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Abstract: In this article we present expressions for certain types of reciprocal Fibonacci and
Lucas sums. The common feature of the sums is that in each case the denominator of the sum-
mand consists of a product of three Fibonacci or Lucas numbers.
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1 Introduction

Generalized Fibonacci numbers (G, may be defined through the second order recurrence relation
Gni1 = G, +G,_1, where the initial terms GGy and (G need to be specified. In this paper we focus
on the two most popular members of this family: The Fibonacci numbers £, and Lucas numbers
L,,, which are defined by initial conditions Fy = 0, F} = 1 and Ly = 2, Ly = 1, respectively. The
Binet forms are given by

a™ — pg"

F, = ) L,=a"+ 5", n >0, (1.1)
a—p

=

where o and 3 are roots of the quadratic equation 22 — 2 — 1 =0, i.e., a = 1+2\/‘?’ and f = 15

*Disclaimer: Statements and conclusions made in this article are entirely those of the author. They do not
necessarily reflect the views of LBBW.
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The goal of this study is to evaluate special finite and infinite reciprocal sums of these num-
bers. The interest is not new and some open problems still exist. For instance, no simple expres-
sions for the sums

| =

S R Y]
Lg 2 2R ™A

=1 =1 1,=].

&

are known. The summation of reciprocals of generalized Fibonacci numbers is a challenging
issue. It is discussed in several articles where different approaches are applied. The main lines
of research are: establishing algebraic relationships (i.e. reduction formulas) for these sums,
expressing the sums in terms of special functions and a direct evaluation. Reduction formulas may
be found in the articles [5], [6], [7], [16], [17] or [23]. Expressions involving Elliptic functions,
the Lambert series and/or Theta functions are derived in [1], [2], [4], [11], [12] or [13].

A direct evaluation of reciprocal Fibonacci sums is also possible in many cases. Consequently,
many articles covering the topic exist. Two classical results are contained in the articles [3] and
[10], where special families of sums are evaluated exactly. Focusing on reciprocal sums with three
and more factors we refer to the research work of Melham. In a series of papers starting in 2000
he gives closed forms for many types of these sums (see [14], [15], [19], [20], [21]). However, as
far as we can say, the sums that we study here have not been considered by the author.

The derivation of the results contained in the present study is based on the following results,
which we state as theorems.

Theorem 1.1. Let m > 1 and n > 0 be integers. Then

N (—1)mG+) _ By »
— FritnEmisn+n  FnEmsnFm(N41)4n )
and
i (=pme Fon .
— LisnLmsvyen  FonLmsnLn(N+1)+n . )
Especially, .
T G D 1
= Fritnm(is1)4n B FoFypamtn (1.4)
and
i P 1 : (1.5)
“~ LitnLm(it1ytn  VBFyLipgaa™t?

These expressions are a consequence of the main result in [12]. Other proofs can be found
in [9] and [19]. The special case where m is even also appears in [18]. The subcase m even and
n = 0 is presented in [22].

The second theorem that is relevant for our study contains findings from [8]:

Theorem 1.2. Let m,n > 1 be integers. Then

N m(i
1 (+1) 1 Fm Fm Fm
=Y ( oy + ~ ) 3 (1.6)

Fm(i71)+nFm(i+1)+n B FnFZm Fm(N+1)+n FmN—i—n Fm+n

=1
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i m(i+1) 1 <2 N L, L.~ L1 ) (1.7)
Lmz 1+an(i+1)+n 5FnF2m Ln Lm+n LmN+n Lm(N+1)+n ’ .

and v
(—1)m(2+1) _ 1 (Fm(N+1) FmN _ &) (1 8)
i—1 Lm(i—l)Lm(H—l) 2Fom, Lm(N+l) LN Ly
Especially,
o m(i+1) 1 2 Fm
> (5 -2, (1.9)
i1 Fm (i— 1)+nFm(i+l)+ F FQm Fm-‘rn
> m(i+1) 1 2 Lo 2
yo = (= + == -=), (1.10)
i—1 Lm (i—1)+n m(i+1)+n 5FnF2m Ln Lm+n an
and )
o —_1)m i+1 1
(=1 _ V5 (1.11)

Lm(i—l)Lm(i+1) B 5F2m B 2L%n

i=1
Equation (1.8) may be seen as a special case of (1.7) for n = 0.

The formulas (1.2)—(1.11) will be treated as basic forms. These forms may be combined to

produce more results of this nature. Specifically, some combinations produce exact evaluations

of reciprocal sums with three factors. In the next section we present applications of the idea.

2 Results

We require the following identities:
Lemma 2.1. Let v and v be integers. Then
Fu—v = (_1)U(Fqu+1 - Fu—l—va) (21)

and

Ly—y= (_1)U(Lqu+1 - Lu—l—va)' (2.2)
If u 4 v and u — v have equal parity then

Fu—i—v —Fy = Ly l‘:fv l:s even (23)
F.L, ifvisodd,
and
Lvs — Ly = 5F,F, l:fv l:S even (2.4)
L,L, ifvisodd.

Proof. The first two equations can be proved using the relations
Fa+b = Fan+1 + Faleb;

and
Loy = LoFyiq + FyLg—q,

together with F_,, = (—1)"*1F,, (equation (2.1) is given in [18]). The last two statements follow
from the Binet forms. We omit the details. [
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Now, we state the main results of our investigation. Each finding is presented as a separate

proposition.

Proposition 2.2. Let m,n > 1 be any integers. Define the sums Ty(m,n, N) and To(m,n, N) as

N
Fmi+n+1

=1

m(ifl)JrnFmiJrnFm(iJrl)Jrn

Y

and
al F
) 1
Ty(m,n,N) = (=1)"0+D e :
i1 Fm(i—1)+nFmi+nFm(i+1)+n
Then
Fri1 ( Fnv+1) + FnoN  _ _Fp ) - — Fn
FnFmFom \ F, FoNin F, F2F, F )
Tl(m7 n, N) = ’ MmN 1) +n N mn mEmtntm(N+1)+n
m+1 m(N+ mN m mN
F, Fr(ni1) + F, ___F, + F,
FrnFpmFom Fm(N+1)+n FmN+n Fm+n F%,Fm+nFm(N+1)+n’
and
Fr1 ( Fr(ni1) + Fon Fm > - Fon
FpFpy F F,, " F, Frign F2 FoinFy, n’
Tg(m, n, N) _ 2m (N+1)+ mN+n + + (N+1)+
Frn_1 Fm(N+1) FnnN _ F Fn
FolFmIom \ FryNt1)4n  FmN+n  Fmin F2 FrnF(N+1)4n
Proof. We combine equations (1.2) and (1.6) and calculate
N
Z<_1)m(l+1) Fmi—|—n - Fm(i—1)+n
i1 Fm(i—1)+nFmi+nFm(i+1)+n
From Lemma 2.1 we have
Frivn(1 = Fi1) + FFoivny1, m even
FmiJrn - Fm(i—l)—l—n =
sz—i—n(l + Fm—i—l) — FmFmi+n+17 m odd.

(2.5)

(2.6)

(2.9)

(2.10)

Inserting this relation into the above sum, simplifying and using the RHS of (1.2) and (1.6),

respectively, proves the first statement. To establish the second formula, observe that by definition

of the Fibonacci numbers we can write

szJrn(l - mel) + Fmsz#nfl:
Fmi—l—n - Fm(i—1)+n -
leJrn(l + mel) - FmFmi+n717
Corollary 2.3.
F’m+1 i . Fm _ 1
FpFp Fop, \ a™ Froin F2 Fm+nam+n ?
Ti(m,n,o0) = - "
m+1 2 _ _Fn + 1
FoFpFom \ a? Frin F2 Fppynamtno
and
Fr-1 2 _ _Fn o 1
FnF F: am F, F2F, am+n)
TQ(m’ n’ OO) — nt'mL2m m+n mLfm+n

Fm—l 2 _ Fm 1
FnFmFQm amn Fm+n

T P Fmman

m even

m odd.

m even

m odd,

m even

m odd,

(2.11)

]

(2.12)

(2.13)



Proposition 2.4. Let n > 1 be an integer. Let further m be even such that m/2 is even, i.e. 4|m.
Define

N

mz m/24+n

(.. ) _ (2.14)
zzzl: Fm (i—1)+n mz+nFm(z+1)+n

Similarly, for m even with m/2 odd define

N
Fmi—m/2+n
Tym,n,N) = ) (2.15)
; Foi—1)+nFmitnLm(i+1)4n
Then
1 1 F,, E, F, E,
Ty(m,m, N) = ( ( L R ) - - ) (2.16)
Fm/Q FnF2m Fm(N+1)+n FmN+n Fm+n FmFm+nFm(N+1)+n
and
1 1 F,, E, F, F,
Ty(m,n, N) = ( ( w+1) | Fmy > _ N ) 2.17)
Linja N Fom NNt y4n - Fnvgn - Fngn FoEpinEn(N+1)4n
Proof. The statements also follow from Lemma 2.1:
L . B F rmo s
Fonsn — Fngictyn = 4 Zmienmm/zbmjz ' s even (2.18)
Fmi—i—n—m/ZLm/Q lf— is odd.
O
Corollary 2.5. With m and n from above, we have
1 1 2 E 1
Ty(m,n, :—( (__ m>_ ) 2.19
3(m n OO) Fm/2 F, Fs,, Fm+n FmFm+nam+n ( )
and | . ) . )
Ty(m,n, 00) = ( (—— m)— ) 2.20
1(m, n, 00) Lynja \F Foyp, Friin Fo Fop ™ (2.20)

Remark 2.6. It is obvious that Ty (1,n, N) = To(1,n — 1, N) and Ty(2,n, N) = T5(2,n, N).
Also, since Ly;_yn = Fyipn — Fyi—1)1n the expression for T3(4,n, N) equals a simple difference
of the two basic forms, too.

To illustrate the results obtained so far, we give explicit examples:

(2,1, N) f: Faiyo _ 2<F2N+2 + Fan )_1 Fon 1 2.21)
o — Fyi 1P Py 3\Fonys  Fanei/ 2Ny 3
T(21,00) = £ 4 L (2.22)
OO = — —_— .
1(45 4 3 60637
N
; F3it4 3 (F3ny3z | Fay 1 F3n 3
13,3, N) = S (~1 H1—:—< + >+— 2 (223)
1 ) Z( ) F3iF3i13F3i6  32\F3ny16  F3nys 32 F3nie 128

=1
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3 1

T, - 2.24
1(3,3,%0) = 195 ~ Gaan’ (224)
N
Fy; 1 /F: F 1 F 1
T2(27 27 N) = $ = _< 2Nt + 2N ) - 3 2N S (2-25)
— FoilhiioFria 3\Fanya  Fanyo 3FoNgs 9
Ty(2,2,00) = + — (2.26)
204, 4,0) = 9 9@47 .
N
; Fy; 1 /Fsnqs Fsn 1 Fay 1
Ty(3,1,N) = $ (=1)*! :-( + >+— — @27
2 ) Z( ) Fyi oF3i 1F304 16 \F3nia  Fanp 12 F3npa 24

i=1
and

Ty(3,1,00) = (2.28)

8a?’

The next propositions contain analogous results for reciprocal Lucas sums.

Proposition 2.7. Let m,n > 1 be any integers. Define the sums Ts(m,n, N) and Tg(m,n, N) as

N

) L,
+ntl
Ts(m,n, N) =) (=1)"*Y T , (2.29)
i—1 Lm(i—1)+ani+an(i+1)+n
and
al L
o m(i+1 mi+n—1
Ts(m,n, N) =Y (—1)™ >L T . (2.30)
i—1 m(i—1)4+ntmi+ndm(i+1)+n
Then
_Fmyr (2 4 L Lpn . _Imven ) Fun m even
T (m n N) _ 5Fp Fr Fom, Ly, Lm+n LmN+n Lm(N+l)+n F%Lm+an(N+l)+n’
5 s 1y - F L
m+1 2 Ly  Lpn  Lm@vey Fn m odd
5FnFmFom \ Ln Lmin LyNtn Lyy(N+1)4n F2 LngnLi(Nt1)4n’ )
2.31)
and
_Fnoy (2 4 L Ley  Imoven ) Fon m even
T(m n N) — SFnFmFom \ Ln Lm+n LmN+n Lm(N+1)+n FTQrLLm+an(N+1)+n’
6 ) ) F—1 i L, _ L7VLN _ Lm(N+1) FmN m Odd
5Fp FryFom, Ln Lm+n LmNJrn Lm(N+1)+n F»r2nL’m+an(N+1)+n ’ '
(2.32)

Proof. Combine equations (1.3) and (1.7). From equation (2.2) of Lemma 2.1 we have

Lisn(1 = Foi1) + FLiiini1, m even

(2.33)
Lmz+n<1 + Fm+1) — FmLmi+n+1, m odd.

Lmi—l—n - Lm(i—l)—i—n = {

Inserting this relation into the above sum, simplifying and using the RHS of (1.3) and (1.7),

respectively, proves the first formula. The second formula is proved similarly. O]
Corollary 2.8.
Frnt1 2 L 2 1
e | T — = = ==, M even
Ts(m,n, 00) = SF’}FmFQm En o Bmen e VBEZ L nom (2.34)
m—+1 l Lm _ l 1 m Odd

5FnFmFom Ly Lm+n am + \/EFT?an+nam+n ’
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and

Fn—1 2 Lm 2 1
o o | 7 T — T TEmEes e m even
SEnFinFom \ Lin Lern am \/5F2 L + am+n?
Ts(m,n,oc0) = w ; ; , e (2.35)
mo (24 Im o2\ 1 o4

S5FnFmFom \ Ln Lyin a™ + \/5F731Lm+nam+n ?

Proposition 2.9. Let n > 1 be an integer. Let further m be even such that m/2 is even, i.e. 4|m.

Define
N

Fmi—m/2+n
Iz(m,n, N) = : (2.36)
( ) “— Ln(i—1)+nLmitnLon(i+1)4n
Similarly, for m even with m /2 odd define
N
Lmi—m/2+n
Ts(m,n, N) = : (2.37)
i—1 Lm(ifl)Jrani-‘ran(iJrl)Jrn
Then
1 2 L, L,, Ly, F,
T7(m,n,N) = —<_ - al - (N >_ al )
25FnFm/2F2m Ln Lm+n LmN+n Lm(NJrl)Jrn 5Fm/2FmLm+an(N+1)+n
(2.38)
and
1 2 Ly, Ly, Ly, F,
T W)= L (Zy In Inx Lnven ) x
5FnF2mLm/2 Ln Lm+n LmN+n Lm(NJrl)Jrn FmLm/2Lm+an(N+1)+n
(2.39)
Proof. The statement is a direct consequence of equation (2.4) of Lemma 2.1. ]
Corollary 2.10.
1 2 L 2 1
T7(m,n, o0 :—<—+—m——>— , 2.40
7( ) 25FnFm/2F2m Ln Lm+n am 5\/5Fm/2FmL2mOém+n ( )
and
1 2 L 2 1
Ts(m,n, o0 :—<— —m——>— . 2.41
8( ) 5FnF2mLm/2 Ln Lm+n am \/gFmLm/QLQmam+n ( )
Remark 2.11. It is obvious that Tg(2,n, N) = Ts(2,n, N).
Finally, we state the results in case n = 0:
Proposition 2.12. Let m > 1 be an integer. Define the sums Ty(m, N) and T1o(m, N) as
al L
To(m,N) =Y (=1)™+) mitl , (2.42)
o ) ;( ) Ln(i—1) LimiLimiy1)
and
N A Loy
Tio(m, N) =) (—=1)m0+D e : (2.43)
Z Lm(zfl)Lmsz(’L+1)

=1
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Then

25m;1 fm(NH) me - f_m —F2 LFZN »  Mmeven
T (m N) — mL'2m m(N+1) mN m mimbm(N+1)
9 I Fm+1 Fm(N+l) + FmN _ F_m + F'mN mOdd
2Fm Fom, Lm(N+1) LN Lm, F,%LmLm(N+1) ) 4
and
Fr1 (Fow+)) | Fun _ Fm ) ; Frn . meven
To(m N) _ 2FmFam \ Lin(N+1) LN L F Lin L (N+1)
1 ) Fr_1 Fm(N+1) Fon _ Fm + Fo.N m odd.

2FmFom \ Ly(n+1) | LN Lm FZLmLm(nt1)’

(2.44)

(2.45)

Proof. Combine equations (1.3) and (1.8). The proof is essentially the same as done above and

1s omitted.

Corollary 2.13.

Fm+1 1 1 1

T J— Fm \/5F27n o 2L72'n o \/BFFanam ’ meven
9(m7 OO) -
Enn(_ L L )41 modd
Fom \V5F2,  2L3, V5F2 Liya™’
and
Frn—1 11 _ 1
T o Fo \V5F2m  2L3, VB5F2 Lyam’ meven
10(m,00) =
Ena (L L)y L modd
Frm \/5F2m QL%L \/EF%Lmam ’ )

Proposition 2.14. Let m be even such that m/2 is even, i.e. 4|m. Define

N

Fmi—m/2
T N) = '
11(m, N) Zz:; Ln(i—1) Lini Limi41)

Similarly, for m even with m/2 odd define

Lmifm/Z
T12(m7 N) = .
1 Lm(i—l)LmiLm(i—i-l)
Then
Tu(m, N) — ( ( (N+1) + N _) . N )7
5Pwm/Q 2F2m Lm(N+1) LmN Lm FmLmLm(N+1)
and
1 1 /F, E, E, E,
Tia(m, N) = ( < (N+1) 4 ImN _) _ N >
Lm/2 2Fom, Lm(N+1) LN Ly, FmLmLm(N—i-l)

Proof. The statement is a direct consequence of equation (2.4) of Lemma 2.1.

Corollary 2.15.

Tn(m,oo): 1 ( 1 B 1 _ 1 >7
5F /2 \\/5Fy, 2L%  \/5F,L,om
and
Tialmo0) = 1 (e = gy =z,
L2 \\/5Fy,, 2L2  \/5F,L,a™

111
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(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)



Remark 2.16. For m = 2 we have that T15(2, N) = T1¢(2, N).

Proposition 2.17. Let m be even such that m/2 is even, i.e. 4|m. Define

Tys3(m, N) = - Fmitmy2 . (2.54)
i—1 Lm(i—l)Lm(i+l)Lm(i+2)
Similarly, for m even with m/2 odd define
N
Tu(m,N) =Y Lonimss . (2.55)
i1 Lm('L 1) m(1+1)Lm(i+2)
Then
1 1 /F, £, £, F,,
Tis(m, N) = (5= (P 4 ) e )
5F13m/2 2Fom, Lm(N+1) LN Ly FmLQmLm(N+2)
and
1 1 /F, F, F,, F,
Tia(m, N) = ( ( (NHD) | ZmN _> _ N ) (2.57)
L3m/2 2F2m Lm(NJrl) LmN Lm FmLQmLm(N+2)

Proof. Setn = m > 1 in equation (1.3) and combine with equation (1.8). Use equation (2.4) of
Lemma 2.1 with u = mi + m/2 and v = 3m/2. Details are omitted. O

Corollary 2.18.

1 1 1 1
Tys(m, 00) = ( _ _ ) 2.58
13( ) 5F3m/2 \/gFgm QL% \/BFmLQmOJQm ( )
and 1 1 1 1
Tyu(m, 00) = ( - ) 2.59
14( ) L3m/2 \/EFQm 2L?n \/gFmL2m042m ( )

Finally, we present the following expressions:

Proposition 2.19. Let m be even such that m/2 is even, i.e. 4|m. Define

N
T15(m, N) =

i=

Fmi+m/2
: (2.60)
1 Lm(i—l)LmiLm(i-i—l)

Similarly, for m even with m/2 odd define

N

Lmi+m/2
Tlg(m, N) = . (261)
Z.Z:; Lm(ifl)LmiLm(iJrl)
Then
1 1 E, 1 1 (Fy Fon  Fi
Tys5(m, N) = ( + al - - ( D | __>)
5Fm/2 2Lm FmLmLm(N+1) LmNLm(N+1) 2F2m Lm(N+1) LmN Lm
(2.62)
and
1 1 F,, 1 1 Fn Fn F,
Tis(m, N) < N _ ( (NV+1) | TmN __>>
Lm/2 2L F L Lm(N—H LmNLm(N+1) 2F2m Lm(N+1) LmN Lm

(2.63)
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Proof. Set m even and n = 0 in (1.3) and combine with (1.8). O]

Corollary 2.20.

1 NG 1 V5

Tys(m, 00) = ( _ ) 2.64

w(m.o0) = oo\ W0F, T 202 5 (264)
and Y Y
1 51 5

Tys(m, 00) = ( - ) 2.65

w6(m,o0) = 7\ 0F,, 212 5, (2.65)

Remark 2.21. For m = 2 we have that T\4(2, N) = To(2, N).

We conclude this section with a short list of examples that are contained in the presentation
as special cases:

N
Ly; 11 1 7/ Loy Loy o 1 Fay
To(2,1,N) = :———( + )—— . (2.66)
o ) ; Loi_1Loit1Loip3 60  15\Loni1  Longs 4 Lonys
To(2,1,00) = — + — 2.67)
615 %) = 15 T 3003 '
N
Loitq 1/ Fonge | Fon 1 Fon 1
To(2, N) = —=—<— —)—— N 2.68
o ) ; Loi_9LoiLoiro 3 \Lonio * Loy 3Lany2 9 (2.68)
1 V5
Ty(2 = — 4+ — 2.69
9( 7OO> ].8 + 30 9 ( )
N
; Lsitq 3 (Fsnyz | Fsn 1 Fay 3
To(3, N) = —1 Z+1—+:—< —) — - — 2.70
(3, ) ;( ) Lsi_3L3iLsiys  32\Lsyys  Lay 16 Lanys 647 70
1 V5
Ty(3 = — + — 2.71
N
Fyi—s 1 /Fynga | Fan 1 Fin 1
Ty, (4, N) = _ ( )—— _ 2.72
u(t,N) “ Lyi-aLaiLaia 210 \Lyy 4 T Tox) T 105 Tanes 490 (&.72)
3 V5
Ty, (4 = — — — 2.73
N
Fhiyo 8 1/ Fin 1 1 Finya  Fun
Ti5(4,N) = —:_+_< _ )__(_Jr_)’
(4, N) Zl LiiaLsiLya 490 5\21Linya LanLansa/ 210 \Lyyia | Lan
(2.74)
and \/_
1 5
Ti=(4 = — 4+ —. 2.
15(4,00) = 755 + 319 2.75)
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3 Sums with four factors

It is worth to mention that the formulas derived in this article may be combined once more time

to produce closed-form expressions for sums with four factors. We conclude with some explicit

examples. In all examples we assume m to be an even integer. Let us define the following series:

N

Fmi+m/2Fmi+m
Gi(m,N) = m/2 even),
3 ) — Lin(i—1) Lmi Ln(i41) Lim(i+2) (m/ )
N
Lmi—i—m/QFmier
G N) = 2 odd
2m. V) Z Loni—1) Limi L (i 1) Lim(iv2) (m/2 odd),
=1
N
Fmi+m/2Lmi+1
Gs(m,N) = (m/2 even),
“— Lin(i—1) Lini Lin(i+1) Lim(i-+2)
and
N
Fmi+m/2Lmi—1
Gy(m,N) = m/2 even).
o ) ' Lin(i—1) LimiL(i1) Lan(i+2) (m/ )
Then the following results hold:
Corollary 3.1.
1
Gl(m:N) = 5T<T15(m>N) - Tls(m, N)),
1
Gy(m, N) = 5T<T16(ma N) = Tia(m, N)>,
1
Gsz(m, N) = F—<T15(m,N) Fyp1T13(m, N)>7
2m
and )
G4(m, N) = F_ <T15(m, N) — F2m+1T13(m, N)) .
2m

These results are also valid for N — oo.

Proof. Combine the series from the previous section and use Lemma 2.1.

References

(3.1)

(3.2)

(3.3)

3.4)

(3.5)

(3.6)

(3.7

(3.8)

[1] Almkvist, G. (1986) A Solution to a Tantalizing Problem, The Fibonacci Quarterly, 24 (4),

316-322.

[2] André-Jeannin, R. (1990) Lambert Series and the Summation of Reciprocals of Certain

Fibonacci-Lucas-Type Sequences, The Fibonacci Quarterly, Vol. 28 (3), 223-226.

[3] Backstrom, R.P (1981)On Reciprocal Series Related to Fibonacci Numbers with Subscripts

in Arithmetic Progression, The Fibonacci Quarterly, 19, 14-21.

114



[4] Borwein, J.M. & Borwein, P.B. (1987) Pi and the AGM, John Wiley & Sons, New York.

[5] Brousseau, B.A. (1969) Summation of Infinite Fibonacci Series, The Fibonacci Quarterly,
7 (2), 143-168.

[6] Carlitz, L. (1971) Reduction Formulas for Fibonacci Summations, The Fibonacci Quarterly,
9(5), 449-466, 510-511.

[7] Frontczak, R. (2016) A Note on a Family of Alternating Fibonacci Sums, Notes on Number
Theory and Discrete Mathematics 22(2), 64-71.

[8] Frontczak, R. (2017) Further Results on Arctangent Sums with Applications to Generalized
Fibonacci Numbers, Notes on Number Theory and Discrete Mathematics, 23(1), 39-53.

[9] Frontczak, R. (2017) Summation of Some Finite Fibonacci Lucas Series, unpublished

manuscript.

[10] Good, I. J., (1974) A reciprocal series of Fibonacci numbers, The Fibonacci Quarterly, 12,
346.

[11] Horadam, A. F. (1988) Elliptic Functions and Lambert Series in the Summation of Recipro-
cals in Certain Recurrence-Generated Sequences, The Fibonacci Quarterly, 26(2), 98—114.

[12] Hu, H., Sun, Z.-W., & Liu, J.-X. (2001) Reciprocal sums of second-order recurrent se-
quences, The Fibonacci Quarterly, 39, 214-220.

[13] Melham, R. S. (1999) Lambert Series and Elliptic Functions and Certain Reciprocal Sums,
The Fibonacci Quarterly, 37, 208-212.

[14] Melham, R. S. (2000) Summation of reciprocals which involve products of terms from gen-
eralized Fibonacci sequences, The Fibonacci Quarterly, 38, 294-298.

[15] Melham, R. S. (2001) Summation of reciprocals which involve products of terms from gen-
eralized Fibonacci sequences - Part I, The Fibonacci Quarterly, 39, 264-267.

[16] Melham, R. S. (2002) Reduction Formulas for the Summation of Reciprocals in Certain
Second-Order Recurring Sequences, The Fibonacci Quarterly, 40(1), 71-75.

[17] Melham, R. S. (2003) On Some Reciprocal Sums of Brousseau: An Alternative Approach
to that of Carlitz, The Fibonacci Quarterly, 41(1), 59-62.

[18] Melham, R. S. (2012) On finite sums of Good and Shar that involve reciprocals of Fibonacci
numbers, Integers, Vol. 12 (A61).

[19] Melham, R. S.(2013) Finite Sums That Involve Reciprocals of Products of Generalized
Fibonacci Numbers, Integers, Vol. 13 (A40).

[20] Melham R. S. (2014) More on Finite Sums that Involve Reciprocals of Products of Gener-
alized Fibonacci Numbers, Integers, Vol. 14 (A4).

115



[21] Melham, R. S. (2015) On Certain Families of Finite Reciprocal Sums that Involve General-
ized Fibonacci Numbers, The Fibonacci Quarterly, 53(4), 323-334.

[22] Melham, R. S., & Shannon, A. G. (1995) On Reciprocal Sums of Chebyshev Related Se-
quences, The Fibonacci Quarterly, 33(3), 194-202.

[23] Rabinowitz, S. (1999) Algorithmic Summation of Reciprocals of Products of Fibonacci
Numbers, The Fibonacci Quarterly, 37, 122-127.

116



