Prime triples p_{1}, p_{2}, p_{3} in arithmetic progressions
 such that $p_{1}=x^{2}+y^{2}+1, p_{3}=\left[n^{c}\right]$

S. I. Dimitrov
Faculty of Applied Mathematics and Informatics, Technical University of Sofia
8, St. Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
e-mail: sdimitrov@tu-sofia.bg

Received: 5 February 2017
Accepted: 29 October 2017
Abstract: In the present paper we prove that there exist infinitely many arithmetic progressions
of three different primes $p_{1}, p_{2}, p_{3}=2 p_{2}-p_{1}$ such that $p_{1}=x^{2}+y^{2}+1, p_{3}=\left[n^{c}\right]$ of three different primes $p_{1}, p_{2}, p_{3}=2 p_{2}-p_{1}$ such that $p_{1}=x^{2}+y^{2}+1, p_{3}=\left[n^{c}\right]$.
Keywords: Arithmetic progression, Prime numbers, Circle method.
AMS Classification: 11N36, 11P32.

1 Notations

Let X be a sufficiently large positive number. The letter p, with or without subscript, will always denote prime numbers. The letter ε we denote an arbitrary small positive number, not the same in all appearances.

The relation $f(x) \ll g(x)$ means that $f(x)=\mathcal{O}(g(x))$. As usual $[t]$ and $\{t\}$ denote the integer part, respectively, the fractional part of t. Instead of $m \equiv n(\bmod k)$ we write for simplicity $m \equiv n(k)$.

As usual $e(t)=\exp (\pi i t)$. We denote by $(d, q),[d, q]$ the greatest common divisor and the least common multiple of d and q respectively. As usual $\varphi(d)$ is Euler's function; $\mu(d)$ is Möbius' function; $r(d)$ is the number of solutions of the equation $d=m_{1}^{2}+m_{2}^{2}$ in integers $m_{j} ; \chi(d)$ is the non-principal character modulo 4 and $L(s, \chi)$ is the corresponding Dirichlet's L-function.

By c_{0} we denote some positive number, not necessarily the same in different occurrences. Let c be a real constant such that $1<c<73 / 64$.

Denote

$$
\begin{align*}
& \gamma=1 / c ; \tag{1}\\
& \psi(t)=\{t\}-1 / 2 ; \tag{2}\\
& \theta_{0}=\frac{1}{2}-\frac{1}{4} e \log 2=0.0289 \ldots ; \tag{3}\\
& \sigma_{0}=2 \prod_{p>2}\left(1-\frac{1}{(p-1)^{2}}\right) ; \tag{4}\\
& \mathfrak{S}_{\Gamma}=\pi \sigma_{0} \prod_{p}\left(1+\frac{\chi(p)}{p(p-1)}\right) ; \tag{5}\\
& \Delta(t, h)=\max _{y \leq t} \max _{(l, h)=1}\left|\sum_{\substack{p \leq y \\
p=I(h)}} \log p-\frac{y}{\varphi(h)}\right| . \tag{6}
\end{align*}
$$

2 Introduction and statement of the result

In 1953, Piatetski-Shapiro [9] proved that for any fixed $c \in(1,12 / 11)$ the sequence

$$
\left(\left[n^{c}\right]\right)_{n \in \mathbb{N}}
$$

contains infinitely many prime numbers. Such prime numbers are named in honor of PiatetskiShapiro. The interval for c was subsequently improved many times and the best result up to now belongs to Rivat and Wu [10] for $c \in(1,243 / 205)$.

In 2014, M. Mirek [7] showed that for any fixed $c \in(1,72 / 71)$ the set

$$
\mathbf{P}_{c}=\left\{p \text { prime }: p=\left[n^{c}\right] \text { for some } n \in \mathbb{N}\right\}
$$

contains infinitely many non-trivial three-term arithmetic progressions.
On the other hand, in 1960, Linnik [6] showed that there exist infinitely many prime numbers of the form $p=x^{2}+y^{2}+1$, where x and y-integers. Recently, the author [1] proved that there exist infinitely many arithmetic progressions of three different primes $p_{1}, p_{2}, p_{3}=2 p_{2}-p_{1}$ such that $p_{1}=x_{1}^{2}+y_{1}^{2}+1$, $p_{2}=x_{2}^{2}+y_{2}^{2}+1$. Shortly after that, Joni Teräväinen [12] improved this result by proving that the set

$$
\mathcal{P}=\left\{p \text { prime }: p=x^{2}+y^{2}+1, \quad(x, y)=1\right\}
$$

contains infinitely many non-trivial three-term arithmetic progressions.
Motivated by these results, we shall prove that there exist infinitely many arithmetic progressions of three different primes $p_{1}, p_{2}, p_{3}=2 p_{2}-p_{1}$ such that $p_{1}=x^{2}+y^{2}+1, p_{3}=\left[n^{c}\right]$.

Define

We shall prove the following theorem.

Theorem 1. Assume that $1<c<73 / 64$. Then the asymptotic formula

$$
\Gamma_{c}(X)=\frac{\left(2^{c}-1\right)^{2}}{c 2^{2 c+1}} \mathfrak{S}_{\Gamma} X^{2 c}+\mathcal{O}\left(X^{2 c}(\log X)^{-\theta_{0}}(\log \log X)^{6}\right)
$$

holds. Here θ_{0} and \mathfrak{S}_{Γ} are defined by (3) and (5).

3 Outline of the proof

Denote

$$
\begin{equation*}
D=\frac{X^{c / 2}}{(\log X)^{A}} \tag{8}
\end{equation*}
$$

Using (7) and the well-known identity $r(n)=4 \sum_{d \mid n} \chi(d)$, we find

$$
\begin{equation*}
\Gamma_{c}(X)=4\left(\Gamma_{c}^{(1)}(X)+\Gamma_{c}^{(2)}(X)+\Gamma_{c}^{(3)}(X)\right) \tag{9}
\end{equation*}
$$

where

$$
\begin{align*}
& \Gamma_{c}^{(1)}(X)=\sum_{\substack{(X / 2) c \\
p_{1}<p_{1}, p_{2}, p_{3} \leq p_{3} \leq x^{c} \\
\text { and } \\
p_{3}=2 \leq p_{2} \leq \\
p_{3}=[n \bar{c}]}}\left(\sum_{\substack{d \mid p_{1}-1 \\
d \leq D}} \chi(d)\right) p_{3}^{1-\gamma} \log p_{1} \log p_{2} \log p_{3}, \tag{10}
\end{align*}
$$

In order to estimate $\Gamma_{c}^{(1)}(X)$ and $\Gamma_{c}^{(3)}(X)$ we have to consider the sum
where d and l are coprime natural numbers, and $J \subset\left((X / 2)^{c}, X^{c}\right]$-interval. If $J=\left((X / 2)^{c}, X^{c}\right]$ then we write for simplicity $I_{c, l, d}(X)$. We apply the circle method. Clearly,

$$
\begin{equation*}
I_{c, l, d ; J}(X)=\int_{0}^{1} S_{c, l, d ; J}(\alpha) S_{c}^{*}(\alpha) S_{c}(-2 \alpha) d \alpha \tag{14}
\end{equation*}
$$

where

$$
\begin{align*}
& S_{c, l, d ; J}(\alpha)=\sum_{\substack{p \in J \\
p \equiv l(d)}} e(\alpha p) \log p, \tag{15}\\
& S_{c}(\alpha)=S_{c, 1,1 ;\left((X / 2)^{c}, X^{c}\right]}(\alpha), \tag{16}\\
& S_{c}^{*}(\alpha)=\sum_{\substack{(X / 2) c<p \leq X^{c} \\
X / 2<n \leq X \\
p=[n c]}} p^{1-\gamma} e(\alpha p) \log p . \tag{17}
\end{align*}
$$

We define major and minor arcs by

$$
\begin{equation*}
\left.E_{1}=\bigcup_{\substack{q \leq Q}}^{\substack{a=0 \\(a, q)=1}} \left\lvert\, \frac{a}{q}-\frac{1}{q \tau}\right., \frac{a}{q}+\frac{1}{q \tau}\right), \quad E_{2}=\left(-\frac{1}{\tau}, 1-\frac{1}{\tau}\right) \backslash E_{1}, \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
Q=(\log X)^{B}, \quad \tau=X^{c} Q^{-1}, \quad A>4 B+1, \quad B>14 \tag{19}
\end{equation*}
$$

Then we have the decomposition

$$
\begin{equation*}
I_{c, l, d ; J}(X)=I_{c, l, d ; J}^{(1)}(X)+I_{c, l, d ; J}^{(2)}(X), \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{c, l, d ; J}^{(i)}(X)=\int_{E_{i}} S_{c, l, d ; J}(\alpha) S_{c}^{*}(\alpha) S_{c}(-2 \alpha) d \alpha, \quad i=1,2 \tag{21}
\end{equation*}
$$

We shall estimate $I_{c, l, d ; J}^{(1)}(X), \Gamma_{c}^{(3)}(X), \Gamma_{c}^{(2)}(X)$ and $\Gamma_{c}^{(1)}(X)$, respectively, in Sections 4, 5, 6 and 7. In section 8 we shall complete the proof of the Theorem.

4 Asymptotic formula for $I_{c, l, d ; J}^{(1)}(X)$

We have

$$
\begin{equation*}
I_{c, l, d ; J}^{(1)}(X)=\sum_{q \leq Q} \sum_{\substack{a=0 \\(a, q)=1}}^{q-1} H(a, q), \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
H(a, q)=\int_{-1 / q \tau}^{1 / q \tau} S_{c, l, d ; J}\left(\frac{a}{q}+\alpha\right) S_{c}^{*}\left(\frac{a}{q}+\alpha\right) S_{c}\left(-2\left(\frac{a}{q}+\alpha\right)\right) d \alpha . \tag{23}
\end{equation*}
$$

Arguing as in [8], we find

$$
\begin{equation*}
S_{c, l, d ; J}\left(\frac{a}{q}+\alpha\right)=\frac{c_{d}(a, q, l)}{\varphi([d, q])} M_{J}(\alpha)+\mathcal{O}\left(Q \Delta\left(X^{c},[d, q]\right)\right), \tag{24}
\end{equation*}
$$

where

$$
\begin{aligned}
& c_{d}(a, q, l)=\sum_{\substack{1 \leq m \leq q \\
(m, q=1 \\
m \equiv l((d, q))}} e\left(\frac{a m}{q}\right), \\
& M_{J}(\alpha)=\sum_{m \in J} e(\alpha m)
\end{aligned}
$$

On the other hand working similar to ([4], Lemma 3, §10) we get

$$
\begin{equation*}
S_{c}\left(-2\left(\frac{a}{q}+\alpha\right)\right)=\frac{c_{2}(q)}{\varphi(q)} M(-2 \alpha)+\mathcal{O}\left(X^{c} e^{-c_{0} \sqrt{\log X}}\right), \tag{25}
\end{equation*}
$$

where

$$
\begin{align*}
& c_{2}(q)=\sum_{\substack{a=1 \\
(a, q)=1}}^{q} e\left(\frac{2 a}{q}\right)=\frac{\mu\left(\frac{q}{(2, q)}\right)}{\varphi\left(\frac{q}{(2, q)}\right)} \varphi(q), \\
& M(\alpha)=\sum_{(X / 2)^{c}<m \leq X^{c}} e(\alpha m) . \tag{26}
\end{align*}
$$

We shall find asymptotic formula for $S_{c}^{*}\left(\frac{a}{q}+\alpha\right)$. From (17) we have

$$
\begin{align*}
S_{c}^{*}(\alpha) & =\sum_{(X / 2)^{c}<p \leq X^{c}} p^{1-\gamma} e(\alpha p) \log p \sum_{\substack{X / 2<n \leq X \\
p=[n \bar{c}]}} 1 \\
& =\sum_{(X / 2)^{c}<p \leq X^{c}} p^{1-\gamma} e(\alpha p) \log p \sum_{p^{\gamma} \leq n<(p+1)^{\gamma}} 1+\mathcal{O}\left(X^{\varepsilon}\right) \\
& =\sum_{(X / 2)^{c}<p \leq X^{c}} p^{1-\gamma}\left(\left[-p^{\gamma}\right]-\left[-(p+1)^{\gamma}\right]\right) e(\alpha p) \log p+\mathcal{O}\left(X^{\varepsilon}\right) \\
& =\Omega(\alpha)+\Sigma(\alpha)+\mathcal{O}\left(X^{\varepsilon}\right), \tag{27}
\end{align*}
$$

where

$$
\begin{aligned}
& \Omega(\alpha)=\sum_{(X / 2)^{c}<p \leq X^{c}} p^{1-\gamma}\left((p+1)^{\gamma}-p^{\gamma}\right) e(\alpha p) \log p, \\
& \Sigma(\alpha)=\sum_{(X / 2)^{c}<p \leq X^{c}} p^{1-\gamma}\left(\psi\left(-(p+1)^{\gamma}\right)-\psi\left(-p^{\gamma}\right)\right) e(\alpha p) \log p .
\end{aligned}
$$

According to Kumchev [5], Theorem 2 we have that

$$
\begin{equation*}
\Sigma\left(\frac{a}{q}+\alpha\right) \ll X^{c-\varepsilon} . \tag{28}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\Omega(\alpha)=\gamma S_{c}(\alpha)+\mathcal{O}\left(X^{\varepsilon}\right), \tag{29}
\end{equation*}
$$

where $S_{c}(\alpha)$ is defined by (16).
According to ([4], Lemma 3, §10) we have

$$
\begin{equation*}
S_{c}\left(\frac{a}{q}+\alpha\right)=\frac{\mu(q)}{\varphi(q)} M(\alpha)+\mathcal{O}\left(X^{c} e^{-c_{0} \sqrt{\log X}}\right) \tag{30}
\end{equation*}
$$

where $M(\alpha)$ is defined by (26).
Bearing in mind (27)-(30), we obtain

$$
\begin{equation*}
S_{c}^{*}\left(\frac{a}{q}+\alpha\right)=\gamma \frac{\mu(q)}{\varphi(q)} M(\alpha)+\mathcal{O}\left(X^{c} e^{-c_{0} \sqrt{\log X}}\right) . \tag{31}
\end{equation*}
$$

Furthermore, we need the trivial estimates

$$
\begin{align*}
& \left|S_{c}^{*}\left(\frac{a}{q}+\alpha\right)\right| \ll X^{c}, \quad\left|S_{c, l, d ; J}\left(\frac{a}{q}+\alpha\right)\right| \ll \frac{X^{c} \log X}{d}, \tag{32}\\
& |M(\alpha)| \ll X^{c}, \quad\left|c_{2}(q)\right| \ll 1, \quad|\mu(q)| \ll 1 .
\end{align*}
$$

By (24), (25), (31), (32) and the well-known inequality $\varphi(n) \gg n(\log \log n)^{-1}$ we find

$$
\begin{align*}
& S_{c, l, d ; J}\left(\frac{a}{q}+\alpha\right) S_{c}^{*}\left(\frac{a}{q}+\alpha\right) S_{c}\left(-2\left(\frac{a}{q}+\alpha\right)\right) \\
& =S_{c, l, d ; J}\left(\frac{a}{q}+\alpha\right) S_{c}^{*}\left(\frac{a}{q}+\alpha\right) \frac{c_{2}(q)}{\varphi(q)} M(-2 \alpha)+\mathcal{O}\left(\frac{X^{3 c}}{d} e^{-c_{0} \sqrt{\log X}}\right) \\
& =S_{c, l, d ; J}\left(\frac{a}{q}+\alpha\right) \gamma \frac{\mu(q) c_{2}(q)}{\varphi^{2}(q)} M(\alpha) M(-2 \alpha)+\mathcal{O}\left(\frac{X^{3 c}}{d} e^{-c_{0} \sqrt{\log X}}\right) \\
& =\gamma \frac{c_{d}(a, q, l) \mu(q) c_{2}(q)}{\varphi([d, q]) \varphi^{2}(q)} M_{J}(\alpha) M(\alpha) M(-2 \alpha)+\mathcal{O}\left(\frac{X^{3 c}}{d} e^{-c_{0} \sqrt{\log X}}\right) \\
& +\mathcal{O}\left(\frac{X^{2 c} Q \log X}{q^{2}} \Delta\left(X^{c},[d, q]\right)\right) . \tag{33}
\end{align*}
$$

Having in mind (19), (23) and (33), we get

$$
\begin{align*}
H(a, q) & =\gamma \frac{c_{d}(a, q, l) \mu(q) c_{2}(q)}{\varphi([d, q]) \varphi^{2}(q)} \int_{-1 / q \tau}^{1 / q \tau} M_{J}(\alpha) M(\alpha) M(-2 \alpha) d \alpha \\
& +\mathcal{O}\left(\frac{X^{2 c}}{q d} e^{-c_{0} \sqrt{\log X}}\right)+\mathcal{O}\left(\frac{X^{c} Q^{2} \log X}{q^{3}} \Delta\left(X^{c},[d, q]\right)\right) . \tag{34}
\end{align*}
$$

Taking into account (22), (23), (34) and following the method in [8] we obtain

$$
\begin{align*}
I_{c, l, d ; J}^{(1)}(X) & =\gamma \frac{\sigma_{0}}{\varphi(d)} \sum_{\substack{(X / 2) c<m_{1}, m_{2} \leq X^{c} \\
m_{1}+m_{3}=2 m_{2} \\
m_{3} \in J}} 1+\mathcal{O}\left(\frac{X^{2 c}}{d} \sum_{q>Q} \frac{(d, q) \log ^{2} q}{q^{2}}\right) \\
& +\mathcal{O}\left(\tau^{2}(\log X) \sum_{q \leq Q} \frac{q}{[d, q]}\right)+\mathcal{O}\left(X^{c} Q^{2}(\log X) \sum_{q \leq Q} \frac{\Delta\left(X^{c},[d, q]\right)}{q^{2}}\right) \\
& +\mathcal{O}\left(\frac{X^{2 c}}{d} e^{-c_{0} \sqrt{\log X}}\right) . \tag{35}
\end{align*}
$$

5 Upper bound for $\Gamma_{c}^{(3)}(X)$

Consider the $\operatorname{sum} \Gamma_{c}^{(3)}(X)$. Since

$$
\sum_{\substack{d \mid p_{1}-1 \\ d \geq X^{c} / D}} \chi(d)=\sum_{\substack{m \mid p_{1}-1 \\ m \leq\left(p_{1}-1\right) D / X^{c}}} \chi\left(\frac{p_{1}-1}{m}\right)=\sum_{j= \pm 1} \chi(j) \sum_{\substack{m \left\lvert\, p_{1}-1 \\ m \leq\left(p_{1}-1\right) D / X^{c} \\ \frac{p_{1}-1}{m} \equiv j(4)\right.}} 1
$$

then from (12) and (13) it follows

$$
\Gamma_{c}^{(3)}(X)=\sum_{\substack{m<D \\ 2 \mid m}} \sum_{j= \pm 1} \chi(j) I_{c, 1+j m, 4 m ; J_{m}}(X),
$$

where $J_{m}=\left(\max \left\{1+m X^{c} / D,(X / 2)^{c}-1\right\}, X^{c}\right]$. Therefore from (20) we get

$$
\begin{equation*}
\Gamma_{c}^{(3)}(X)=\Gamma_{c}^{(3),(1)}(X)+\Gamma_{c}^{(3),(2)}(X), \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{c}^{(3),(\nu)}(X)=\sum_{\substack{m<D \\ 2 \mid m}} \sum_{j= \pm 1} \chi(j) I_{c, 1+j m, 4 m ; J_{m}}^{(\nu)}(X), \quad \nu=1,2 . \tag{37}
\end{equation*}
$$

Let us consider first $\Gamma_{c}^{(3),(2)}(X)$. Bearing in mind (21) for $i=2$ and (37) for $\nu=2$, we have

$$
\Gamma_{c}^{(3),(2)}(X)=\int_{E_{2}} K(\alpha) S_{c}^{*}(\alpha) S_{c}(-2 \alpha) d \alpha
$$

where

$$
K(\alpha)=\sum_{\substack{m<D \\ 2 \mid m}} \sum_{j= \pm 1} \chi(j) S_{c, 1+j m, 4 m ; J_{m}}(\alpha) .
$$

Using Cauchy's inequality we obtain

$$
\begin{align*}
\Gamma_{c}^{(3),(2)}(X) & \ll \sup _{\alpha \in E_{2}}\left|S_{c}(-2 \alpha)\right| \int_{E_{2}}\left|K(\alpha) S_{c}^{*}(\alpha)\right| d \alpha \\
& \ll \sup _{\alpha \in E_{2}}\left|S_{c}(-2 \alpha)\right|\left(\int_{0}^{1}|K(\alpha)|^{2} d \alpha\right)^{1 / 2}\left(\int_{0}^{1}\left|S_{c}^{*}(\alpha)\right|^{2} d \alpha\right)^{1 / 2} \tag{38}
\end{align*}
$$

The sum defined by (16) can be estimated over the minor arcs by Vinogradov's method. Using (18) and (19), we can prove in the same way as in ([4], Ch.10, Th.3) that

$$
\begin{equation*}
\sup _{\alpha \in E_{2}}\left|S_{c}(-2 \alpha)\right| \ll \frac{X^{c}}{(\log X)^{B / 2-4}} \tag{39}
\end{equation*}
$$

We square out and after straightforward computations find

$$
\begin{align*}
& \int_{0}^{1}\left|S_{c}^{*}(\alpha)\right|^{2} d \alpha \ll X^{2 c-1} \log X \tag{40}\\
& \int_{0}^{1}|K(\alpha)|^{2} d \alpha \ll X \log ^{3} X \tag{41}
\end{align*}
$$

Thus from (38)-(41) it follows

$$
\begin{equation*}
\Gamma_{c}^{(3),(2)}(X) \ll \frac{X^{2 c}}{(\log X)^{B / 2-6}} . \tag{42}
\end{equation*}
$$

Now let us consider $\Gamma_{c}^{(3),(1)}(X)$. From (35) and (37) for $\nu=1$ we get

$$
\begin{align*}
\Gamma_{c}^{(3),(1)}(X)=\Gamma^{*} & +\mathcal{O}\left(X^{2 c} \Sigma_{1}\right)+\mathcal{O}\left(\tau^{2}(\log X) \Sigma_{2}\right) \\
& +\mathcal{O}\left(X^{c} Q^{2}(\log X) \Sigma_{3}\right)+\mathcal{O}\left(X^{2 c} e^{\left.-c_{0} \sqrt{\log X} \Sigma_{4}\right)}\right. \tag{43}
\end{align*}
$$

where

$$
\begin{aligned}
& \Gamma^{*}=\gamma \sigma_{0} \sum_{\substack{(X / 2) c<m_{1} m_{2} \leq x c \\
m_{1} m_{3}=m_{3} m_{2} \\
m_{3} \in J_{m}}} 1 \sum_{\substack{m<D \\
2 \mid m}} \frac{1}{\varphi(4 m)} \sum_{j= \pm 1} \chi(j) \\
& \Sigma_{1}=\sum_{m<D} \sum_{q>Q} \frac{(4 m, q) \log ^{2} q}{m q^{2}} \\
& \Sigma_{2}=\sum_{m<D} \sum_{q \leq Q} \frac{q}{[4 m, q]} \\
& \Sigma_{3}=\sum_{m<D} \sum_{q \leq Q} \frac{\Delta\left(X^{c},[4 m, q]\right)}{q^{2}} \\
& \Sigma_{4}=\sum_{m<D} \frac{1}{m}
\end{aligned}
$$

From the properties of $\chi(k)$ we have that

$$
\begin{equation*}
\Gamma^{*}=0 . \tag{44}
\end{equation*}
$$

Arguing as in [8] and using Bombieri-Vinogradov's theorem, we find the following estimates

$$
\begin{align*}
& \Sigma_{1} \ll \frac{\log ^{5} X}{Q}, \quad \Sigma_{2} \ll Q \log ^{2} X, \tag{45}\\
& \Sigma_{3} \ll \frac{X^{c}}{(\log X)^{A-B-5}}, \quad \Sigma_{4} \ll \log X . \tag{46}
\end{align*}
$$

Bearing in mind (19), (43)-(46), we obtain

$$
\begin{equation*}
\Gamma_{c}^{(3),(1)}(X) \ll \frac{X^{2 c}}{(\log X)^{B-5}} . \tag{47}
\end{equation*}
$$

Now from (36), (42) and (47) we find

$$
\begin{equation*}
\Gamma_{c}^{(3)}(X) \ll \frac{X^{2 c}}{(\log X)^{B / 2-6}} . \tag{48}
\end{equation*}
$$

6 Upper bound for $\Gamma_{c}^{(2)}(X)$

Consider the sum $\Gamma_{c}^{(2)}(X)$. We have

$$
\begin{equation*}
\Gamma_{c}^{(2)}(X)=\Sigma_{1}+\mathcal{O}\left(X^{2 c-1+\varepsilon}\right) \tag{49}
\end{equation*}
$$

where

$$
\Sigma_{1}=\sum_{\substack{(X / 2) c \\ p_{1}<p_{1}, p_{2}, p_{3} \leq p_{3} \\ p_{3}=p_{2}}}\left(\sum_{\substack{d \mid p_{1}-1 \\ D<d<X^{c} / D}} \chi(d)\right) p^{1-\gamma} \log p_{1} \log p_{2} \log p_{3} \sum_{p_{3}^{\gamma} \leq n<\left(p_{3}+1\right)^{\gamma}} 1 .
$$

We denote by \mathcal{F} the set of all primes $(X / 2)^{c}<p \leq X^{c}$ such that $p-1$ has a divisor belongs to the interval $\left(D, X^{c} / D\right)$. By Cauchy's inequality we get

$$
\begin{aligned}
& \Sigma_{1}^{2} \ll(\log X)^{6} \sum_{\substack{(x / 2) \\
\left(p_{1}<p_{1}, \ldots, p_{0} \leq p_{6} \leq x^{c} \\
p_{1}+p_{3}=p_{2} \\
p_{4}+p_{6}=p_{5}\right.}}\left|\sum_{\substack{d \mid p_{1}-1 \\
D<d<X^{c} / D}} \chi(d)\right|\left|\sum_{\substack{t \mid p_{4}-1 \\
D<t<X^{c} / D}} \chi(t)\right| \\
& \ll(\log X)^{6} \sum_{\substack{(X / 2) \\
\left(x, p_{1}, \ldots, p_{6} \leq X^{c} \\
p_{1}+p_{3}=p_{2} \\
p_{4}+p_{6}=p_{2} \\
p_{4} \in \mathcal{F}\right.}}\left|\sum_{\substack{d \mid p_{1}-1 \\
D<d<X^{c} / D}} \chi(d)\right|^{2} .
\end{aligned}
$$

The summands in the last sum for witch $p_{1}=p_{4}$ can be estimated with $\mathcal{O}\left(X^{3 c+\varepsilon}\right)$.
Therefore

$$
\begin{equation*}
\Sigma_{1}^{2} \ll(\log X)^{6} \Sigma_{2}+X^{3 c+\varepsilon} \tag{50}
\end{equation*}
$$

where

$$
\Sigma_{2}=\sum_{\substack{(X / 2)^{c}<p_{1} \leq X^{c}}}\left|\sum_{\substack{d \mid p_{1}-1 \\ D<d<X^{c} / D}} \chi(d)\right|_{\substack{2}} \sum_{\substack{(X / 2)^{c}<p_{4} \leq X^{c} \\ \text { put } \\ p_{4} \neq p_{1}}} \sum_{\substack{(X / 2)^{c} p_{2}+p_{1}, p_{3}, p_{5}, p_{6} \leq p_{0} \\ p_{1} \\ p_{4}+p_{3}=p_{6}=2 p_{5}}} 1 .
$$

Further we use that if h is an integer such that $1 \leq|h| \leq X^{c}$, then the number of solutions of the equation $2 p_{1}-p_{2}=h$ in primes $(X / 2)^{c}<p_{1}, p_{2} \leq X^{c}$ is $\mathcal{O}\left(X^{c}(\log X)^{-2} \log \log X\right)$. This follows for example from ([2], Ch.2, Th.2.4).

Hence

$$
\begin{equation*}
\Sigma_{2} \ll \frac{X^{2 c}}{\log ^{4} X}(\log \log X)^{2} \Sigma_{3} \Sigma_{4}, \tag{51}
\end{equation*}
$$

where

$$
\Sigma_{3}=\sum_{(X / 2)^{c}<p \leq X^{c}}\left|\sum_{\substack{d \mid p-1 \\ D<d<X^{c} / D}} \chi(d)\right|^{2}, \quad \Sigma_{4}=\sum_{\substack{(X / 2)^{c}<p \leq X^{c} \\ p \in \mathcal{F}}} 1 .
$$

Arguing as in ([3], Ch.5), we obtain

$$
\begin{equation*}
\Sigma_{3} \ll \frac{X^{c}(\log \log X)^{7}}{\log X}, \quad \Sigma_{4} \ll \frac{X^{c}(\log \log X)^{3}}{(\log X)^{1+2 \theta_{0}}} . \tag{52}
\end{equation*}
$$

where θ_{0} is denoted by (3).
From (49)-(52) it follows

$$
\begin{equation*}
\Gamma_{c}^{(2)}(X) \ll X^{2 c}(\log X)^{-\theta_{0}}(\log \log X)^{6} \tag{53}
\end{equation*}
$$

7 Asymptotic formula for $\Gamma_{c}^{(1)}(X)$

Consider the sum $\Gamma_{c}^{(1)}(X)$. From (10), (13) and (20) we get

$$
\begin{equation*}
\Gamma_{c}^{(1)}(X)=\Gamma_{c}^{(1),(1)}(X)+\Gamma_{c}^{(1),(2)}(X), \tag{54}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Gamma_{c}^{(1),(1)}(X)=\sum_{d \leq D} \chi(d) I_{c, 1, d}^{(1)}(X), \\
& \Gamma_{c}^{(1),(2)}(X)=\sum_{d \leq D} \chi(d) I_{c, 1, d}^{(2)}(X) .
\end{aligned}
$$

We estimate the sum $\Gamma_{c}^{(1),(2)}(X)$ by the same way as the $\operatorname{sum} \Gamma_{c}^{(3),(2)}(X)$ and obtain

$$
\begin{equation*}
\Gamma_{c}^{(1),(2)}(X) \ll \frac{X^{2 c}}{(\log X)^{B / 2-6}} \tag{55}
\end{equation*}
$$

Now we consider $\Gamma_{c}^{(1),(1)}(X)$. We use the formula (35) for $J=(X / 2, X]$. The error term is estimated by the same way as for $\Gamma_{c}^{(3),(1)}(X)$. We have

$$
\begin{equation*}
\Gamma_{c}^{(1),(1)}(X)=\frac{\left(2^{c}-1\right)^{2}}{c 2^{2 c+1}} \sigma_{0} X^{2 c} \sum_{d \leq D} \frac{\chi(d)}{\varphi(d)}+\mathcal{O}\left(\frac{X^{2 c}}{(\log X)^{B-5}}\right) \tag{56}
\end{equation*}
$$

Denote

$$
\begin{equation*}
\Sigma=\sum_{d \leq D} f(d), \quad f(d)=\frac{\chi(d)}{\varphi(d)} \tag{57}
\end{equation*}
$$

We have

$$
\begin{equation*}
f(d) \ll d^{-1} \log \log (10 d) \tag{58}
\end{equation*}
$$

with absolute constant in the Vinogradov's symbol. Hence the corresponding Dirichlet series

$$
F(s)=\sum_{d=1}^{\infty} \frac{f(d)}{d^{s}}
$$

is absolutely convergent in $\operatorname{Re}(s)>0$. On the other hand, $f(d)$ is a multiplicative with respect to d and applying Euler's identity we find

$$
\begin{equation*}
F(s)=\prod_{p} T(p, s), \quad T(p, s)=1+\sum_{l=1}^{\infty} f\left(p^{l}\right) p^{-l s} . \tag{59}
\end{equation*}
$$

From (57) and (59) we establish that

$$
T(p, s)=\left(1-\frac{\chi(p)}{p^{s+1}}\right)^{-1}\left(1+\frac{\chi(p)}{p^{s+1}(p-1)}\right) .
$$

Hence we find

$$
\begin{equation*}
F(s)=L(s+1, \chi) \mathcal{N}(s) \tag{60}
\end{equation*}
$$

where $L(s+1, \chi)$ is Dirichlet series corresponding to the character χ and

$$
\begin{equation*}
\mathcal{N}(s)=\prod_{p}\left(1+\frac{\chi(p)}{p^{s+1}(p-1)}\right) . \tag{61}
\end{equation*}
$$

From the properties of the L-functions it follows that $F(s)$ has an analytic continuation to $\operatorname{Re}(s)>-1$. It is well known that

$$
\begin{equation*}
L(s+1, \chi) \ll 1+|\operatorname{Im}(s)|^{1 / 6} \quad \text { for } \operatorname{Re}(s) \geq-\frac{1}{2} \tag{62}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
\mathcal{N}(s) \ll 1 \tag{63}
\end{equation*}
$$

Using (60), (62) and (63), we get

$$
\begin{equation*}
F(s) \ll X^{c / 6} \text { for } \operatorname{Re}(s) \geq-\frac{1}{2}, \quad|\operatorname{Im}(s)| \leq X^{c} \tag{64}
\end{equation*}
$$

We apply Perron's formula given at Tenenbaum ([11], Chapter II.2) and also (58) to obtain

$$
\begin{equation*}
\Sigma=\frac{1}{2 \pi \imath} \int_{\kappa-\imath X^{c}}^{\kappa+\imath X^{c}} F(s) \frac{D^{s}}{s} d s+\mathcal{O}\left(\sum_{t=1}^{\infty} \frac{D^{\kappa} \log \log (10 t)}{t^{1+\kappa}\left(1+X^{c}\left|\log \frac{D}{t}\right|\right)}\right) \tag{65}
\end{equation*}
$$

where $\kappa=1 / 10$. It is easy to see that the error term above is $\mathcal{O}\left(X^{-c / 20}\right)$. Applying the residue theorem we see that the main term in (65) is equal to

$$
F(0)+\frac{1}{2 \pi \imath}\left(\int_{1 / 10-\imath X^{c}}^{-1 / 2-\imath X^{c}}+\int_{-1 / 2-\imath X^{c}}^{-1 / 2+\imath X^{c}}+\int_{-1 / 2+\imath X^{c}}^{1 / 10+\imath X^{c}}\right) F(s) \frac{D^{s}}{s} d s
$$

From (64) it follows that the contribution from the above integrals is $\mathcal{O}\left(X^{-c / 20}\right)$.
Hence

$$
\begin{equation*}
\Sigma=F(0)+\mathcal{O}\left(X^{-c / 20}\right) \tag{66}
\end{equation*}
$$

Using (60) we get

$$
\begin{equation*}
F(0)=\frac{\pi}{4} \mathcal{N}(0) \tag{67}
\end{equation*}
$$

Bearing in mind (56), (57), (61), (66) and (67) we find a new expression for $\Gamma_{c}^{(1),(1)}(X)$

$$
\begin{equation*}
\Gamma_{c}^{(1),(1)}(X)=\frac{\left(2^{c}-1\right)^{2}}{c 2^{2 c+3}} \mathfrak{S}_{\Gamma} X^{2 c}+\mathcal{O}\left(\frac{X^{2 c}}{(\log X)^{B-5}}\right) \tag{68}
\end{equation*}
$$

where \mathfrak{S}_{Γ} is defined by (5).
From (54), (55) and (68) we obtain

$$
\begin{equation*}
\Gamma_{c}^{(1)}(X)=\frac{\left(2^{c}-1\right)^{2}}{c 2^{2 c+3}} \mathfrak{S}_{\Gamma} X^{2 c}+\mathcal{O}\left(\frac{X^{2 c}}{(\log X)^{B / 2-6}}\right) \tag{69}
\end{equation*}
$$

8 Proof of the Theorem

Therefore using (9), (48), (53) and (69), we find

$$
\Gamma_{c}(X)=\frac{\left(2^{c}-1\right)^{2}}{c 2^{2 c+1}} \mathfrak{S}_{\Gamma} X^{2 c}+\mathcal{O}\left(X^{2 c}(\log X)^{-\theta_{0}}(\log \log X)^{6}\right)
$$

This implies that $\Gamma(X) \rightarrow \infty$ as $X \rightarrow \infty$.
The theorem is proved.

References

[1] Dimitrov, S. I. (2016) Arithmetic progressions of three prime numbers with two of the form $p=x^{2}+y^{2}+1$, Proc. Techn. Univ.-Sofia, 66, 3, 55-64.
[2] Halberstam, H., \& Richert, H.-E. (1974) Sieve Methods, Academic Press, London Mathematical Society.
[3] Hooley, C. (1976) Applications of sieve methods to the theory of numbers, Cambridge Univ. Press.
[4] Karatsuba, A. (1983) Principles of the Analytic Number Theory, Nauka, Moscow (in Russian).
[5] Kumchev, A. (1997) On the Piatetski-Shapiro-Vinogradov Theorem, Journal de Théorie des Nombres de Bordeaux, 9, 11-23.
[6] Linnik, J. (1960) An asymptotic formula in an additive problem of Hardy and Littlewood, Izv. Akad. Nauk SSSR, Ser.Mat., 24, 629-706 (in Russian).
[7] Mirek, M. (2014) Roth's theorem in the Piatetski-Shapiro primes, arXiv:1305.0043v2 [math.CA] 10 Apr 2014.
[8] Peneva, T. \& Tolev, D. (1998) An additive problems with primes and almost-primes, Acta Arith., 83, 155-169.
[9] Piatetski-Shapiro, I. I. (1953) On the distribution of prime numbers in sequences of the form [f(n)], Mat. Sb., 33, 559-566.
[10] Rivat, J., \& Wu, J. (2001) Prime numbers of the form [nc], Glasg. Math. J, 43(2), 237-254.
[11] Tenenbaum, G. (1995) Introduction to Analytic and Probabilistic Number Theory, Cambridge Univ. Press.
[12] Teräväinen, J. (2016) The Goldbach problem for primes that are sums of two squares plus one, arXiv:1611.08585v1 [math.NT] 25 Nov 2016.

