞

n
√
logA1 logA2 . . . logAn

logAn

= 1. (34)

Proof. We can suppose that a is a positive integer such that a ≥ 3 and f(x) > 0 in the interval
[a,∞]. We have (see (33))

Ai ∼ isf(i).

Therefore,

logAi = s log i+ log f(i) + o(1) = s log i

(
1 +

log f(i)

s log i
+

o(1)

s log i

)
. (35)

Now (L’Hospital’s rule) we have (see (1))

lim
x→∞

log f(x)

log x
= lim

x→∞

xf ′(x)

f(x)
= 0. (36)

Equations (35) and (36) give

log logAi = log s+ log log i+ g(i), (37)

where g(i)→ 0.
Now, we have (see (37))

log (logA1 logA2 · · · logAn) =
n∑

i=1

log logAi =
a−1∑
i=1

log logAi

+
n∑

i=a

(log s+ log log i+ g(i)) = n log s+O(1) +
n∑

i=a

log log i

+
n∑

i=a

g(i). (38)

Besides, we have
n∑

i=a

log log i =

∫ n

a

log log x dx+O(log log n). (39)
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Note that the left side of (39) is a sum of rectangles of basis 1 and height log log i. On the
other hand, log log x is a function positive and strictly increasing in the interval [a,∞).

Now, we have (use integration by parts)∫ n

a

log log x dx = n log log n+O(1)−
∫ n

a

1

log t
dt. (40)

On the other hand (L’Hospital’s rule), we have the limit

lim
x→∞

∫ x

a
1

log t
dt

x
= lim

x→∞

1

log x
= 0. (41)

Equations (39), (40) and (41) give
n∑

i=a

log log i = n log log n+ o(n). (42)

Given ε > 0, there exist n0 such that if n ≥ n0 we have |g(i)| < ε (see (37)). Therefore,∣∣∣∣∣
n∑

i=a

g(i)

∣∣∣∣∣ ≤
n∑

i=a

|g(i)| ≤
n0−1∑
i=a

|g(i)|+ ε
n∑

i=n0

1 ≤
n0−1∑
i=a

|g(i)|+ εn. (43)

Hence (see (43)) from a certain value of n we have∣∣∣∣∑n
i=a g(i)

n

∣∣∣∣ ≤ ∑n0−1
i=a |g(i)|
n

+ ε ≤ 2ε.

That is
n∑

i=a

g(i) = o(n). (44)

Equations (38), (42) and (44) give

log (logA1 logA2 · · · logAn) = n log log n+ n log s+ o(n). (45)

Now, we have (see (45) and (37))

log

(
n
√
logA1 logA2 . . . logAn

logAn

)
=

1

n
log (logA1 logA2 · · · logAn)

− log logAn = o(1).

That is, limit (34).

For example, If we consider the sequence cn,k then limit (34) becomes

lim
n→∞

n
√

log c1,k log c2,k . . . log cn,k

log cn,k
= 1.

In particular for the sequence pn = cn,1 of prime numbers we have

lim
n→∞

n
√
log p1 log p2 . . . log pn

log pn
= 1.
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Theorem 1.7. Let f(x) > 0 a function of slow increase in the interval [a,∞), where a is a
positive integer. The following limit holds

lim
n→∞

n
√
f(b)f(b+ 1) . . . f(n)

f(n)
= 1, (46)

where b ≥ a and b is a arbitrary but fixed positive integer.

Proof. Without loss of generality we can suppose that f(b) ≥ 1. We have

log f(b) + log f(b+ 1) + · · ·+ log f(n) =

∫ n

b

log f(x) dx+O (log f(n)) . (47)

Now (integration by parts)∫ n

b

log f(x) dx = n log f(n) +O(1)−
∫ n

b

xf ′(x)

f(x)
dx. (48)

If the integral in (48) diverges we have (L’Hospital’s rule and see (1))

lim
x→∞

∫ x

b
tf ′(t)
f(t)

dt

x
= lim

x→∞

xf ′(x)

f(x)
= 0. (49)

Therefore

lim
n→∞

∫ n

b
xf ′(x)
f(x)

dx

n
= 0. (50)

Clearly (50) also holds if the integral in (48) converges.
We also have the following limit (L’Hospital’s rule and see (1))

lim
x→∞

log f(x)

log x
= lim

x→∞

xf ′(x)

f(x)
= 0. (51)

Equations (47), (48), (50) and (51) give

log f(b) + log f(b+ 1) + · · ·+ log f(n) = n log f(n) + o(n). (52)

Equation (52) gives

log

(
n
√
f(b)f(b+ 1) . . . f(n)

f(n)

)
= o(1). (53)

Equation (53) gives (46).

For example, the function log x is a function of slow increase. Therefore limit (46) becomes

lim
n→∞

n
√
log 2 log 3 . . . log n

log n
= 1.
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