Notes on Number Theory and Discrete Mathematics
Print ISSN 1310-5132, Online ISSN 2367-8275
Vol. 23, 2017, No. 2, 48-53

On two arithmetic functions

József Sándor ${ }^{1}$ and Krassimir T. Atanassov ${ }^{2}$
${ }^{1}$ Babes-Bolyai University, Department of Mathematics, Cluj-Napoca, Romania
e-mail: jsandor@math.ubbcluj.ro
${ }^{2}$ Dept. of Bioinformatics and Mathematical Modelling Institute of Biophysics and Biomedical Engineering,
Bulgarian Academy of Sciences
105 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
and
Intelligent Systems Laboratory
Prof. Asen Zlatarov University, Bourgas-8010, Bulgaria
e-mail: krat@bas.bg

Received: 20 November 2016
Accepted: 28 April 2017

Abstract

Some properties of two new arithmetic functions are studied. Three conjectures are formulated.

Keywords: Arithmetic function, Natural number, Prime number.
AMS Classification: 11A25.

1 Introduction

In a recent paper [1], it was introduced the following arithmetic function: let p be a prime number, and let $\downarrow p$ denote the greatest prime smaller than p, for $p \geq 3$, and let $\downarrow p=1$, if $p=2$. If $n \geq 2$ has the prime factorization $n=\prod_{i=1}^{r} p_{i}^{\alpha_{i}}$, where $k, \alpha_{1}, \ldots, \alpha_{r}, r \geq 1$ are natural numbers and p_{1}, \ldots, p_{r} are different primes, then let us define

$$
\begin{equation*}
\downarrow n=\prod_{i=1}^{r}\left(\downarrow p_{i}\right)^{\alpha_{i}} . \tag{1}
\end{equation*}
$$

Let $\downarrow 1=1$.

It is immediate that for distinct primes p and q one has $\downarrow(p q)=\downarrow p . \downarrow q$, so by (1) it is immediate that for $(n, m)=1$ one has $\downarrow(n m)=\downarrow n$. $\downarrow m$, which means that this arithmetical function is multiplicative function.

In what follows we define the dual of this arithmetic function as follows. For a prime p, let $\uparrow p$ denote the least prime greater than p. For example, $\uparrow 2=3, \uparrow 3=5$, etc. Similarly to (1), we define for $n \geq 2$:

$$
\begin{equation*}
\uparrow n=\prod_{i=1}^{r}\left(\uparrow p_{i}\right)^{\alpha_{i}} . \tag{2}
\end{equation*}
$$

Let $\uparrow 1=1$. Then this arithmetical function is multiplicative, too.

2 Main results

Lemma 1. One has

$$
\begin{equation*}
\downarrow p \leq p-2 \text { for any } p \geq 5 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\uparrow p \geq p+2 \text { for any } p \geq 3 \tag{4}
\end{equation*}
$$

Proof. For p odd prime, $p-1$ is even number, and this is not prime for $p-1$ distinct from 2. Thus the greatest prime $q<p$ will be in the best possible case, the number $q=p-2$. These are not valid for $p=2,3$, but for $p \geq 5$, are true, so (3) follows. The proof of (5) follows on the same lines.

Obviously, one has

$$
\begin{equation*}
\downarrow p=p-1 \text { for } p=2 \text { or } p=3 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\uparrow p=p+1 \text { for } p=2 \tag{6}
\end{equation*}
$$

We see directly, that there is equality in (3) if and only if the pair $(p-2, p)$ is a twin pair. Similarly, there is equality in (4) if and only if the pair $(p, p+2)$ is a twin pair.

It is not known, if there exist infinitely many such pairs, and this is one of the most notorious open problems of Number theory.

Lemma 2. One has

$$
\begin{equation*}
\uparrow p-\downarrow p \geq 6 \text { for any prime } p \geq 7 \tag{7}
\end{equation*}
$$

Proof. By Lemma 1, one has $\uparrow p-\downarrow p \geq 4$ for any $p \geq 5$. We shall prove that for a prime $p \geq 7$, no all terms of the three numbers $p-2, p, p+2$ cannot be primes. This is true however for $p=5$. It is well-known that any prime $p \geq 5$ can be written in one of the following forms: $p=6 k-1$ or $p=6 k+1$. In the first case, one has $p-2=6 k-3$, divisible by 3 , and so not prime for $k \geq 2$. In the second case $p+2=6 k+3$ is divisible again by 3 , and is not prime for $k \geq 1$. These prove essentially inequality (7).

Obviously, one has

$$
\uparrow p-\downarrow p=2 \text { for } p=2,
$$

$$
\begin{aligned}
& \uparrow p-\downarrow p=3 \text { for } p=3, \\
& \uparrow p-\downarrow p=4 \text { for } p=4 .
\end{aligned}
$$

This means that one has

$$
\uparrow p-\downarrow p \geq 2 \text { for any } p \geq 2
$$

Lemma 3. Let $\left\{x_{i}\right\}_{i=1}^{r}$ and $\left\{y_{i}\right\}_{i=1}^{r}$ be two sequences of positive real numbers. Then one has

$$
\begin{equation*}
\left(x_{1}+y_{1}\right) \ldots\left(x_{r}+y_{r}\right) \geq x_{1} \ldots x_{r}+y_{1} \ldots y_{r} . \tag{7}
\end{equation*}
$$

If $x_{i}-y_{i} \geq 1$, then

$$
\begin{equation*}
\left(x_{1}-y_{1}\right) \ldots\left(x_{r}-y_{r}\right) \leq x_{1} \ldots x_{r}-y_{1} \ldots y_{r} . \tag{8}
\end{equation*}
$$

Proof. (8) is well-known, and follows, e.g., on induction upon r. For the proof of (9) apply (8) for $x_{i}-y_{i}$ instead of x_{i} and y_{i} for y_{i}. Then (8) becomes (9).

Theorem 2.1. One has

$$
\begin{equation*}
\uparrow n \geq n+2^{\Omega(n)} \text { for any odd } n \geq 3 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\downarrow n \leq n-2^{\Omega(n)} \text { for any } n \text { not divisible by } 6, \tag{10}
\end{equation*}
$$

where $\Omega(n)$ denotes the total number of prime factors of n (i.e. for the prime factorization of n in the Introduction, $\Omega(n)=\sum_{i=1}^{r} a_{r}$.

Proof. By relation (4) of Lemma 1, and by Lemma 3 , relation (8), one can write

$$
\uparrow n \geq\left(p_{1}+2\right)^{a_{1}} \ldots\left(p_{r}+2\right)^{a_{r}} \geq\left(p_{1}^{a_{1}}+2^{a_{1}}\right) \ldots\left(p_{r}^{a_{r}}+2^{a_{r}}\right) \geq n+2^{a_{1}+\cdots+a_{r}}=n+2^{\Omega(n)},
$$

which proves (10). The proof of (11) goes on the same lines, by using relation (5) of Lemma 1 and relation (9) of Lemma 3.

Now, we extend relation (7).
Theorem 2.2. One has

$$
\begin{equation*}
\uparrow n-\downarrow n \geq 2^{\Omega(n)}, \text { for any } n \geq 2 \tag{11}
\end{equation*}
$$

Proof. Actually, we will prove a stronger result, by using the following inequality of Hölder.
Lemma 4. If $\left\{x_{i}\right\}_{i=1}^{r}$ and $\left\{y_{i}\right\}_{i=1}^{r}$ be two sequences of positive real numbers. Then one has

$$
\begin{equation*}
\left(\left(x_{1}+y_{1}\right) \ldots\left(x_{r}+y_{r}\right)\right)^{1 / r} \geq\left(x_{1} \ldots x_{r}\right)^{1 / r}+\left(y_{1} \ldots y_{r}\right)^{1 / r} . \tag{12}
\end{equation*}
$$

Apply now inequality (7), and (13) for $x_{i}=2^{a_{i}}, y_{i}=\left(\uparrow p_{i}\right)^{a_{i}}$. Then we get

$$
\begin{equation*}
\uparrow n \geq\left(2^{\Omega(n) / \omega(n)}+(\downarrow n)^{1 / \omega(n)}\right)^{\omega(n)} \tag{13}
\end{equation*}
$$

where $r=\omega(n)$ denotes the number of distinct prime factors of n.
It is immediate now that (14) is a refinement of (12), which follows at once from the inequality $(a+b)^{r} \geq a^{r}+b^{r}$, with a the first term, while b is the second term in the parentheses of (14). Therefore, (14) follows, even in the improved form (12).

The following limit properties are valid:
Theorem 2.3. One has

$$
\begin{align*}
& \lim _{p \rightarrow \infty} \frac{\downarrow p}{p}=\lim _{p \rightarrow \infty} \frac{\uparrow p}{p}=\lim _{p \rightarrow \infty} \frac{\downarrow p}{\uparrow p}=1, \tag{14}\\
& \lim \inf _{n \rightarrow \infty} \frac{\downarrow n}{n}=0, \lim \sup _{n \rightarrow \infty} \frac{\downarrow n}{n}=1, \tag{15}\\
& \lim \inf _{n \rightarrow \infty} \frac{\uparrow n}{n}=1, \lim \sup _{n \rightarrow \infty} \frac{\uparrow n}{n}=\infty \tag{16}
\end{align*}
$$

Proof. Let $p_{1}<p_{2}<\cdots<p_{k-1}<p_{k}<p_{k+1}<\ldots$ be the increasing sequence of the consecutive primes, and suppose that $p=p_{k}$. Then one has $\downarrow p=p_{k-1}$ and $\uparrow p=p_{k+1}$.Therefore, relation (15) becomes

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{p_{k-1}}{p_{k}}=\lim _{k \rightarrow \infty} \frac{p_{k+1}}{p_{k}}=\lim _{k \rightarrow \infty} \frac{p_{k-1}}{p_{k+1}}=1 . \tag{17}
\end{equation*}
$$

The first two relations are well-known (see e.g. [3]), and are in fact consequences of the prime number theorem written in the form

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{p_{k}}{k \log k}=1 \tag{18}
\end{equation*}
$$

The last relation of (18) follows by the identity

$$
\frac{p_{k-1}}{p_{k+1}}=\frac{p_{k-1}}{p_{k}} \cdot \frac{p_{k}}{p_{k+1}},
$$

and the first two relations. For the proof of the first relation of (16) it is sufficient to consider the sequence of numbers $n=3^{k}$. Then

$$
\frac{\downarrow n}{n}=\left(\frac{2}{3}\right)^{k},
$$

which tends to zero, as k tends to infinity.
For the second relation of (16) remark that $\frac{\downarrow n}{n} \leq 1$, and for the particular case $n=p$ (prime), by (15) the limit is 1 . Therefore the lim sup should be equal to 1 .

The first equality of (17) follows on the same lines, by remarking that $\frac{\downarrow n}{n} \geq 1$, and using again (15). For the second relation, let us take again $n=3^{k}$, when

$$
\frac{\downarrow n}{n}=\left(\frac{5}{3}\right)^{k},
$$

which tends to infinity for k tending to ∞.
It is immediate consequence of (15) and (17) that

$$
\lim \inf _{n \rightarrow \infty} \frac{\uparrow n}{\downarrow n}=1 \text { and } \lim \sup _{n \rightarrow \infty} \frac{\uparrow n}{\downarrow n}=\infty .
$$

By a particular case of a theorem of Maynard ([2]) one gets that

$$
\lim \inf _{n \rightarrow \infty}\left(p_{k+1}-p_{k-1}\right) \leq C
$$

where $C>0$ is a constant. This implies immediately:

Theorem 2.4. One has

$$
\begin{equation*}
\lim \inf _{p \rightarrow \infty} \frac{\uparrow p-\downarrow p}{\log p}=0 \tag{19}
\end{equation*}
$$

One has

$$
\begin{equation*}
\lim \inf _{n \rightarrow \infty} \frac{\uparrow n-\downarrow n}{\log n}=0 \text { and } \lim \sup _{n \rightarrow \infty} \frac{\uparrow n-\downarrow n}{\log n}=\infty \tag{20}
\end{equation*}
$$

The first relation of (20) is a consequence of (19), while the second relation follows by the remark that

$$
\frac{p_{k+1}-p_{k-1}}{\log p_{k}}>\frac{p_{k+1}-p_{k}}{\log p_{k}}=w_{k}
$$

and it is well-known by a result of Westzynthius (see, [3]) that $\lim \sup w_{k}=\infty$.
Suggested by Lemma 2, we formulate
Conjecture 1. For each prime number p:

$$
\lim \inf _{p \rightarrow \infty}(\uparrow p-\downarrow p)=6
$$

For the prime number p let us define

$$
\begin{aligned}
& \Delta(p)=\frac{\uparrow p+\downarrow p}{2} \\
& E(p)=\frac{\uparrow p-\downarrow p}{2} \\
& Z(p)=|p-\Delta(p)|
\end{aligned}
$$

Let us construct the following Table.

p	$\Delta(p)$	$E(p)$	$Z(p)$	p	$\Delta(p)$	$E(p)$	$Z(p)$
5	5	2	0	47	44	3	1
7	8	3	1	53	53	6	0
11	10	3	1	59	57	4	2
13	14	3	1	61	63	4	2
17	16	3	1	67	66	5	1
19	20	3	1	71	70	3	1
23	24	5	1	73	75	4	2
29	27	4	2	79	78	5	1
31	33	4	2	83	84	5	1
37	36	5	1	89	90	8	1
41	40	3	1	97	95	8	2

Conjecture 2. For each prime number p :

$$
[\ln p] \leq \max _{q \leq p} E(q) .
$$

Conjecture 3. For each prime number p:

$$
[\ln \ln p] \leq \max _{q \leq p} Z(q)
$$

References

[1] Atanassov, K. (2016) An arithmetic function decreasing the naturaql numbers. Notes on Number Theory and Discrete Mathematics, 22(4), 16-19.
[2] Maynard, J. (2015) Small gaps between primes, Annals of Mathematics, 181, 383-413.
[3] Sándor, J., Mitrinovic, D. S., \& Crstici, B. (2006) Handbook of number theory, Vol. I, Springer, Dordrecht.

