Notes on Number Theory and Discrete Mathematics
Print ISSN 1310-5132, Online ISSN 2367-8275
Vol. 23, 2017, No. 4, 22-33

Prime triples p;, po, p3 in arithmetic progressions

such that p; = 2% + y° + 1, p3 = [n]

S. 1. Dimitrov

Faculty of Applied Mathematics and Informatics, Technical University of Sofia
8, St. Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
e-mail: sdimitrov@tu-sofia.bg

Received: 5 February 2017 Accepted: 29 October 2017
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1 Notations

Let X be a sufficiently large positive number. The letter p, with or without subscript, will always
denote prime numbers. The letter ¢ we denote an arbitrary small positive number, not the same
in all appearances.

The relation f(x) < g(x) means that f(x) = O(g(x)). As usual [t] and {t} denote the
integer part, respectively, the fractional part of ¢. Instead of m = n (mod k) we write for
simplicity m = n (k).

As usual e(t) = exp(mit). We denote by (d, q), |d, q] the greatest common divisor and the
least common multiple of d and ¢ respectively. As usual ¢(d) is Euler’s function; p(d) is Mobius’
function; r(d) is the number of solutions of the equation d = m? + mj in integers m;; x(d) is the
non-principal character modulo 4 and L(s, x) is the corresponding Dirichlet’s L-function.

By ¢y, we denote some positive number, not necessarily the same in different occurrences. Let
c be areal constant such that 1 < ¢ < 73/64.

22



Denote

v =1/e; (1)

w(t) = {t} —1/2; 2)

0y = % - ielogZ = 0.0280.... 3)

aOZQE(l—ﬁ); 4

erzmolz[<1+%>; 5)

A(t, h) = max max Z logp — ﬁ . 6)
p=1(h)

2 Introduction and statement of the result

In 1953, Piatetski-Shapiro [9] proved that for any fixed ¢ € (1,12/11) the sequence

([nPnen

contains infinitely many prime numbers. Such prime numbers are named in honor of Piatetski-
Shapiro. The interval for ¢ was subsequently improved many times and the best result up to now
belongs to Rivat and Wu [10] for ¢ € (1,243/205).

In 2014, M. Mirek [7] showed that for any fixed ¢ € (1,72/71) the set

P. = {p prime : p = [n°] for some n € N}

contains infinitely many non-trivial three-term arithmetic progressions.

On the other hand, in 1960, Linnik [6] showed that there exist infinitely many prime numbers
of the form p = 22 4 y? + 1, where x and y — integers. Recently, the author [1] proved that there
exist infinitely many arithmetic progressions of three different primes p1, ps, p3 = 2p2 — p1 such
that p; = 2% + y? + 1, p, = 23 + y3 + 1. Shortly after that, Joni Terdviinen [12] improved this
result by proving that the set

P:{pprime:p:x2—l—y2+1, (x,y) =1}

contains infinitely many non-trivial three-term arithmetic progressions.
Motivated by these results, we shall prove that there exist infinitely many arithmetic progres-
sions of three different primes py, p2, p3 = 2p2 — py such that p; = 22 + y> + 1, ps = [n€].
Define
Io(X) = > r(p1 — 1)py " log py log ps log ps @)

(X/2)¢<p1,pg,p3<X°€
P1+p3=2p2
X/2<n<X
p3=[nc]

We shall prove the following theorem.
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Theorem 1. Assume that 1 < ¢ < 73/64. Then the asymptotic formula

c __ 2
(2 1) GFXQC + (’)(XQC(log X)*QO (10g log X)6) :

Fe(X) =~z

holds. Here 0y and Sr are defined by (3) and (5).

3 Outline of the proof

Denote
Xe/2

~ (log X)+
Using (7) and the well-known identity r(n) = 43, x(d), we find
Le(X) =4V (X) + TP (X) + TP (X)),

where

1—
ri(x) = > x(d) | ps" logpi log pslogps ,
(X/2)¢<p1,pg,p3<X° dlp;—1
p1+pP3=2p3 d<D
X/2<n<X
p3=[nc]
I (x) = > > " x(d) | p5 " log pi log p>log ps
(X/2)¢<p1,pg,p3<X° dlp;—1
p1+p3=2pg D<d<X¢/D
X/2<n<X
p3=[nc]
1—
r'(x) = ) >~ x(d) | ps " log pi log pslog ps
(X/2)¢<py,p2,p3<X° d|py —1
P1+p3=2p2 d>X¢/D
X/2<n<X
p3=[nc]

In order to estimate T'\") (X) and r(x ) we have to consider the sum

Lyas(X)= > py "logpilogp;logps.

(X/2)¢<pg,p3<X°
p1+P3=2py
X/2<n<X
p3=[n°]
p1=l(d)
p1€J

®)

©)

(10)

(11)

(12)

(13)

where d and [ are coprime natural numbers, and J C ((X/2)¢, X|-interval. If J = ((X/2)¢, X°|

then we write for simplicity /.; 4(X). We apply the circle method. Clearly,

1

]cJ,d;J(X) = /chl,d;J(a)S: (O./)SC(—ZOé)dOé s

0
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where

Sepda(a) = Z e(ap)logp,
pglggd)

Se(a) = Se1;x/2)e,x (@)

Si(@)= Y p'e(ap)logp.

(X/2)e<p<Xc©
X/2<n<X
p=[n€]

We define major and minor arcs by
q—1
a 1 «a 1 1 1
= U Lj(q m”q+m)’ ’ ( 7’ T)\l’

where
Q=~ogX)?, 7=X°Q', A>4B+1, B> 14.

Then we have the decomposition

1 2
Lejas(X) = (l?d;J<X) + [(g,l?d;J(X) ;

where
Ic(fl{d;J(X) = /Sc,l,d;J(a>S:(a)sc(_Qa)da7 L= 17 2.
E;

(15)

(16)
(17)

(18)

(19)

(20)

21)

We shall estimate Ic(ll) .7(X), Fg?’)(X ), re (X) and F,(;l)(X ), respectively, in Sections 4, 5, 6 and

7. In section 8 we shall complete the proof of the Theorem.

4 Asymptotic formula for 181), 4.3(X)

We have )
g
Ic(,ll?d,J(X) = Z Z H(CL7 Q) 3
q<Q (a[,lq:)g 1
where

1/q7

H(a,q) = / Setds (g + a) S (g + a) S, (—2 (g + a>) do .

—1/q7
Arguing as in [8], we find

a, N_aeed,, c
Sc,l,d;J (q + ) QO([d, Q]) MJ( )+O<QA(X 7[d7 q]))a

where

o= X o(™).

1<m<q
(m,q)=1
m=l((d,q))

M;(a) = Z e(am).

meJ
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On the other hand working similar to ([4], Lemma 3, §10) we get

S, (—2 (g v a)) _ ‘Z((g))M(—m) o) (Xce-com> , 25)

where

M(a) = Z e(am). (26)

(X/2)e<m<Xe

We shall find asymptotic formula for S’ (g + a) . From (17) we have

Si(@)= Y p'Te(ap)logp > 1

(X/2)e<p<Xe X/2:<[ncg]x
= > pelap)logp > 1+0(X9)
(X/2)e<p<Xe pY<n<(p+1)7
= > (=== + 1)])e(ap) logp + O(X?)
(X/2)e<pXe
= Qo) + X(a) + O(X9), (27)
where
Qa)= > " ((p+1) —p")e(ap)logp,
(X/2)e<pXe
Sa)= > p"((=(p+ 1)) —(—p"))e(ap) logp.
(X/2)e<pXe

According to Kumcheyv [5], Theorem 2 we have that
a _
E<—+a)<<XC€. (28)
q
On the other hand,

Q(a) = ySe(a) + O(X7), (29)

where S.(«) is defined by (16).
According to ([4], Lemma 3, §10) we have

S. (g + a) - %M(a) +0 (Xce—cm/m ) , (30)

where M («) is defined by (26).
Bearing in mind (27)—(30), we obtain

S <g + a) - %M(a) +O (Xce*00m> . 31)
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Furthermore, we need the trivial estimates

a a
Se (a * ) \ R (a * )

(M(e)] < X%, eag)] <1, u(g)] < 1.

X¢log X
L ———,
d (32)

By (24), (25), (31), (32) and the well-known inequality ¢(n) > n(loglogn)~! we find

Seldi (2 + a) S (g + a) S. (_2 (g + a))
q q q

3c
= D¢l d;J <g + a) St (2 + a> CZ(q)M(_Qa) +0 (X ecom)
q

q ¢(q) d
= Seid <g + a) v%M(a)M(—%& +0 <%em)

- ycd(g&[qd’ lq)ﬁfz??)(cj)(Q) Mjy(a)M(a)M(—2a) + O (%6‘00\/@)
o) (X%Qq#mxa d, q])) . (33)

Having in mind (19), (23) and (33), we get

1/q7
_cala, g, Dp(g)ea(q) Q)M (@) M(—2a)da
H(a,q) =~ () _// M ()M (c) M (—2a)d

w(ld,
2c c()?
Lo (?;_demm> Lo (%#A(Xc, d, q])) . (34)

Taking into account (22), (23), (34) and following the method in [8] we obtain

; o X% (d,q)log’q
[g,l?d;J(X>:7 d Z 1+O< d Z )

80( ) (X/2)¢<mq,mq<XC >Q 9

mi+mgz=2mo

A(X¢,[d, q])
O 200e )5S - | £ 0 x°0%10e ) S~ 222 - 19D
co (P i ) o (e 3 2D )
XQC
+0 (Te—cwlogx> . (35)

5 Upper bound for T (X)

Consider the sum 'Y (X). Since

S o= Y x(plﬂf)zzxm S

dlpy—1 m|py -1 Jj=%1 mipy =1
d>X¢/D m<(py—1)D/X¢ m<(p1—1)D/X¢

BLl=(a)

m
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then from (12) and (13) it follows

F((;3) (X) = Z Z X(j)[c,lJrijm;Jm (X)7

m<D j=+1

2|m

where J,, = (max{1 + mX¢/D, (X/2)° — 1}, X]. Therefore from (20) we get

I®)(X) = IO (xX) + T (x), (36)
where
FOOX) =37 > XD i, (X) v =12 (37)
m<D j::l:l
2|m

Let us consider first Fg?’)’(Q)(X). Bearing in mind (21) for ¢ = 2 and (37) for v = 2, we have

IO (x) = / K(a)S5(0)S.(~2a)da,

where

K(a) = Z Z X(7)Se 14 jmamstn () -

m<D j=+1

2|m

Using Cauchy’s inequality we obtain

c

POO(X) < sup |S.(—20) / K (0)S? (0)da

a€F>
Es
1 1/2 1 1/2
< sup |S.(—2a)] / K ()[2da / 1S5 (@)[2da | . (38)
a€Fy
0 0

The sum defined by (16) can be estimated over the minor arcs by Vinogradov’s method. Using
(18) and (19), we can prove in the same way as in ([4], Ch.10, Th.3) that

C

sélé)z |Se(—2a)| < (log X)B/21 (39)
We square out and after straightforward computations find
1
/ 15 (@)Pda < X* ' log X . (40)
0
1
/ |K (o)’ da < X log® X . (41)
0
Thus from (38)—(41) it follows
FOO(X) € (42)

(log X )B/2-6 -
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Now let us consider IV (X). From (35) and (37) for v = 1 we get

TEM(X) = I* + O(X*3,) + O(r2(log X))
0L QR X150 + O,

where

DY) S = SR0)

(X/2)¢<mq,mo<XC¢ m<D j==*1

my+mg=2mg 2|m
m3€Jm

5 = Zz4mqlogq

m<D ¢>Q

A et

m<D q<Q

From the properties of x(k) we have that

[*=0.

(43)

(44)

Arguing as in [8] and using Bombieri—Vinogradov’s theorem, we find the following estimates

log® X
Q )

(log X)A-B-5"

Bearing in mind (19), (43)—(46), we obtain

M K

Yy K

Now from (36), (42) and (47) we find

X2c

ré(x ——
(X) < (log X)B/2=6

c

6 Upper bound for T2 (X)
Consider the sum I'” (X). We have

F(z)(X) =3, + O(x2071+€) ’

C

29

Y < Qlog® X,

24 < lOgX

(45)

(46)

(47)

(48)

(49)



where

EY > x(d) | p 7 logpilogpalogps Y 1.

(X/2)¢<p1,pg,p3<X€ dlpp—1 Y < (ps 1)t
p1+P3=2p2 D<d<X¢/D p3<n<(p3+1)

We denote by F the set of all primes (X/2)¢ < p < X¢such that p — 1 has a divisor belongs
to the interval (D, X¢/D). By Cauchy’s inequality we get

2 6
21 < (log X) > > X(d)‘ > x(t)’
(X/2)¢<py,....,pg <XC dlp1—1 tlpg—1
P1+p3=2p2 D<d<X¢/D D<t<X¢/D
P4+pPe=2p5
2
< (log X)S > > x(@)
(X/2)¢<py,...,pg<XC d|p;—1
P1+p3=2p2 D<d<X¢/D
Pa+Pe=2p5
PaEF

The summands in the last sum for witch p; = p, can be estimated with O(X3°F¢).
Therefore
Y2 < (log X)5%, 4 X3ete (50)

where )

Sa= Y

(X/2)ce<p1<Xe©

PIERCIEDY 2. L

d|p;—1 (X/2)¢<py<X¢ (X/2)¢<p2,p3,p5,P6<XC
D<d<X¢/D paEF p1+p3=2p2
P4FPL P4+p6=2p5

Further we use that if A is an integer such that 1 < |h| < X¢, then the number of solutions of
the equation 2p; — p» = h in primes (X/2)¢ < p;,p2 < X°is O(X<(log X)?loglog X ). This
follows for example from ([2], Ch.2, Th.2.4).

Hence
2c

X
Yy < ———(loglog X)?33%, , 51
2 log4X<Og og ) 3244 (51)

where )

Ss= ). dox@ , L= > 1

(X/2)c<p<Xce d|p—1 (X/2)¢<p<Xc©
D<d<X¢/D pEF

Arguing as in ([3], Ch.5), we obtain

X¢(loglog X)" X¢(loglog X)3

P by 52
3 log X ’ 1< (log X)1+2% (52)
where 6, is denoted by (3).
From (49)—(52) it follows
I'®(X) <« X*(log X)~%(loglog X)°. (53)
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7 Asymptotic formula for T (X)
Consider the sum TtV (X). From (10), (13) and (20) we get
F(l)(X) — F(l)v(l)(X) + 1MW) (X), (54)

where

ZX Ic(ll)d

d<D

ZX cld

d<D

We estimate the sum 'tV (X) by the same way as the sum re (X) and obtain

X2c

M- x -
X)) < (log X B/2-6

(55)

Now we consider Fgl)’(l)(X). We use the formula (35) for J = (X/2, X]. The error term is
estimated by the same way as for I'¥"" (X). We have

(1),(1) i 2 x(d) X
Fe"X) = —oat KZD ) ( (log X)B 5 ) (56)
Denote (d)
X
Y= d), d) = =—=~. 57
> ). S =0 (57
We have
f(d) < d*loglog(10d) (58)

with absolute constant in the Vinogradov’s symbol. Hence the corresponding Dirichlet series
.~ f(d)
V=2
d=1

is absolutely convergent in Re(s) > 0. On the other hand, f(d) is a multiplicative with respect to

d and applying Euler’s identity we find

= H T(p,s), =1+ Z f(p pe. (59)

From (57) and (59) we establish that
x()\ ™ x(p)
T =11- 1+ ——.
(P, s) ( ps+1) ( + i —1)

F(s)=L(s+1,x)N(s), (60)

Hence we find
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where L(s + 1, x) is Dirichlet series corresponding to the character y and
x(p)
N =TT (14522 ) (61)
(5) H i 1)

From the properties of the L-functions it follows that F'(s) has an analytic continuation to
Re(s) > —1. It is well known that

1

L(s+1,x) < 1+|Im(s)["® for Re(s)> -5 (62)
Moreover
N(s) < 1. (63)
Using (60), (62) and (63), we get
1
F(s) < X% for Re(s)> —5 Hm(s)l < X°. (64)

We apply Perron’s formula given at Tenenbaum ([11], Chapter I1.2) and also (58) to obtain

rk+1.X°€
1 D? . D*loglog(10t)
)P — F(s)— E
/ (S) S dS + O ( 5 (65)

=t (L X log )

Kk—1X¢

where = = 1/10. It is easy to see that the error term above is O (X ~</?°). Applying the residue
theorem we see that the main term in (65) is equal to

—1/2—X°  —1/24X°¢  1/10+2X°

F(O)+% / + / + / F(s)%ds.

1/10—Xe  —1/2—X¢  —1/2+1X¢

From (64) it follows that the contribution from the above integrals is O (X —c/ 20).
Hence
S =F(0)+0 (X %) . (66)

Using (60) we get -
F(0) = ZN(O) (67)

Bearing in mind (56), (57), (61), (66) and (67) we find a new expression for i (X)

1),(1 (20 — 1)2 2¢ X
PEI(X) = =g 6rX* + O Tog X055 ) (68)

where Gr is defined by (5).
From (54), (55) and (68) we obtain

(2°=1)° & o X
=~ O X+ O o ) 69)
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8

Proof of the Theorem

Therefore using (9), (48), (53) and (69), we find

c __ 2
-1 SrX* 4+ O (X*(log X ) *(loglog X)°) .

C220+1

Le(X) =

This implies that I'(X') — oo as X — oo.

The theorem is proved. [
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