Short remark on a special numerical sequence

Krassimir T. Atanassov
Department of Bioinformatics and Mathematical Modelling IBPhBME, Bulgarian Academy of Sciences
Acad. G. Bonchev Str. B1. 105, Sofia-1113, Bulgaria
and
Intelligent Systems Laboratory
Prof. Asen Zlatarov University, Bourgas-8010, Bulgaria
e-mail: krat@bas.bg

Dedicated to the $200^{\text {th }}$ anniversary of Ghent University
Received: 15 October 2017
Accepted: 29 October 2017
Abstract: The sequence $G=\left\{2^{2} 3^{3} \ldots p_{n}^{p_{n}}\right\}_{n \geq 1}$ is discussed and some of its properties are studied. Keywords: Arithmetic function, Prime number, Sequence.
AMS Classification: 11A25

1 Introduction

Let $p_{1}=2, p_{2}=3, p_{3}=5, \ldots$ be the sequence of the prime numbers. We define the new sequence $G=\left\{G_{n}\right\}_{n \geq 1}$, where

$$
G_{n}=2^{2} 3^{3} \ldots p_{n}^{p_{n}}
$$

and study some of its properties. Here the denotation G comes from Ghent.
First, we introduce definitions of some well-known arithmetic functions, which are defined for the natural number

$$
n=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}
$$

where $k, \alpha_{1}, \ldots, \alpha_{k}, k \geq 1$ are natural numbers and p_{1}, \ldots, p_{k} are different primes, by:

$$
\varphi(n)=\prod_{i=1}^{k} p_{i}^{\alpha_{i}-1}\left(p_{i}-1\right), \varphi(1)=1
$$

$$
\begin{gathered}
\sigma(n)=\prod_{i=1}^{k} \frac{p_{i}^{\alpha_{i}+1}-1}{p_{i}-1}, \sigma(1)=1, \\
\psi(n)=\prod_{i=1}^{k} p_{i}^{\alpha_{i}-1}\left(p_{i}+1\right), \psi(1)=1, \\
\omega(n)=k
\end{gathered}
$$

(see, e.g. [5, 6]).
In addition, following [1], we introduce four other functions for the same values of n :

$$
\begin{gathered}
\delta(n)=\sum_{i=1}^{k} \alpha_{i} p_{1}^{\alpha_{1}} \ldots p_{i-1}^{\alpha_{i-1}} p_{i}^{\alpha_{i}-1} p_{i+1}^{\alpha_{i+1}} \ldots p_{k}^{\alpha_{k}}, \\
\eta(n)=\sum_{i=1}^{k} \alpha_{i} p_{i} \\
\operatorname{mult}(n)=\prod_{k=1}^{n} p_{k} \\
\operatorname{sum}_{2}(n)=\sum_{i=1}^{k} p_{i}^{2} .
\end{gathered}
$$

In [2-4] are introduced, respectively, the following three functions, called irrational, converse and restrictive factors:

$$
\begin{aligned}
& I F(n)=\prod_{i=1}^{k} p_{i}^{1 / \alpha_{i}}, \\
& C F(n)=\prod_{i=1}^{k} \alpha_{i}^{p_{i}}, \\
& R F(n)=\prod_{i=1}^{k} p_{i}^{\alpha_{i}-1}
\end{aligned}
$$

(see, also [7]).

2 Main results

First, we see directly that for each natural number n :

$$
G_{n}>\prod_{k=1}^{n}\left(p_{k}!\right)
$$

and

$$
G_{n}=2^{2 \log _{2} 2} \cdot 2^{3 \log _{2} 3} \cdot 2^{5 \log _{2} 5} \ldots .2^{p_{n} \log _{2} p_{n}}=2^{\sum_{k=1}^{n} p_{k} \log _{2} p_{k}} .
$$

Second, for the same n :

$$
\begin{aligned}
& \varphi\left(G_{n}\right)=2 \cdot 3^{2} \cdot 2 \cdot 5^{4} \cdot 4 \ldots p_{n}^{p_{n}-1} \cdot\left(p_{n}-1\right)=\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{4}{5} \cdot \ldots \cdot \frac{p_{n}-1}{p_{n}} \cdot G_{n}, \\
& \psi\left(G_{n}\right)=3 \cdot 2 \cdot 3^{2} \cdot 4 \cdot 5^{4} \cdot 6 \ldots p_{n}^{p_{n}-1} \cdot\left(p_{n}+1\right)=\frac{3}{2} \cdot \frac{4}{3} \cdot \frac{6}{5} \ldots \cdot \frac{p_{n}+1}{p_{n}} \cdot G_{n} .
\end{aligned}
$$

Therefore,

$$
\varphi\left(G_{n}\right) \psi\left(G_{n}\right)=\frac{2^{2}-1}{2^{2}} \cdot \frac{3^{2}-1}{3^{2}} \cdot \frac{5^{2}-1}{5^{2}} \ldots \cdot \frac{p_{n}^{2}-1}{p_{n}^{2}} \cdot G_{n}^{2} .
$$

Third,

$$
\begin{aligned}
\sigma\left(G_{n}\right) & =\frac{2^{3}-1}{2-1} \cdot \frac{3^{4}-1}{3-1} \cdot \frac{5^{6}-1}{5-1} \ldots \cdot \frac{p_{n}^{p_{n}+1}-1}{p_{n}-1} \\
& <2^{3} \cdot 3^{4} \cdot 5^{6} . \ldots \cdot p_{n}^{p_{n}+1}=G_{n} \operatorname{mult}\left(G_{n}\right) .
\end{aligned}
$$

Fourth,

$$
\eta\left(G_{n}\right)=2.2+3.3+5.5+\ldots p_{n} \cdot p_{n}=\operatorname{sum}_{2}\left(2.3 .5 . \ldots . p_{n}\right)=\operatorname{sum}_{2}\left(G_{n}\right) .
$$

Fifth, obviously, for each natural number $n \geq 1$

$$
\omega\left(G_{n}\right)=n .
$$

Therefore, it is valid the following assertion.
Theorem 1. For each natural number $n \geq 1$:

$$
\delta\left(G_{n}\right)=\omega\left(G_{n}\right) \cdot G_{n} .
$$

Proof. Let $n \geq 1$ be a natural number. Then

$$
\begin{gathered}
\delta\left(G_{n}\right)=2 \cdot 2^{2-1} \cdot 3^{3} \ldots \ldots \cdot p_{n}^{p_{n}}+3 \cdot 2^{2} \cdot 3^{3-1} \ldots \ldots \cdot p_{n}^{p_{n}}+p_{n} \cdot 2^{2} \cdot 3^{3} \ldots \ldots . p_{n}^{p_{n}-1} \\
=n \cdot 2^{2} \cdot 3^{3} \cdot \ldots \cdot p_{n}^{p_{n}}=n \cdot G_{n}=\omega\left(G_{n}\right) \cdot G_{n} .
\end{gathered}
$$

Sixth, we see directly that

$$
C F\left(G_{n}\right)=G_{n} .
$$

Seventh,

$$
R F\left(G_{n}\right)=2^{2-1} \cdot 3^{3-1} .5^{5-1} \ldots . p_{n}^{p_{n}-1}=\frac{G_{n}}{\operatorname{mult}\left(G_{n}\right)} .
$$

Therefore,

$$
\sigma\left(G_{n}\right) \cdot R F\left(G_{n}\right)<G_{n}^{2}
$$

Moreover,

$$
\begin{aligned}
\varphi\left(G_{n}\right) \sigma\left(G_{n}\right) & =\left(2^{3}-1\right) \cdot\left(3^{4}-1\right) \cdot\left(5^{6}-1\right) \ldots \cdot\left(p_{n}^{p_{n}+1}-1\right) \cdot 2 \cdot 3^{2} \cdot 5^{4} \ldots \ldots \cdot p_{n}^{p_{n}-1} \\
& =\left(2^{3}-1\right) \cdot\left(3^{4}-1\right) \cdot\left(5^{6}-1\right) \ldots \cdot\left(p_{n}^{p_{n}+1}-1\right) \cdot R F\left(G_{n}\right) .
\end{aligned}
$$

Finally, eighth, we prove the following assertion.
Theorem 2. For each natural number n:

$$
\operatorname{IF}\left(G_{n}\right)<2^{\omega\left(G_{n}\right)} .
$$

Proof. From $2^{s}>s$ for each natural number s it follows that $\sqrt[s]{s}<2$. Hence,

$$
I F\left(G_{n}\right)=\sqrt[2]{2} \cdot \sqrt[3]{3} \cdot \sqrt[5]{5} \ldots \cdot \sqrt[p_{n}]{p_{n}}<2^{n}=2^{\omega\left(G_{n}\right)}
$$

3 Conclusion

This short remark was written at the time of my visit in Ghent (Gent, Gand) University in October 2017, when the institution celebrated the $200^{\text {th }}$ anniversary of its foundation.

All the results can obtain more precise forms (e.g., at least a part of the inequalities can obtain stronger forms) and this will be an object of a future research.

References

[1] Atanassov, K. (1987) New integer functions, related to " φ " and " σ " functions, Bulletin of Number Theory and Related Topics, XI(1), 3-26.
[2] Atanassov, K. (1996) Irrational factor: definition, properties and problems, Notes on Number Theory and Discrete Mathematics, 2(3), 42-44.
[3] Atanassov, K. (2002) Converse factor: definition, properties and problems, Notes on Number Theory and Discrete Mathematics, 8(1), 37-38.
[4] Atanassov, K. (2002) Restrictive factor: definition, properties and problems, Notes on Number Theory and Discrete Mathematics, 8(4), 117-119.
[5] Mitrinovic, D., \& Sándor, J. (1996) Handbook of Number Theory, Kluwer Academic Publishers.
[6] Nagell, T. (1950) Introduction to Number Theory, John Wiley \& Sons, New York.
[7] Panaitopol, L. (2004) Properties of the Atanassov functions. Advanced Studies on Contemporary Mathematics, 8(1), 55-59.

