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Abstract: In this paper, we define the generalized Pell p-circulant sequence and the Pell p-
circulant sequence by using the circulant matrices which are obtained from the characteristic 
polynomial of the generalized Pell ( ),p i -sequence and then, we obtain miscellaneous 

properties of these sequences. Also, we consider the cyclic groups which are generated by the 
generating matrices and the auxiliary equations of the defined recurrence sequences and then, 
we study the orders of these groups. Furthermore, we extend the Pell p-circulant sequence to 
groups. Finally, we obtain the lengths of the periods of Pell p-circulant sequences in the 
semidihedral group 

2mSD  for 4m ≥  as applications of the results obtained. 
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1 Introduction 

Kilic [17] defined the generalized Pell ( ),p i -numbers as follows: 

for any given ( )1,2,3,   1p p n p= … > +  and 0 i p≤ ≤  

                                  ( ) ( ) ( ) ( ) ( ) ( )2 1 1ii i
p pp

P n P n P n p= − + − −                                                 (1.1) 

with initial conditions ( ) ( ) ( ) ( )1 0i i
p pP P i= = ="  and  
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( ) ( ) ( ) ( ) ( ) ( )1 2 1 1i i i
p p pP i P i P p+ = + = = + =" . 

It is clear that the characteristic polynomial of the generalized Pell ( ),p i -sequence is 

( ) 1 2 1p pf x x x+= − − . 

Davis [4] defined the circulant matrix n ij n n
C c

×
⎡ ⎤= ⎣ ⎦ associated with the numbers 0 1 1, , , nc c c −"  

as follows: 

10 2 1

01 3 2

2 13 0

1 02 1

n

n

n nn

n n

cc c c
cc c c

C
c cc c
c cc c

−

− −−

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# ## #%
"
" . 

The ( )1 thn −  degree polynomial ( ) 1
0 1 1

n
nP x c c x c x −
−= + + +"  is called the associated 

polynomial of the circulant matrix nC  [cf.2,15,20,22,24]. 
 
Suppose that the ( ) thn k+ term of a sequence is defined recursively by a linear combination of 

the preceding k terms:  

0 1 1 1 1n k n n k n ka c a c a c a+ + − + −= + + +" , 
where 0 1 1, , , kc c c −…  are real constants. 
 
Kalman [16] derived a number of closed-form formulas for the generalized sequence by the 
companion matrix method as follows: 

0 1 2 2 1

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

0 0 0 0 1

k

k k

A

c c c c c− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"
"

# # # " # #
"
" . 

He also showed that 

0

1 1

1 1

n

nn
k

k n k

a a
a a

A

a a

+

− + −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

# #

. 
 
These have been used by Gray in the development of the related theory Toeplitz matrices [13], 
and by Shannon and Bernstein in an extension of a generalization of continued fractions to 
arbitrary order recursive sequences [23]. 
 
In Section 2, we define the generalized Pell p-circulant sequence and the Pell p-circulant 
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sequence such that these sequences are obtained from the circulant matrix  2PC +  which is 

defined by using the characteristic polynomial of the generalized Pell ( ),p i -sequence. Then 

we obtain their miscellaneous properties.  
 
In [5,6,7,8,9,19], the authors obtained the cyclic groups and the semigroups via some special 
matrices. In Section 3, we consider the multiplicative orders of the circulant matrix 2PC +  

 and the Pell p-circulant matrix 2PM +  working to modulo m and then, we obtain the cyclic 
groups which are generated by reducing these matrices modulo m. Also in this section, we 
study the defined recurrence sequences modulo m . Then we derive the relationships between 
the orders of the obtained cyclic groups and the periods of the defined sequences according to 
modulo m.  
 
The study of recurrence sequences in groups began with the earlier work of Wall [26] where 
the ordinary Fibonacci sequences in cyclic groups were investigated. The concept extended to 
some special linear recurrence sequences by several authors; see for example, 
[1,3,5,7,9,10,11,18,19,21,25]. In Section 4, we define the Pell p-circulant sequence by means 
of the elements of the groups which have two or more generators, and then we examine this 
sequence in finite groups. Furthermore, we examine the behaviours of the lengths of the 
periods of the Pell p-circulant sequences in the semidihedral group 

2mSD  for 4m ≥ . 

2 The Generalized Pell p-Circulant and The Pell p-Circulant 
Sequences 

 
We can write the following circulant matrix for the polynomial ( )f x  is as follows: 

( )( )

( )
( ) ( )
( ) ( ) ( )2 2 2

1 if  ,

1  if 1  and 2,  1 ,
=

2  if 2 , 1, 1  and 2, 2 ,
0 other .wise

P ij P P

i j

i j i p j
C C

i j i p j i p j
+ + +

− =⎧
⎪

= + = + =⎪⎡ ⎤= ⎨⎣ ⎦ − = + = + = = + =⎪
⎪
⎩  

For example, the matrix 4C  is as follows: 

4

1 1 0
0 1 1

0 1 1
1 0 1

C

− −2⎡ ⎤
⎢ ⎥− −2⎢ ⎥=
⎢ ⎥−2 −
⎢ ⎥−2 −⎣ ⎦ . 

Define the generalized Pell p-circulant sequence by using the matrices 2pC +  as shown: 
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( )

( )
( )
( )

1 2

1 2

1 2 2 2

2 2 2 2 3

2 , 1 mod 2 ,

2 , mod 2 ,

2 ,  1mod 2 ,

2 0 mod 2

n p n p n p

n n p n p n p

n p n p n p

n p n p n p

x x x n p

x x x x n p p

x x x n p p

x x x n p

− − − − −

− − − − −

− − − − − −

− − − − − −

⎧− + − ≡ +
⎪
⎪
⎪= − + − ≡ +⎨
⎪ − − ≡ + +⎪
⎪− − + ≡ +⎩

#
   for 2n p> + ,               (2.1) 

where 1 2 1 20 and 1p px x x x+ += = = = =" . 

For 0n ≥ , by an inductive argument, we may write 

    ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 1 2 2 2 2 1

2 1 2 2 2 1 2 3 2 2

2 2 2 1 2 2 2 3
2

2 2 1 2 2 2 2 1

2 1 2 2 1 2 1

n p p n p p n p p n p n p

n p n p p n p p n p n p

n n p n p n p p n p
p

n p p n p p n p p n p p n p p

n p p n p p n p p n p

x x x x x

x x x x x

x x x x
C

x x x x x

x x x x

+ + + + + + + + + + + +

+ + + + + + + + + + + +

+ + + + + + + + +
+

+ + + + − + + −2 + + + + + +

+ + + + + + + − + +

=

…

…

…

# # # % % #
…

… ( )2 2n p px + + +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.                 (2.2) 

It is easy to see that ( )2

n

pC +  is a circulant matrix of order 2p + . 

We next define the Pell p-circulant sequence as  
                                    2 1 2n p n p n p na a a a+ + + + += − −                     for 0n >                              (2.3) 

where 1 2 1 20, 1p pa a a a+ += = = = ="  and 2p ≥ .  

We then obtain that the generating function of the Pell p-circulant sequence { }na  is as follows: 

( )
1

2 22 1

p

p

xg x
x x x

+

+=
+ − + . 

By (2.3), we can write the following companion matrix: 

2 2 2

1 2 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0 1 0

P ij p p
M m+ + × +

− −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤= = ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

…
…
…
…

# # # % # #
…  

The matrix 2PM +  is said to be the Pell p-circulant matrix. It is clear that  

2 1

1
2

1

n p n p

n p n p
p

n n

a a
a a

M

a a

+ + + +

+ + +
+

+

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

# #

 
For 1n p≥ + , by an inductive argument, we may write 
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    ( )

2 1 1 2 3 1

1 1 2

2

2 1 1 2 3 1

1 1 2

2

2

.
2

2

n p n p n n n n p

n p n p n n n n p
n

p

n n n p n p n p n

n n n p n p n p n

a a a a a a

a a a a a a

M
a a a a a a

a a a a a a

+ + + + + + + + +

+ + + + + +

+

+ + − + − + − + +

+ − − + − +

− − − − −⎡ ⎤
⎢ ⎥− − − − −⎢ ⎥
⎢ ⎥=
⎢ ⎥

− − − − −⎢ ⎥
⎢ ⎥

− − − − −⎢ ⎥⎣ ⎦

…
…

# # # # #
…
…

                   (2.4) 

 
Note that ( )2det 1 p

pM + = − . It is well-known that the Simson identity for a recursive sequence 

can be obtained from the determinant of its generating matrix.  
 
Lemma 2.1. The characteristic equation of the Pell p-circulant sequence 

2 1 2 1 0p p px x x+ +− + + =  does not have multiple roots. 
Proof. Let  

( ) 2 1 2 1p p ph z z z z+ += − + +  
and let μ  be a multiple root of ( )h z . Then ( ) 0h μ =  and ( ) 0h μ′ = . We first note that 0 is not 

a root of ( )h z . So, we obtain  

( ) ( ) ( ) ( ) ( )( )' 1 1 1 22 1 2 2 1 2 0p p p ph p p p p p pμ μ μ μ μ μ μ+ − −= + − + + = + − + + =
. 

Thus  

( ) 2

1,2

1 7 14 1
2 4

p p p
p

μ
+ ± − − +

=
+  

and hence, 

( ) ( ) ( ) ( )
2

2 2 2

1

1 7 14 1 1 7 14 1 1 7 14 1
2 1

2 4 2 4 2 4

p
p p p p p p p p p

h
p p p

μ
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − − + + + − − + + + − − +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= − + = −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + +⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠  

and  

( ) ( ) ( ) ( )
2

2 2 2

2

1 7 14 1 1 7 14 1 1 7 14 1
2 1

2 4 2 4 2 4

p
p p p p p p p p p

h
p p p

μ
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − − − + + − − − + + − − − +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= − + = −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + +⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠  

Since 2p ≥ , by induction on p , it is see that ( )1 1h μ ≠ −  and ( )2 1h μ ≠ − , which are 

contradictions. Thus, the equation ( ) 0h μ =  does not have multiple roots.                             ,  

 
Let ( )h ε  be the characteristic polynomial of the Pell p-circulant matrix 2pM + . If    

1 2 2, , , pε ε ε +…  are eingenvalues of the matrix 2pM + , then by Lemma 2.1, it is known that 

1 2 2, , , pε ε ε +…  are distinct. Let V  be a ( ) ( )2 2p p+ × +  Vandermonde matrix: 
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1 1 1
1 2 2

1 2 2

1 2 2

1 1 1

p p p
p

p p p
p

p

V

ε ε ε
ε ε ε

ε ε ε

+ + +
+

+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…
…

# # # #
…
… . 

Suppose that  
2

1
2

2

2
2

n p i

n p i
i

n p i
p

W

ε
ε

ε

+ + −

+ + −

+ + −
+

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#

 
and ( ),i jV  is a ( ) ( )2 2p p+ × +  matrix obtained from V  by replacing the thj column of V  by 

iW . We can now establish the Binet formula for the Pell p-circulant sequence with the 
following Theorem. 
 
Theorem 2.1. Let na   be the thn term of the Pell p-circulant sequence. Then 

( )
( )( )
( )

,det

det

i j
n

ij

V
m

V
=

 
where  

( ) ( )
2

n n
p ijM m+

⎡ ⎤= ⎣ ⎦ . 
Proof. Since the eigenvalues of the matrix 2pM +  are distinct, the matrix 2pM +  is 

diagonalizable. Let ( )1 2 2diag , , , pD ε ε ε += … , then it is easy to see that 2pM V VD+ =  . Since 

the matrix V  is invertible, ( ) 1
2pV M V D−

+ = . Hence, the matrix 2pM +  is similar to D . So we 

get ( )2

n n
pM V VD+ =   for 1n ≥ . Then we write the following linear system of equations for: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2

2

2

1
1 1 2 1 2 1

1
1 2 2 2 2 2

1
1 2 2 2 2 2 .

n p i

n p i

n p i

n n np p
i i ip

n n np p
i i ip

n n np p
i p i p ip p

m m m

m m m

m m m

ε ε ε

ε ε ε

ε ε ε

+ + −

+ + −

+ + −

+
+

+
+

+
+ + + +

+ + + =

+ + + =

+ + + =

"

"
#

"  
So, we obtain 

                                  ( )
( )( )
( )

,det

det

i j
n

ij

V
m

V
=        for , 1, 2, , 2i j p= … + .                                          ,  
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3 The Cyclic Groups via the matrices 2PC +  and 2PM +  

For given a matrix ijA a⎡ ⎤= ⎣ ⎦  with ijm ’s integers, ( )modA m  means that each element of A  is 

reduced modulo m , that is, ( ) ( )( )mod modijA m a m= . Let us consider the set  

( ){ }mod 0i
m

A A m i= ≥ . If ( )gcd , det 1m A = , then the set 
m

A  is a cyclic group. Let the 

notation 
m

A  denotes the order of the set 
m

A . Since ( )2det 1 p
pM + = − , it is clear that the 

set 2p m
M +  is acyclic group for every positive integer m . Similarly, the set 2p m

C +  is a 

cyclic group if ( )2gcd , 1pm C + = . We next consider the cyclic groups generated by these 

matrices 2PC +  and 2PM + . 
 
Theorem 3.1. Let β  be a prime and let nG

β
 be any of the cyclic groups 2 npC

β+ and 

2 npM
β+  such that n N∈ . If u  is the largest positive integer such that uG G

β β
= , then 

v
v uG G

β β
β −= ⋅  for every v u≥ . In particular, if 2G G

β β
≠ , then 

1vG G
β β

β −= ⋅  for every 2v ≥ . 

 
Proof. Let us consider the cyclic group 2 npM

β+  and let 2 nPM
β+  be denoted by ( )nh β . If 

( ) ( ) ( )
1

1
2 mod

ah a
PM Iβ β

+
+

+ ≡ , then ( ) ( ) ( )
1

2 mod
ah a

PM Iβ β
+

+ ≡  where a  is a positive integer 

and I  is a ( ) ( )2 2p p+ × +  identity matrix. Thus we find that ( )ah β  divides ( )1ah β + . Also, 

writing ( ) ( ) ( )( )2

ah a a
p ijM I m

β
β+ = + ⋅  we get from the binomial expansion that 

( ) ( ) ( )( )( ) ( )( ) ( )1
2

0
mod

a ih a aa a a
P ij ij

i
M I m m I

i

βββ β β
β β β⋅ +

+
=

⎛ ⎞
= + ⋅ = ⋅ ≡⎜ ⎟

⎝ ⎠
∑

, 
which yields that ( )1ah β +  divides ( )ah β β⋅ . Thus, ( ) ( )1a ah hβ β+ =  or ( ) ( )1a ah hβ β β+ = ⋅ . 

It is clear then that ( ) ( )1a ah hβ β β+ = ⋅  holds if and only if there exists an integer ( )a
ijm  which 

is not divisible by β . Since u  is the largest positive integer such that ( ) ( )uh hβ β= , we have 

( ) ( )1u uh hβ β +≠ . Then, there exists an integer ( )1u
ijm +  which is not divisible byβ .  So we get 

that ( ) ( )1 2u uh hβ β+ +≠ . To complete the proof we may use an inductive method on u  .  

There is a similar proof for the cyclic group  2 mpC
λ+ .                                                             ,     
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Theorem 3.2. Let 
m

G  be any of the cyclic groups 2P m
C +  and  2p m

M +  and let  

( )
1

, 1i

t
e
i

i

m tβ
=

= ≥∏ where iβ ’s are distinct primes. Then  

1 2
1 2

lcm , , ,e e et
tm

G G G G
β β β

⎡ ⎤= ⎣ ⎦…
. 

Proof. Let us consider the cyclic group 2P m
C + . Suppose that ei

i
iC

β
α=  for 1 i t≤ ≤  and let 

2p m
C α+ = . Then by (2.2), we obtain 

( )

( )

2

2 2

0 mod for 1 1,

1 mod

i

i

i

i

e
ip j

e
ip p

a j p

a
α

α

β

β
+ +

+ + +

≡ ≤ ≤ +

≡
 

and  

( )

( )

2

2 2

0 mod for 1 1,

1 mod .
i

i

p j

p p

a m j p

a m
α

α

+ +

+ + +

≡ ≤ ≤ +

≡
 

This implies that ( ) ( )2 2 2ip p p ja k aα α+ + + + += ⋅  for  1 2j p≤ ≤ +  and k N∈  that is, ( )2PC α
+  is of the 

form ( )2
i

Pk C α
+⋅  for all values of i .  Thus it is verified that  

1 2
1 2

2 2 2 2lcm , , ,e e et
t

p p p pm
C C C C

β β β+ + + +
⎡ ⎤= ⎢ ⎥⎣ ⎦

…
. 

There is similar proof for the set  2p m
M + .                                                                              ,  

It is well-known that a sequence is periodic if, after a certain point, it consists only of 
repetitions of a fixed subsequence. The number of elements in the repeating subsequence is the 
period of the sequence. A sequence is simply periodic with period k if the first k elements in 
the sequence form a repeating subsequence. 
 
Reducing the generalized Pell p-circulant sequence and the Pell p-circulant sequence of the by 
a modulus m , we can get the repeating sequences, respectively denoted by 

( ){ } ( ) ( ) ( ) ( ){ }1 2 3, , , , ,n jx m x m x m x m x m= … …
 

and 
( ){ } ( ) ( ) ( ) ( ){ }1 2 3, , , , ,n ja m a m a m a m a m= … …

, 
where ( ) ( )mod j jx m x m= , ( ) ( )mod j ja m a m= . They have the same recurrence relation as 

in the definitions of the generalized Pell p-circulant sequence and the Pell p-circulant sequence, 
respectively. 
 
Theorem 3.3. The sequence ( ){ }na m  is simply periodic for every positive integer m . 

Similarly, the sequence ( ){ }nx m  is a simply periodic sequence if  ( )2gcd det , 1.pC m+ =  
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Proof. Let us consider the Pell p-circulant sequence ( ){ }na m . Let 

( ){ }1 2 2, , , 0 1p iQ q q q q m+= … ≤ ≤ − , then 2PQ m += . Since there are 2Pm +  distinct 2p + -tuples 

of elements of m] , at least one of the 2p + -tuples appears twice in the sequence ( ){ }na m . 

Thus, the subsequence following this 2p + -tuple repeats; that is the sequence is periodic. So if   

( ) ( )1 1i ja m a m+ +≡ , ( ) ( )2 2i ja m a m+ +≡ ,… , ( ) ( )2 2i p j pa m a m+ + + +≡  and i j> , then 

mod 2i j p≡ + . From the definition, we can easily derive that  

( ) ( )i ja m a m≡ , ( ) ( )1 1i ja m a m− −≡ , … ,  ( ) ( ) ( ) ( ) ( )11 1i j j ja m a m a m− − − −≡ = . 

Thus we get that the sequence is a simply periodic. 
There is a similar proof for the sequence ( ){ }nx m .                                                                  ,  

 
We denote the lengths of the periods of the sequences ( ){ }nx m  and ( ){ }na m  by ( )p

xl m , 

( )p
al m , respectively. Then, we have the following useful results from (2.2) and (2.4), 

respectively.     
 

Corollary 3.1. Let β  be a prime. Then  

i. If ( )2gcd det , 1pC β+ = , then ( ) ( ) 22 .p
x Pl p C

β
β += + .  

ii. ( ) 2
p

a pl M
β

β +=  .                                                                                                        ,  

Let β  be a prime and let  

( ) ( ){ }2 1mod : , 2 1k n k p p pA x n x x xβ β + += ∈ = − −]
 

such that k N∈ . Then, it is clear that the set ( )kA β  is a cyclic group. 

Now we can give a relationship between the characteristic equation of the Pell p-circulant 
sequence and the period ( )p

al m  by the following Corollary.  

 
Corollary 3.2. Let β  be a prime and let k N∈ . Then, the cyclic group ( )kA β  is isomorphic 

to the cyclic group 2 kpM
β+ .                                                                                                   ,  

4 The Pell p-Circulant Sequence in Groups  

 
Let G  be a finite j-generator group and let X  be the subset of 

j

G G G G× × × ×"����	���
  such that 

( )1 2, , , jx x x X∈…  if and only if G  is generated by 1 2, , , jx x x… . We call ( )1 2, , , jx x x…  a 

generating j-tuple for G .  
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Definition 4.1. Let G X=  be a finitely generated group such that { }1 2, , , jX x x x= … . Then 

we define the Pell p-circulant sequence in the group G  as follows: 

( ) ( )
( ) ( ) ( )

2

2 1

1 2

2 2 1

if  n+ 2,

if  n+ 2

n j n j

n j

n j p n j n j

a a j p
a

a a a j p

−

+ − + −

+ − −

+ − − + − + −

⎧ ≤ +⎪= ⎨
⎪ > +⎩

 

for 1n ≥ , with initial conditions 

k ka x=    for    1 k j≤ ≤ . 

For a j-tuple ( )1 2, , , jx x x X∈… , the Pell p-circulant sequence in a group G  is denoted by 

( ) ( )
1 2, , , j

p
x x x

PC G
…

. 

Theorem 4.1. A Pell p-circulant sequence in a finite group is simply periodic. 

Proof. Suppose that n  is the order of G . Since there 2pn +  distinct 2p + -tuples of elements of 

G , at least one of the 2p + -tuples appears twice in the sequence ( ) ( )
1 2, , , j

p
x x x

PC G
…

. Thus, 

consider the subsequence following this 2p + -tuple. Because of the repeating, the sequence is 

periodic. Since the sequence ( ) ( )
1 2, , , j

p
x x x

PC G
…

 is periodic, there exist natural numbers and u v , 

with u v≥ , such that 

1 1 2 2 2 2,  , ,u v u v u p v pa a a a a a+ + + + + + + += = =… . 

By the definition of the sequence ( ) ( )
1 2, , , j

p
x x x

PC G
…

, we know that  

( ) ( )
( ) ( )( )

2

2

1 2

2 2

if  n+ 2,

if  n+ 2

n j n j

n j

n j n j p n j

a a j p
a

a a a j p

+ − +

+ −

+ − + − − +

⎧ ≤ +⎪= ⎨
⎪ > +⎩

. 

Therefore, we obtian u va a= , and hence, 

1 1 2 2 2 2 , , ,u v u v u v p pa a a a a a− + − + − + + += = =… , 

which implies that the sequence is a simply periodic sequence.                                               ,  

 

Let ( ) ( )
1 2, , , j

p
x x x

LPC G
…

 denote the length of the period of the sequence ( ) ( )
1 2, , , j

p
x x x

PC G
…

.  From 

the definition of the sequence ( ) ( )
1 2, , , j

p
x x x

PC G
…

 it is clear that the period of this sequence in a 

finite group depends on the chosen generating set and the order in which the assignments of 

1 2, , , jx x x…  are made. 
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We shall now address the lengths of the periods the Pell p-circulant sequences in the 

semidihedral group 
2mSD . A group 

2mSD  is semidihedral group of order 2m  if  

1 22 2 1 1 2
2

, ,
m m

mSD a b a b e b ab a
− −− − += = = =  

for every 4m ≥ . Note that the orders a  and b  are 12m− and 2 , respectively [cf. 12,14]. 

 
Theorem 4.2. The lengths of the periods the Pell p-circulant sequences in the semidihedral 

group 
2mSD  are as follows: 

i. ( ) ( )2 3 2
2

; , 2 2m
m

aLPC SD a b l−= ⋅  for 2p = , 

ii. ( ) ( )2
2

; , 2 2m
p m p

aLPC SD a b l−= ⋅  for 3p ≥ . 

Proof. i. We prove this by direct calculation. Note that 12 , 2ma b−= = and ( )2 2 15al = . Then, 

the group 
2mSD is defined by the presentation  

1 22 2 1 1 2, ,
m m

a b a b e b ab a
− −− − += = = . 

It is clear that 
21 2m

ab ba
−− += . The sequence ( )2

2
; ,mPC SD a b  is 

( )( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 1 1 2

2 2 1

2 3 2 1 2 7 3 2 7 22 2 3 5

2 12 2 7 2 41 3

, , , , , , , , ,

, , , , , .

m m m m m

m m m

a b a b a b a b a ba a ba

a b a a ba a e

− − − − −

− − −

− − − + − +− − −

+ + −−
 

Using the above, the sequence becomes: 
2 2

1 2 3 4

5 4 2 2
16 17 18 19

1 4 4 2 2
15 1 15 2 15 3 15 4

, , , , ,

, , , , , ,

, , , , .i i
i i i i

x a x b x a b x a b

x a x a b x a b x a b

x a x a b x a b x a b

− −

− −

+ − −
+ + + +

= = = =

= = = =

= = = =

…
…

…
 

So we need the smallest integer i  such that 1
14 2mi k−= ⋅  for 1k N∈ . It is easy to see that the 

length of the period of the sequence is 32 15m− ⋅ .                                                                       ,  

ii. For 3p ≥ , the sequence ( )2
; ,m

pPC SD a b  has the following form:  

From above, the sequence becomes: 

( )
( )

( ) ( )
( )

( )
( )

( )
( )

1 1
1

1 1
2

2 2 2
1 2 3 4 2

1 2 4 2 2 4

2 2 1 2 2 2 2 2 3

2 2 4 2 2 4

2 2 4 2 2 2

, , , , , , ,

, , ,

, , , ,

m m

p p p
a a a

m m
p

p p
a a

p

j j

l j l j l j

j j

l j l j p

x a x b x a b x a b x a b

x a x b x a b

x a b x a b

λ

λ λ

− −

− −

− − −
+

+ − − + − ⋅

⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ +

− + − ⋅ − + − ⋅

⋅ ⋅ + ⋅ ⋅ + +

= = = = =

= = =

= =

… …

… …
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where 1 2, , , p Nλ λ λ ∈… .  So we need the smallest integer j  such that ( )1 1
22 4 2m mj k− −− = . 

Thus, we get that ( ) ( )2
2

; , 2 2m
p m p

aLPC SD a b l−= ⋅ .                                                                  ,                          

This completes the outline of the algebraic properties of the generalized Pell p-circulant 
sequences which we sought to develop. 
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