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Abstract: A set of vertices S is said to dominate the graph G if for each v /∈ S, there is a
vertex u ∈ S with v adjacent to u. The minimum cardinality of any dominating set is called the
domination number of G and is denoted by γ(G). A dominating set D of a graph G = (V,E) is
a non-split dominating set if the induced graph 〈V −D〉 is connected. The non-split domination
number γns(G) is the minimum cardinality of a non-split domination set. The purpose of this
paper is to initiate the investigation of those graphs which are critical in the following sense: A
graph G is called vertex domination critical if γ(G− v) < γ(G) for every vertex v in G. A graph
G is called vertex non-split critical if γns(G − v) < γns(G) for every vertex v in G. Thus, G is
k-γns-critical if γns(G) = k, for each vertex v ∈ V (G), γns(G−v) < k. A graphG is called edge
domination critical if γ(G+ e) < γ(G) for every edge e in G. A graph G is called edge non-split
critical if γns(G+e) < γns(G) for every edge e ∈ G. Thus, G is k-γns-critical if γns(G) = k, for
each edge e ∈ G, γns(G+ e) < k. First we have constructed a bound for a non-split domination
number of a subdivision graph S(G) of some particular classes of graph in terms of vertices and
edges of a graph G. Then we discuss whether these particular classes of subdivision graph S(G)
are γns-critical or not with respect to vertex removal and edge addition.
Keywords: Domination number, Non-split domination, Non-split domination number, Critical
graph, Subdivision graph, Vertex critical, Edge critical.
AMS Classification: 05C69.
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1 Introduction

In this paper all our graphs will be finite, connected , undirected and without loops or multiple
edges such that G − v should not a null graph for vertex removal. Terminology not defined here
will conform to that in [2]. Let Pn, Cn, K1,n, Kn, Km,n denote the path, cycle, star, complete and
bipartite graph.

An end vertex in a graphG is a vertex of deg 1 and support vertex is a vertex which is adjacent
to an end vertex.

A subdivision of an edge e = uv of a graph G is the replacement of an edge e by a path
(u, v, w) where w /∈ V (G). The graph obtained from G by subdividing each edge of G exactly
once is called the subdivision graph of G and it is denoted by S(G). The neighborhood of a
vertex in the graph G is the set of vertices adjacent to v. The neighborhood is denoted by N(v).

A set of vertices S is said to dominate the graph G if for each v /∈ S, there is a vertex u ∈ S
with v adjacent to u. The minimum cardinality of any dominating set is called the domination
number of G and is denoted by γ(G).

The concept of non-split domination has been studied by V. R. Kulli and B. Janakiram [3].
A dominating set D of a graph G = (V,E) is a non-split dominating set if the induced graph
〈V −D〉 is connected. The non-split domination number γns(G) is the minimum cardinality of a
non-split domination set. The concept of γ-critical graphs has been studied by Sumner and Blitch
[1] and Sumner [6].

In this paper, we study the non-split domination critical graphs. A graph G is called vertex
non-split critical if γns(G − v) < γns(G) for every vertex v in G. Thus, G is k-γns-critical if
γns(G) = k, for each vertex v ∈ V (G), γns(G − v) < k. A graph G is called edge domination
critical if γ(G + e) < γ(G) for every edge e ∈ G. A graph G is called edge non-split critical if
γns(G + e) < γns(G) for every edge e ∈ G. Thus, G is k-γns-critical if γns(G) = k, for each
edge e ∈ G, γns(G+ e) < k.

First we have obtained a γns set for some particular classes of subdivision graph S(G) in
terms of vertices and edges of a graph G. Then we have discuss whether these particular classes
of subdivision graph S(G) are γns critical or not with respect to vertex removal and edge addition.

2 Construction of γns set for a particular classes of graph

2.1 Construction of γns set of a subdivision of a complete graph S(Kn)

STEP 1: To cover all the vertices that subdivides E(Kn), we require minimum n− 1 vertices of
Kn which will not cover nth vertex of Kn.

STEP 2: Removal of these n − 1 vertices from S(Kn) makes the graph S(Kn) disconnected in
which (n−1)(n−2)

2
components are K1 and another component K1,n−1. Therefore in γns set

contains (n−1)(n−2)
2

vertices from each of (n−1)(n−2)
2

components of K1.

STEP 3: Now to cover K1,n−1 vertex, we need a vertex of (V (S(Kn))− V (Kn)) ∩ V (K1,n−1).
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Therefore, γns(S(Kn)) = (n− 1) + (n−1)(n−2)
2

+ 1.

= (n− 1)(1 + n−2
2
) + 1.

= (n− 1)(2+n−2
2

) + 1.

= (n)(n−1)
2

+ 1.

2.2 Construction of γns set of a subdivision of a bipartite graph
S(Km,n),m ≥ n

STEP 1: To cover all the vertices that subdivides E(Km,n), we require m number of vertices of
Km,n.

STEP 2: Removal of thesem vertices from S(Km,n) makes the graph S(Km,n) disconnected into
n number of components of K1,m say G1, G2.G3, . . . , Gn.

STEP 3: Therefore γns set contains V (G1) ∪ V (G2) ∪ V (G3) ∪ · · · ∪ V (Gn−1).

STEP 4: Now to cover nth component K1,m, we need one vertex of V (Gn) such that K1,m is
connected.

Therefore, γns(S(Km,n)) = m+ (m+ 1)(n− 1) + 1.

= m+mn−m+ n− 1 + 1.

= n(1 +m).

2.3 Construction of γns set of a subdivision of a wheel graph S(Wn)

STEP 1: To cover all the vertices that subdividesE(Wm,n), we require minimum of n−1 vertices
of Wn not containing the vertex of degree n− 1.

STEP 2: Removal of these n − 1 vertices from S(Wn) makes the graph S(Wn) disconnected in
which n− 1 components are of K1 and one component of K1,n−1.

STEP 3: Therefore in γns set contains n− 1 vertices of K1.

STEP 4: Now to cover K1,n−1, we need one vertex of (V (S(Kn))− V (Kn)) ∩ V (K1,n−1).

Therefore, γns(S(Wn)) = (n− 1) + (n− 1) + 1.

= 2(n− 1) + 1.

= 2n− 1.

3 Non-split vertex domination of a subdivision critical graph

Theorem 3.1. The graph S(Kn) is non-split vertex critical n ≥ 3.

Proof. Let D be the γns set of S(Kn) and let |V (S(Kn)| = (n)(n−1)
2

+ n. Let A = V (S(Kn))−
V (Kn) and B = {vr/vr ∈ V (S(Kn))−D}. we consider the following cases:
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Case 1: Let v ∈ V (Kn) and v /∈ N(B), then γns(S(Kn) − v) = |D| − |v| = γns(S(Kn)) − 1.
Otherwise v ∈ N(B) then,
γns(S(Kn) − v) = |V (S(Kn))| − |vj| − |K| + |vs| − |v|, where vj ∈ V (Kn), vj 6= v,K =

{vm ∈ A/vm ∈ N(vj)} with |K| = n− 1 and vs ∈ K ∩N(v).

=( (n)(n−1)
2

+ n)− 1− (n− 1) + 1− 1.

= (n)(n−1)
2

+ 1 + (n− 1)− (n− 1)− 1.

=γns(S(Kn))− 1.

Case 2: Let v ∈ A and v /∈ N(B) then, γns(S(Kn)− v) = |D| − |v|.

=( (n)(n−1)
2

+ 1)− 1.

=γns(S(Kn))− 1.
Otherwise v ∈ N(B) then,
γns(S(Kn)− v) = |V (S(Kn))|− |vj|− |K|+ |vs|− |v|, where vj ∈ V (Kn), vj 6= N(v), K =

{vm ∈ A/vm ∈ N(vj)} with |K| = n− 1 and vs ∈ K.

=( (n)(n−1)
2

+ n)− 1− (n− 1) + 1− 1.

= (n)(n−1)
2

+ 1 + (n− 1)− (n− 1)− 1.

=γns(S(Kn))− 1.

From Case(1) and Case(2), we have γns(S(Kn) − v) < γns(S(Kn)), therefore S(Kn) is vertex
non-split critical n ≥ 3.

Lemma 3.2. The graph S(Cn) is non-split vertex critical for n ≥ 3.

Lemma 3.3. The graph S(Pn) is not non-split vertex critical for n ≥ 5 and not nonsplit vertex
critical for n < 5.

Lemma 3.4. The graph S(T ),T 6= Pn is not a non-split vertex critical for n ≥ 3.

Theorem 3.5. The graph S(Km,n) is non-split vertex critical for m ≥ n, m,n ≥ 2.

Proof. Let V (Km,n) = V1 ∪ V2 where |V1| = m, |V2| = n. Let D be the γns set of S(Km,n),A =

V (S(Km,n))− V (Km,n) and B =< V (S(Km,n)−D >. We consider the following cases.

Case 1: Let v ∈ V2 and if v ∈ N(B), then γns(S(Km,n)− v) = |D| − |v|.

= γns(S(Km,n))− 1.
Otherwise v /∈ N(B) then,
γns(S(Km,n)−v) = |V (S(Km,n)|−|vj|−|K|+ |vr|−|v|, where vj ∈ V1, K = {vp ∈ A/vp ∈
N(vj)} with |K| = m, vr ∈ K ∪N(v).

=m+ n+mn− 1−m+ 1− 1.

=n(1 +m)− 1.

=γns(S(Km,n))− 1.
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Case 2: Let v ∈ V1 ∩D then, γns(S(Km,n)− v) = |D| − |v|.

= γns(S(Km,n))− 1.
Otherwise v ∈ V1, v /∈ D then,
γns(S(Km,n) − v) = |V (S(Km,n))| − |vj| − |K| + |vr| − |v|, where vj 6= v, vj ∈ V1, K =

{vp ∈ A/vp ∈ N(vj)} with |K| = m, vr ∈ K.

=m+ n+mn− 1−m+ 1− 1.

=n(1 +m)− 1.

=γns(S(Km,n))− 1.

Case 3: Let v ∈ A and v /∈ N(B) then, γns(S(Km,n)− v) = |D| − |v|.

= γns(S(Km,n))− 1.
Otherwise v ∈ N(B) then,
γns(S(Km,n)− v) = |V (S(Km,n))| − |vj| − |K|+ |vr| − |v|, where vj /∈ N(v), vj ∈ V1, K =

{vp ∈ A/vp ∈ N(vj)} with |K| = m, vr ∈ K.

=m+ n+mn− 1−m+ 1− 1.

=n(1 +m)− 1.

=γns(S(Km,n))− 1.

From all the above cases, we have γns(S(Km,n) − v) < γns(S(Km,n)), therefore S(Km,n) is
vertex non-split critical.

Theorem 3.6. The graph S(Wn) in not vertex non-split critical for n ≥ 5 and vertex non-split
critical for n = 4.

Proof. Let D be the γns set of S(Wn) and |V (S(Wn))| = 3n − 2. Let vk ∈ V (Wn) ,deg(vk) =
n−1. LetB = {vi/vi ∈ V (S(Wn))−vk} andC = V (S(Wn))−V (Wn) and F =< V (S(Kn))−
D >. we consider the following cases:

Case 1: Let v ∈ B ∩D and v /∈ N(F ) then γns(S(Wn)− v) = |D| − |v|.

=γns(S(Wn))− 1.
Otherwise v ∈ N(F ) and n ≥ 5 then, γns(S(Wn) − v) = |D| − |v| + |vr| − |vs|. Where
vs ∈ N(vk) ∩D and covers vk, vr ∈ N(v) ∩N(vk).

=γns(S(Wn))− 1.
Otherwise for n = 4 ,γns(S(Wn) − v) = |D| − |v| + |vr| − |vs|. Where vs ∈ N(F ) ∩ C,
vr ∈ N(v) ∩ F .

=γns(S(Wn))− 1.

For n = 4, v ∈ B, v /∈ D then, γns(S(W4) − v) = |V (S(W4))| − |v| − |vj| − |K| + |vs|.
Where vj ∈ {B} − {v}, K = {vr/vr ∈ N(vj)} with |K| = 3, vs ∈ K ∩N(v).

=3n− 2− 1− 1− 3 + 1.

=3n− 6.
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Case 2: Let v = vk then, γns(S(Wn) − v) = |V (S(Wn))| − |v| − |vj| − |K| + |vm|. Where
vj ∈ B,K = {vl/vl ∈ N(vj)} with |K| = 3, vm ∈ K ∩N(vk).

=3n− 2− 1− 1− 3 + 1.

=3n− 6.

Case 3: Let v ∈ C, v /∈ N(vk) and if v /∈ N(F ) then, γns(S(Wn)− v) = |D| − |v|.

=γns(S(Wn))− 1.
Otherwise v ∈ N(F ) and n = 4 then,
γns(S(Wn) − v) = |V (S(Wn))| − |v| − |vj| − |K| + |vm|. Where vj ∈ B, vj 6= N(v), K =

{vl/vl ∈ N(vj)} with |K| = 3, vm ∈ K.

=3n− 2− 1− 1− 3 + 1.

=3n− 6.
Otherwise v ∈ N(vk), then γns(S(Wn)− v) = |V (S(Wn))| − |v| − |vj| − |K|+ |vm|. Where
vj ∈ B, vj /∈ N(v), K = {vl/vl ∈ N(vj)} with |K| = 3, vm ∈ K.

=3n− 2− 1− 1− 3 + 1.

=3n− 6.
From Case 1,Case 2 and Case 3:

(i) If n = 4, γns(S(Wn)− v) = 3n− 6 < 2n− 1 = γns(S(Wn)).

(ii) If n ≥ 5, γns(S(Wn)− v) = 3n− 6 ≥ 2n− 1 = γns(S(Wn)).

Hence the proof.

4 Non-split edge domination of a subdivision critical graph

Theorem 4.1. The graph S(Kn) is edge non-split critical for n ≥ 3.

Proof. Let C = V (S(Kn)− V (Kn). We consider the following cases.

Case 1: Let e = v1v2 ∈ E(S(Kn)), {v1, v2} ∈ V (Kn) then,
γns(S(Kn) + e) = |V (S(Kn))| − |v1| − |K|, where K = {vs ∈ C/vs ∈ N(v1)} with
|K| = n− 1.

= (n)(n−1)
2

+ n− 1− (n− 1).

= (n)(n−1)
2

+ 1− 1.

=γns(S(Kn))− 1.

Case 2: Let e = v1v2 ∈ E(S(Kn)), {v1, v2} ∈ C, {v1, v2} ∈ N(vk), vk ∈ V (Kn) then,
γns(S(Kn) + e) = |V (S(Kn))| − |v2| − |{vk, vl}| − |K| − |R| + |vm|. Where {vk, vl} ∈
V (Kn) ∩ N(v2), vk ∈ N(v1), K = {vs ∈ C/vs 6= (v2, v1), vs ∈ N(vk)}, R = {vr ∈ C/vr 6=
v2, vr ∈ N(vl)}, with |K| = n− 3, |R| = n− 2, vm ∈ R.

= (n)(n−1)
2

+ n− 1− 2− (n− 3)− (n− 2) + 1.
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= (n)(n−1)
2
− n+ 3.

=γns(S(Kn))− (n− 2).

Case 3: Let e = v1v2 ∈ E(S(Kn)), v1 ∈ V (Kn), v2 ∈ C, {v1, v2} /∈ N(vk), vk ∈ V (Kn) then,
γns(S(Kn)+ e) = |V (S(Kn))| − |v2| − |{vk, vl}|− |K| − |R|+ |{vm, vn}|. Where {vk, vl} ∈
V (Km,n) ∩N(v2), K = {vs ∈ C/vs 6= v2, vs ∈ N(vk)}, R = {vr ∈ C/vr 6= v2, vr ∈ N(vl)},
with |K| = n− 2, |R| = n− 2, vm ∈ K, vn ∈ R.

= (n)(n−1)
2

+ n− 1− 2− (n− 2)− (n− 2) + 2.

= (n)(n−1)
2
− n+ 3.

=γns(S(Kn))− (n− 2).

The result follows from Case(1),Case(2) and Case(3).

Lemma 4.2. The graph S(Cn) is non-split edge critical for n ≥ 3.

Lemma 4.3. The graph S(Pn) is not non-split edge critical for n ≥ 3.

Lemma 4.4. The graph S(T ) is not non-split edge critical,if T 6= K1,n.

Theorem 4.5. The graph S(Km,n) is not edge critical for m > n and edge critical for m = n

where m,n ≥ 2.

Proof. Let V (Km,n) = V1 ∪ V2 where |V1| = m, |V2| = n. Let D be the γns set of the graph
S(Km,n) and C = V (S(Km,n))− V (Km,n). We consider the following cases:

Case 1: Let e = v1v2 ∈ E(S(Km,n)), v1 ∈ D, v2 /∈ D then,
γns(S(Km,n) + e) = |D| − |vr|, vr ∈ N(v2) ∩D.

= γns(S(Km,n))− 1.

Case 2: Let e = v1v2 ∈ E(S(Km,n)), {v1, v2} ∈ V2 or v1 ∈ C, v2 ∈ V2 and suppose m > n then,
γns(S(Km,n) + e) = |V (S(Km,n))| − |vj| − |K|+ |vm|, vj ∈ V1, K = {vs ∈ C/vs ∈ N(vj)},
with |K| = m, vm ∈ K.

= mn+m+ n− 1−m+ 1.

= n(m+ 1).

= γns(S(Km,n)).
Suppose m = n then,
γns(S(Km,n) + e) = |V (S(Km,n))| − |v2| − |K|, K = {vs ∈ C/vs ∈ N(v2)} with |K| = n.

= mn+m+ n− 1− n.

= mn+m+ n− 1−m(since m = n).

= n(m+ 1)− 1.

= γns(S(Km,n))− 1.
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Case 3: Let e = v1v2 ∈ E(S(Km,n)), {v1, v2} ∈ V1 then,
γns(S(Km,n) + e) = |V (S(Km,n))| − |v1| − |K|, K = {vs ∈ C/vs ∈ N(v1)} with |K| = m.

= mn+m+ n− 1−m.

= n(m+ 1)− 1.

= γns(S(Km,n))− 1.

Case 4: Let e = v1v2 ∈ E(S(Km,n)), v1 ∈ V2, v2 ∈ V1 or v1 ∈ C, v2 ∈ V1 then,
γns(S(Km,n) + e) = |V (S(Km,n))| − |v2| − |K|, K = {vs ∈ C/vs ∈ N(v2)} with |K| = m.

= mn+m+ n− 1−m.

= n(m+ 1)− 1.

= γns(S(Km,n))− 1.

Case 5: Let e = v1v2 ∈ E(S(Km,n)), {v1, v2} ∈ C and {v1, v2} ∈ N(vr), vr ∈ V1 then,
γns(S(Km,n)+e) = |V (S(Km,n))|−|vr|−|K|+|v1|−|vm|, K = {vs ∈ C/vs ∈ N(vr)}, vm ∈
N(v2) ∩ V2 with |K| = m.

= mn+m+ n− 1−m+ 1− 1.

= n(m+ 1)− 1.

= γns(S(Km,n))− 1.
Otherwise v1 ∈ N(vr), v2 ∈ N(vs), vr 6= vs, (vr, vs) ∈ V1 then,
γns(S(Km,n)+e) = |V (S(Km,n))|−|vr|−|K|−|vm|+|vs|, K = {vs ∈ C/vs ∈ N(vr)}, vm ∈
N(v1) ∩ V2, vs ∈ K 6= v1 with |K| = m.

= mn+m+ n− 1−m− 1 + 1.

= n(m+ 1)− 1.

= γns(S(Km,n))− 1.

The result follows from the above cases.

Theorem 4.6. The graph S(Wn) in not edge non-split critical for n ≥ 5 and edge non-split
critical for n = 4.

Proof. Let |V (S(Wn))| = 3n − 2 and B = {vi/vi ∈ V (Wn) − vk}, where vk is the vertex of
degree n− 1 and C = V (S(Wn))− V (Wn). We consider the following cases:

Case 1: Let e = v1vk ∈ E(S(Wn)), v1 ∈ B ∪ C then,
γns(S(Wn) + e) = |V (S(Wn))| − |vk| − |K| with |K| = n− 1

=3n− 2− 1− (n− 1) = 2n− 2.
Since 2n− 2 < 2n− 1. Therefore γns(S(Wn)− v) < γns(S(Wn)).

Case 2: Let e = v1v2 ∈ E(S(Wn)), v1 ∈ B ∪ C, v2 ∈ C, {v1, v2} /∈ N(vk) then,
γns(S(Wn) + e) = |V (S(Wn)) − |v2| − |{vi, vj}| − |{vr, vs}|. Where {vi, vj} ∈ N(v2) ∩
B, (vr, vs) ∈ N(vk) ∩N(vi, vj).
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=3n− 2− 1− 2− 2.

=3n− 7.

(i) If n = 4, 5 then 3n− 7 < 2n− 1, therefore γns(S(Wn) + e) < γns(S(Wn)).

(ii) If n ≥ 6 then 3n− 7 ≥ 2n− 1, therefore γns(S(Wn) + e) ≥ γns(S(Wn)).

Case 3: Let e = v1v2 ∈ E(S(Wn)), {v1, v2} ∈ B and n ≥ 5 then,
γns(S(Wn)+e) = |V (S(Wn))|− |vk|− |K|+ |vm|. Where K = {vs ∈ C/vs ∈ N(vk)}, vm ∈
K with |K| = n− 1.

=3n− 2− 1− (n− 1) + 1.

=2n− 1.

=γns(S(Wn)).
Otherwise forn = 4 then, γns(S(Wn) + e) = |V (S(Wn))| − |v1| − |K|. Where K = {vm ∈
C/vm ∈ N(v1)}.

=3n− 2− 1− (n− 1).

=3n− 6.
Since 3n− 6 < 2n− 1 for n = 4, therefore γns(S(Wn) + e) < γns(S(Wn)).

Case 4: Let e = v1v2 ∈ E(S(Wn)), {v1, v2} ∈ B ∪ C, v1 /∈ N(vk), v2 ∈ N(vk) then,
γns(S(Wn) + e) = |V (S(Wn))| − |vk| − |K| − |vr| − |vs|+ |vm|, Where K = {vp ∈ C/vp ∈
N(vk) ∩ C}, vr ∈ B ∩ N(v2), vs ∈ N(vr) ∩ C, vs 6= (v1, v2), vm 6= v2, vm ∈ K with |K| =
n− 1.

=3n− 2− 1− (n− 1)− 1− 1 + 1.

=2n− 3. Otherwise v1 ∈ C ∩N(vk) then,
γns(S(Wn) + e) = |V (S(Wn))| − |vk| − |K| − |vr| − |vs|+ |v1|, Where K = {vp ∈ C/vp ∈
N(vk) ∩ C}, vr ∈ B ∩N(v2), vs ∈ N(vr) ∩ C, vs 6= v2 with |K| = n− 1.

=3n− 2− 1− (n− 1)− 1− 1 + 1.

=2n− 3.
Since 2n− 3 < 2n− 1, therefore γns(S(Wn)− v) < γns(S(Wn)).

The result follows from the above cases.
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