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1 Introduction

Generalized Fibonacci numbers Gn may be defined through the second order recurrence relation
Gn+1 = Gn+Gn−1, where the initial termsG0 andG1 need to be specified. In this paper we focus
on the two most popular members of this family: The Fibonacci numbers Fn and Lucas numbers
Ln, which are defined by initial conditions F0 = 0, F1 = 1 and L0 = 2, L1 = 1, respectively. The
Binet forms are given by

Fn =
αn − βn

α− β
, Ln = αn + βn, n ≥ 0, (1.1)

where α and β are roots of the quadratic equation x2 − x− 1 = 0, i.e., α = 1+
√
5

2
and β = 1−

√
5

2
.

∗Disclaimer: Statements and conclusions made in this article are entirely those of the author. They do not
necessarily reflect the views of LBBW.
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The goal of this study is to evaluate special finite and infinite reciprocal sums of these num-
bers. The interest is not new and some open problems still exist. For instance, no simple expres-
sions for the sums

∞∑
i=1

1

Fi
,

∞∑
i=1

1

Li
,

∞∑
i=1

(−1)i

Fi
and

∞∑
i=1

(−1)i

Li

are known. The summation of reciprocals of generalized Fibonacci numbers is a challenging
issue. It is discussed in several articles where different approaches are applied. The main lines
of research are: establishing algebraic relationships (i.e. reduction formulas) for these sums,
expressing the sums in terms of special functions and a direct evaluation. Reduction formulas may
be found in the articles [5], [6], [7], [16], [17] or [23]. Expressions involving Elliptic functions,
the Lambert series and/or Theta functions are derived in [1], [2], [4], [11], [12] or [13].

A direct evaluation of reciprocal Fibonacci sums is also possible in many cases. Consequently,
many articles covering the topic exist. Two classical results are contained in the articles [3] and
[10], where special families of sums are evaluated exactly. Focusing on reciprocal sums with three
and more factors we refer to the research work of Melham. In a series of papers starting in 2000
he gives closed forms for many types of these sums (see [14], [15], [19], [20], [21]). However, as
far as we can say, the sums that we study here have not been considered by the author.

The derivation of the results contained in the present study is based on the following results,
which we state as theorems.

Theorem 1.1. Let m ≥ 1 and n ≥ 0 be integers. Then

N∑
i=1

(−1)m(i+1)

Fmi+nFm(i+1)+n

=
FmN

FmFm+nFm(N+1)+n

(1.2)

and
N∑
i=1

(−1)m(i+1)

Lmi+nLm(i+1)+n

=
FmN

FmLm+nLm(N+1)+n

. (1.3)

Especially,
∞∑
i=1

(−1)m(i+1)

Fmi+nFm(i+1)+n

=
1

FmFm+nαm+n
(1.4)

and
∞∑
i=1

(−1)m(i+1)

Lmi+nLm(i+1)+n

=
1√

5FmLm+nαm+n
. (1.5)

These expressions are a consequence of the main result in [12]. Other proofs can be found
in [9] and [19]. The special case where m is even also appears in [18]. The subcase m even and
n = 0 is presented in [22].
The second theorem that is relevant for our study contains findings from [8]:

Theorem 1.2. Let m,n ≥ 1 be integers. Then

N∑
i=1

(−1)m(i+1)

Fm(i−1)+nFm(i+1)+n

=
1

FnF2m

( Fm(N+1)

Fm(N+1)+n

+
FmN
FmN+n

− Fm
Fm+n

)
, (1.6)
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N∑
i=1

(−1)m(i+1)

Lm(i−1)+nLm(i+1)+n

=
1

5FnF2m

( 2

Ln
+

Lm
Lm+n

− LmN
LmN+n

−
Lm(N+1)

Lm(N+1)+n

)
, (1.7)

and
N∑
i=1

(−1)m(i+1)

Lm(i−1)Lm(i+1)

=
1

2F2m

(Fm(N+1)

Lm(N+1)

+
FmN
LmN

− Fm
Lm

)
. (1.8)

Especially,
∞∑
i=1

(−1)m(i+1)

Fm(i−1)+nFm(i+1)+n

=
1

FnF2m

( 2

αn
− Fm
Fm+n

)
, (1.9)

∞∑
i=1

(−1)m(i+1)

Lm(i−1)+nLm(i+1)+n

=
1

5FnF2m

( 2

Ln
+

Lm
Lm+n

− 2

αn

)
, (1.10)

and
∞∑
i=1

(−1)m(i+1)

Lm(i−1)Lm(i+1)

=

√
5

5F2m

− 1

2L2
m

. (1.11)

Equation (1.8) may be seen as a special case of (1.7) for n = 0.
The formulas (1.2)–(1.11) will be treated as basic forms. These forms may be combined to
produce more results of this nature. Specifically, some combinations produce exact evaluations
of reciprocal sums with three factors. In the next section we present applications of the idea.

2 Results

We require the following identities:

Lemma 2.1. Let u and v be integers. Then

Fu−v = (−1)v(FuFv+1 − Fu+1Fv) (2.1)

and
Lu−v = (−1)v(LuFv+1 − Lu+1Fv). (2.2)

If u+ v and u− v have equal parity then

Fu+v − Fu−v =

{
LuFv if v is even
FuLv if v is odd,

(2.3)

and

Lu+v − Lu−v =

{
5FuFv if v is even
LuLv if v is odd.

(2.4)

Proof. The first two equations can be proved using the relations

Fa+b = FaFb+1 + Fa−1Fb,

and
La+b = LaFb+1 + FbLa−1,

together with F−n = (−1)n+1Fn (equation (2.1) is given in [18]). The last two statements follow
from the Binet forms. We omit the details.
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Now, we state the main results of our investigation. Each finding is presented as a separate
proposition.

Proposition 2.2. Let m,n ≥ 1 be any integers. Define the sums T1(m,n,N) and T2(m,n,N) as

T1(m,n,N) =
N∑
i=1

(−1)m(i+1) Fmi+n+1

Fm(i−1)+nFmi+nFm(i+1)+n

, (2.5)

and

T2(m,n,N) =
N∑
i=1

(−1)m(i+1) Fmi+n−1
Fm(i−1)+nFmi+nFm(i+1)+n

. (2.6)

Then

T1(m,n,N) =


Fm+1

FnFmF2m

(
Fm(N+1)

Fm(N+1)+n
+ FmN

FmN+n
− Fm

Fm+n

)
− FmN

F 2
mFm+nFm(N+1)+n

, m even
Fm+1

FnFmF2m

(
Fm(N+1)

Fm(N+1)+n
+ FmN

FmN+n
− Fm

Fm+n

)
+ FmN

F 2
mFm+nFm(N+1)+n

, m odd.
(2.7)

and

T2(m,n,N) =


Fm−1

FnFmF2m

(
Fm(N+1)

Fm(N+1)+n
+ FmN

FmN+n
− Fm

Fm+n

)
− FmN

F 2
mFm+nFm(N+1)+n

, m even
Fm−1

FnFmF2m

(
Fm(N+1)

Fm(N+1)+n
+ FmN

FmN+n
− Fm

Fm+n

)
+ FmN

F 2
mFm+nFm(N+1)+n

, m odd
(2.8)

Proof. We combine equations (1.2) and (1.6) and calculate

N∑
i=1

(−1)m(i+1) Fmi+n − Fm(i−1)+n

Fm(i−1)+nFmi+nFm(i+1)+n

. (2.9)

From Lemma 2.1 we have

Fmi+n − Fm(i−1)+n =

Fmi+n(1− Fm+1) + FmFmi+n+1, m even

Fmi+n(1 + Fm+1)− FmFmi+n+1, m odd.
(2.10)

Inserting this relation into the above sum, simplifying and using the RHS of (1.2) and (1.6),
respectively, proves the first statement. To establish the second formula, observe that by definition
of the Fibonacci numbers we can write

Fmi+n − Fm(i−1)+n =

Fmi+n(1− Fm−1) + FmFmi+n−1, m even

Fmi+n(1 + Fm−1)− FmFmi+n−1, m odd.
(2.11)

Corollary 2.3.

T1(m,n,∞) =


Fm+1

FnFmF2m

(
2
αn − Fm

Fm+n

)
− 1

F 2
mFm+nαm+n , m even

Fm+1

FnFmF2m

(
2
αn − Fm

Fm+n

)
+ 1

F 2
mFm+nαm+n , m odd,

(2.12)

and

T2(m,n,∞) =


Fm−1

FnFmF2m

(
2
αn − Fm

Fm+n

)
− 1

F 2
mFm+nαm+n , m even

Fm−1

FnFmF2m

(
2
αn − Fm

Fm+n

)
+ 1

F 2
mFm+nαm+n , m odd,

(2.13)
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Proposition 2.4. Let n ≥ 1 be an integer. Let further m be even such that m/2 is even, i.e. 4|m.
Define

T3(m,n,N) =
N∑
i=1

Lmi−m/2+n
Fm(i−1)+nFmi+nFm(i+1)+n

. (2.14)

Similarly, for m even with m/2 odd define

T4(m,n,N) =
N∑
i=1

Fmi−m/2+n
Fm(i−1)+nFmi+nFm(i+1)+n

. (2.15)

Then

T3(m,n,N) =
1

Fm/2

( 1

FnF2m

( Fm(N+1)

Fm(N+1)+n

+
FmN
FmN+n

− Fm
Fm+n

)
− FmN
FmFm+nFm(N+1)+n

)
, (2.16)

and

T4(m,n,N) =
1

Lm/2

( 1

FnF2m

( Fm(N+1)

Fm(N+1)+n

+
FmN
FmN+n

− Fm
Fm+n

)
− FmN
FmFm+nFm(N+1)+n

)
. (2.17)

Proof. The statements also follow from Lemma 2.1:

Fmi+n − Fm(i−1)+n =

{
Lmi+n−m/2Fm/2 if m

2
is even

Fmi+n−m/2Lm/2 if m
2

is odd.
(2.18)

Corollary 2.5. With m and n from above, we have

T3(m,n,∞) =
1

Fm/2

( 1

FnF2m

( 2

αn
− Fm
Fm+n

)
− 1

FmFm+nαm+n

)
, (2.19)

and
T4(m,n,∞) =

1

Lm/2

( 1

FnF2m

( 2

αn
− Fm
Fm+n

)
− 1

FmFm+nαm+n

)
. (2.20)

Remark 2.6. It is obvious that T1(1, n,N) = T2(1, n − 1, N) and T4(2, n,N) = T2(2, n,N).
Also, since L4i−2+n = F4i+n−F4(i−1)+n the expression for T3(4, n,N) equals a simple difference
of the two basic forms, too.

To illustrate the results obtained so far, we give explicit examples:

T1(2, 1, N) =
N∑
i=1

F2i+2

F2i−1F2i+1F2i+3

=
2

3

(F2N+2

F2N+3

+
F2N

F2N+1

)
− 1

2

F2N

F2N+3

− 1

3
, (2.21)

T1(2, 1,∞) =
1

3
+

1

6α3
, (2.22)

T1(3, 3, N) =
N∑
i=1

(−1)i+1 F3i+4

F3iF3i+3F3i+6

=
3

32

(F3N+3

F3N+6

+
F3N

F3N+3

)
+

1

32

F3N

F3N+6

− 3

128
, (2.23)
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T1(3, 3,∞) =
3

128
− 1

64α6
, (2.24)

T2(2, 2, N) =
N∑
i=1

F2i+1

F2iF2i+2F2i+4

=
1

3

(F2N+2

F2N+4

+
F2N

F2N+2

)
− 1

3

F2N

F2N+4

− 1

9
, (2.25)

T2(2, 2,∞) =
1

9
− 1

9α4
, (2.26)

T2(3, 1, N) =
N∑
i=1

(−1)i+1 F3i

F3i−2F3i+1F3i+4

=
1

16

(F3N+3

F3N+4

+
F3N

F3N+1

)
+

1

12

F3N

F3N+4

− 1

24
, (2.27)

and
T2(3, 1,∞) =

1

8α2
, (2.28)

The next propositions contain analogous results for reciprocal Lucas sums.

Proposition 2.7. Let m,n ≥ 1 be any integers. Define the sums T5(m,n,N) and T6(m,n,N) as

T5(m,n,N) =
N∑
i=1

(−1)m(i+1) Lmi+n+1

Lm(i−1)+nLmi+nLm(i+1)+n

, (2.29)

and

T6(m,n,N) =
N∑
i=1

(−1)m(i+1) Lmi+n−1
Lm(i−1)+nLmi+nLm(i+1)+n

. (2.30)

Then

T5(m,n,N) =


Fm+1

5FnFmF2m

(
2
Ln

+ Lm

Lm+n
− LmN

LmN+n
− Lm(N+1)

Lm(N+1)+n

)
− FmN

F 2
mLm+nLm(N+1)+n

, m even
Fm+1

5FnFmF2m

(
2
Ln

+ Lm

Lm+n
− LmN

LmN+n
− Lm(N+1)

Lm(N+1)+n

)
+ FmN

F 2
mLm+nLm(N+1)+n

, m odd.
(2.31)

and

T6(m,n,N) =


Fm−1

5FnFmF2m

(
2
Ln

+ Lm

Lm+n
− LmN

LmN+n
− Lm(N+1)

Lm(N+1)+n

)
− FmN

F 2
mLm+nLm(N+1)+n

, m even
Fm−1

5FnFmF2m

(
2
Ln

+ Lm

Lm+n
− LmN

LmN+n
− Lm(N+1)

Lm(N+1)+n

)
+ FmN

F 2
mLm+nLm(N+1)+n

, m odd.
(2.32)

Proof. Combine equations (1.3) and (1.7). From equation (2.2) of Lemma 2.1 we have

Lmi+n − Lm(i−1)+n =

{
Lmi+n(1− Fm+1) + FmLmi+n+1, m even
Lmi+n(1 + Fm+1)− FmLmi+n+1, m odd.

(2.33)

Inserting this relation into the above sum, simplifying and using the RHS of (1.3) and (1.7),
respectively, proves the first formula. The second formula is proved similarly.

Corollary 2.8.

T5(m,n,∞) =


Fm+1

5FnFmF2m

(
2
Ln

+ Lm

Lm+n
− 2

αn

)
− 1√

5F 2
mLm+nαm+n , m even

Fm+1

5FnFmF2m

(
2
Ln

+ Lm

Lm+n
− 2

αn

)
+ 1√

5F 2
mLm+nαm+n , m odd

(2.34)
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and

T6(m,n,∞) =


Fm−1

5FnFmF2m

(
2
Ln

+ Lm

Lm+n
− 2

αn

)
− 1√

5F 2
mLm+nαm+n , m even

Fm−1

5FnFmF2m

(
2
Ln

+ Lm

Lm+n
− 2

αn

)
+ 1√

5F 2
mLm+nαm+n , m odd.

(2.35)

Proposition 2.9. Let n ≥ 1 be an integer. Let further m be even such that m/2 is even, i.e. 4|m.
Define

T7(m,n,N) =
N∑
i=1

Fmi−m/2+n
Lm(i−1)+nLmi+nLm(i+1)+n

. (2.36)

Similarly, for m even with m/2 odd define

T8(m,n,N) =
N∑
i=1

Lmi−m/2+n
Lm(i−1)+nLmi+nLm(i+1)+n

. (2.37)

Then

T7(m,n,N) =
1

25FnFm/2F2m

( 2

Ln
+

Lm
Lm+n

− LmN
LmN+n

−
Lm(N+1)

Lm(N+1)+n

)
− FmN
5Fm/2FmLm+nLm(N+1)+n

,

(2.38)
and

T8(m,n,N) =
1

5FnF2mLm/2

( 2

Ln
+

Lm
Lm+n

− LmN
LmN+n

−
Lm(N+1)

Lm(N+1)+n

)
− FmN
FmLm/2Lm+nLm(N+1)+n

.

(2.39)

Proof. The statement is a direct consequence of equation (2.4) of Lemma 2.1.

Corollary 2.10.

T7(m,n,∞) =
1

25FnFm/2F2m

( 2

Ln
+

Lm
Lm+n

− 2

αn

)
− 1

5
√
5Fm/2FmL2mαm+n

, (2.40)

and

T8(m,n,∞) =
1

5FnF2mLm/2

( 2

Ln
+

Lm
Lm+n

− 2

αn

)
− 1√

5FmLm/2L2mαm+n
. (2.41)

Remark 2.11. It is obvious that T8(2, n,N) = T6(2, n,N).

Finally, we state the results in case n = 0:

Proposition 2.12. Let m ≥ 1 be an integer. Define the sums T9(m,N) and T10(m,N) as

T9(m,N) =
N∑
i=1

(−1)m(i+1) Lmi+1

Lm(i−1)LmiLm(i+1)

, (2.42)

and

T10(m,N) =
N∑
i=1

(−1)m(i+1) Lmi−1
Lm(i−1)LmiLm(i+1)

. (2.43)
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Then

T9(m,N) =


Fm+1

2FmF2m

(
Fm(N+1)

Lm(N+1)
+ FmN

LmN
− Fm

Lm

)
− FmN

F 2
mLmLm(N+1)

, m even
Fm+1

2FmF2m

(
Fm(N+1)

Lm(N+1)
+ FmN

LmN
− Fm

Lm

)
+ FmN

F 2
mLmLm(N+1)

, m odd,
(2.44)

and

T10(m,N) =


Fm−1

2FmF2m

(
Fm(N+1)

Lm(N+1)
+ FmN

LmN
− Fm

Lm

)
− FmN

F 2
mLmLm(N+1)

, m even
Fm−1

2FmF2m

(
Fm(N+1)

Lm(N+1)
+ FmN

LmN
− Fm

Lm

)
+ FmN

F 2
mLmLm(N+1)

, m odd.
(2.45)

Proof. Combine equations (1.3) and (1.8). The proof is essentially the same as done above and
is omitted.

Corollary 2.13.

T9(m,∞) =


Fm+1

Fm

(
1√

5F2m
− 1

2L2
m

)
− 1√

5F 2
mLmαm , m even

Fm+1

Fm

(
1√

5F2m
− 1

2L2
m

)
+ 1√

5F 2
mLmαm , m odd

(2.46)

and

T10(m,∞) =


Fm−1

Fm

(
1√

5F2m
− 1

2L2
m

)
− 1√

5F 2
mLmαm , m even

Fm−1

Fm

(
1√

5F2m
− 1

2L2
m

)
+ 1√

5F 2
mLmαm , m odd.

(2.47)

Proposition 2.14. Let m be even such that m/2 is even, i.e. 4|m. Define

T11(m,N) =
N∑
i=1

Fmi−m/2
Lm(i−1)LmiLm(i+1)

. (2.48)

Similarly, for m even with m/2 odd define

T12(m,N) =
N∑
i=1

Lmi−m/2
Lm(i−1)LmiLm(i+1)

. (2.49)

Then

T11(m,N) =
1

5Fm/2

( 1

2F2m

(Fm(N+1)

Lm(N+1)

+
FmN
LmN

− Fm
Lm

)
− FmN
FmLmLm(N+1)

)
, (2.50)

and

T12(m,N) =
1

Lm/2

( 1

2F2m

(Fm(N+1)

Lm(N+1)

+
FmN
LmN

− Fm
Lm

)
− FmN
FmLmLm(N+1)

)
. (2.51)

Proof. The statement is a direct consequence of equation (2.4) of Lemma 2.1.

Corollary 2.15.

T11(m,∞) =
1

5Fm/2

( 1√
5F2m

− 1

2L2
m

− 1√
5FmLmαm

)
, (2.52)

and
T12(m,∞) =

1

Lm/2

( 1√
5F2m

− 1

2L2
m

− 1√
5FmLmαm

)
. (2.53)
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Remark 2.16. For m = 2 we have that T12(2, N) = T10(2, N).

Proposition 2.17. Let m be even such that m/2 is even, i.e. 4|m. Define

T13(m,N) =
N∑
i=1

Fmi+m/2
Lm(i−1)Lm(i+1)Lm(i+2)

. (2.54)

Similarly, for m even with m/2 odd define

T14(m,N) =
N∑
i=1

Lmi+m/2
Lm(i−1)Lm(i+1)Lm(i+2)

. (2.55)

Then

T13(m,N) =
1

5F3m/2

( 1

2F2m

(Fm(N+1)

Lm(N+1)

+
FmN
LmN

− Fm
Lm

)
− FmN
FmL2mLm(N+2)

)
, (2.56)

and

T14(m,N) =
1

L3m/2

( 1

2F2m

(Fm(N+1)

Lm(N+1)

+
FmN
LmN

− Fm
Lm

)
− FmN
FmL2mLm(N+2)

)
. (2.57)

Proof. Set n = m ≥ 1 in equation (1.3) and combine with equation (1.8). Use equation (2.4) of
Lemma 2.1 with u = mi+m/2 and v = 3m/2. Details are omitted.

Corollary 2.18.

T13(m,∞) =
1

5F3m/2

( 1√
5F2m

− 1

2L2
m

− 1√
5FmL2mα2m

)
, (2.58)

and
T14(m,∞) =

1

L3m/2

( 1√
5F2m

− 1

2L2
m

− 1√
5FmL2mα2m

)
. (2.59)

Finally, we present the following expressions:

Proposition 2.19. Let m be even such that m/2 is even, i.e. 4|m. Define

T15(m,N) =
N∑
i=1

Fmi+m/2
Lm(i−1)LmiLm(i+1)

. (2.60)

Similarly, for m even with m/2 odd define

T16(m,N) =
N∑
i=1

Lmi+m/2
Lm(i−1)LmiLm(i+1)

. (2.61)

Then

T15(m,N) =
1

5Fm/2

( 1

2Lm
+

FmN
FmLmLm(N+1)

− 1

LmNLm(N+1)

− 1

2F2m

(Fm(N+1)

Lm(N+1)

+
FmN
LmN

−Fm
Lm

))
,

(2.62)
and

T16(m,N) =
1

Lm/2

( 1

2Lm
+

FmN
FmLmLm(N+1)

− 1

LmNLm(N+1)

− 1

2F2m

(Fm(N+1)

Lm(N+1)

+
FmN
LmN

− Fm
Lm

))
.

(2.63)
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Proof. Set m even and n = 0 in (1.3) and combine with (1.8).

Corollary 2.20.

T15(m,∞) =
1

5Fm/2

( √5
10Fm

+
1

2L2
m

−
√
5

5F2m

)
(2.64)

and

T16(m,∞) =
1

Lm/2

( √5
10Fm

+
1

2L2
m

−
√
5

5F2m

)
. (2.65)

Remark 2.21. For m = 2 we have that T16(2, N) = T9(2, N).

We conclude this section with a short list of examples that are contained in the presentation
as special cases:

T6(2, 1, N) =
N∑
i=1

L2i

L2i−1L2i+1L2i+3

=
11

60
− 1

15

( L2N

L2N+1

+
L2N+2

L2N+3

)
− 1

4

F2N

L2N+3

, (2.66)

T6(2, 1,∞) =
1

15
+

1

30α3
, (2.67)

T9(2, N) =
N∑
i=1

L2i+1

L2i−2L2iL2i+2

=
1

3

(F2N+2

L2N+2

+
F2N

L2N

)
− 1

3

F2N

L2N+2

− 1

9
, (2.68)

T9(2,∞) =
1

18
+

√
5

30
, (2.69)

T9(3, N) =
N∑
i=1

(−1)i+1 L3i+1

L3i−3L3iL3i+3

=
3

32

(F3N+3

L3N+3

+
F3N

L3N

)
+

1

16

F3N

L3N+3

− 3

64
, (2.70)

T9(3,∞) =
1

64
+

√
5

80
, (2.71)

T11(4, N) =
N∑
i=1

F4i−2

L4i−4L4iL4i+4

=
1

210

(F4N+4

L4N+4

+
F4N

L4N

)
− 1

105

F4N

L4N+4

− 1

490
, (2.72)

T11(4,∞) =
3

245
−
√
5

210
, (2.73)

T15(4, N) =
N∑
i=1

F4i+2

L4i−4L4iL4i+4

=
8

490
+

1

5

( F4N

21L4N+4

− 1

L4NL4N+4

)
− 1

210

(F4N+4

L4N+4

+
F4N

L4N

)
,

(2.74)
and

T15(4,∞) =
1

490
+

√
5

210
. (2.75)
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3 Sums with four factors

It is worth to mention that the formulas derived in this article may be combined once more time
to produce closed-form expressions for sums with four factors. We conclude with some explicit
examples. In all examples we assume m to be an even integer. Let us define the following series:

G1(m,N) =
N∑
i=1

Fmi+m/2Fmi+m
Lm(i−1)LmiLm(i+1)Lm(i+2)

(m/2 even), (3.1)

G2(m,N) =
N∑
i=1

Lmi+m/2Fmi+m
Lm(i−1)LmiLm(i+1)Lm(i+2)

(m/2 odd), (3.2)

G3(m,N) =
N∑
i=1

Fmi+m/2Lmi+1

Lm(i−1)LmiLm(i+1)Lm(i+2)

(m/2 even), (3.3)

and

G4(m,N) =
N∑
i=1

Fmi+m/2Lmi−1
Lm(i−1)LmiLm(i+1)Lm(i+2)

(m/2 even). (3.4)

Then the following results hold:

Corollary 3.1.
G1(m,N) =

1

5Fm

(
T15(m,N)− T13(m,N)

)
, (3.5)

G2(m,N) =
1

5Fm

(
T16(m,N)− T14(m,N)

)
, (3.6)

G3(m,N) =
1

F2m

(
T15(m,N)− F2m−1T13(m,N)

)
, (3.7)

and
G4(m,N) =

1

F2m

(
T15(m,N)− F2m+1T13(m,N)

)
. (3.8)

These results are also valid for N →∞.

Proof. Combine the series from the previous section and use Lemma 2.1.
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