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1 Introduction

In a recent paper [1], it was introduced the following arithmetic function: let p be a prime number,
and let ↓ p denote the greatest prime smaller than p, for p ≥ 3, and let ↓ p = 1, if p = 2. If

n ≥ 2 has the prime factorization n =
r∏
i=1

pαi
i , where k, α1, ..., αr, r ≥ 1 are natural numbers and

p1, ..., pr are different primes, then let us define

↓ n =
r∏
i=1

(↓ pi)αi . (1)

Let ↓ 1 = 1.
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It is immediate that for distinct primes p and q one has ↓ (pq) =↓ p. ↓ q, so by (1) it is
immediate that for (n,m) = 1 one has ↓ (nm) =↓ n. ↓ m, which means that this arithmetical
function is multiplicative function.

In what follows we define the dual of this arithmetic function as follows. For a prime p, let
↑ p denote the least prime greater than p. For example, ↑ 2 = 3, ↑ 3 = 5, etc. Similarly to (1), we
define for n ≥ 2:

↑ n =
r∏
i=1

(↑ pi)αi . (2)

Let ↑ 1 = 1. Then this arithmetical function is multiplicative, too.

2 Main results

Lemma 1. One has
↓ p ≤ p− 2 for any p ≥ 5 (3)

and
↑ p ≥ p+ 2 for any p ≥ 3. (4)

Proof. For p odd prime, p − 1 is even number, and this is not prime for p − 1 distinct from 2.
Thus the greatest prime q < p will be in the best possible case, the number q = p− 2. These are
not valid for p = 2, 3, but for p ≥ 5, are true, so (3) follows. The proof of (5) follows on the same
lines.

Obviously, one has
↓ p = p− 1 for p = 2 or p = 3 (5)

and
↑ p = p+ 1 for p = 2 (6)

We see directly, that there is equality in (3) if and only if the pair (p − 2, p) is a twin pair.
Similarly, there is equality in (4) if and only if the pair (p, p+ 2) is a twin pair.

It is not known, if there exist infinitely many such pairs, and this is one of the most notorious
open problems of Number theory.

Lemma 2. One has
↑ p− ↓ p ≥ 6 for any prime p ≥ 7. (7)

Proof. By Lemma 1, one has ↑ p− ↓ p ≥ 4 for any p ≥ 5. We shall prove that for a prime p ≥ 7,
no all terms of the three numbers p− 2, p, p+ 2 cannot be primes. This is true however for p = 5.
It is well-known that any prime p ≥ 5 can be written in one of the following forms: p = 6k−1 or
p = 6k + 1. In the first case, one has p− 2 = 6k − 3, divisible by 3, and so not prime for k ≥ 2.
In the second case p+ 2 = 6k+ 3 is divisible again by 3, and is not prime for k ≥ 1. These prove
essentially inequality (7).

Obviously, one has
↑ p− ↓ p = 2 for p = 2,
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↑ p− ↓ p = 3 for p = 3,

↑ p− ↓ p = 4 for p = 4.

This means that one has
↑ p− ↓ p ≥ 2 for any p ≥ 2.

Lemma 3. Let {xi}ri=1 and {yi}ri=1 be two sequences of positive real numbers. Then one has

(x1 + y1) . . . (xr + yr) ≥ x1 . . . xr + y1 . . . yr. (7)

If xi − yi ≥ 1, then

(x1 − y1) . . . (xr − yr) ≤ x1 . . . xr − y1 . . . yr. (8)

Proof. (8) is well-known, and follows, e.g., on induction upon r. For the proof of (9) apply (8)
for xi − yi instead of xi and yi for yi. Then (8) becomes (9).

Theorem 2.1. One has
↑ n ≥ n+ 2Ω(n) for any odd n ≥ 3 (9)

and
↓ n ≤ n− 2Ω(n) for any n not divisible by 6, (10)

where Ω(n) denotes the total number of prime factors of n (i.e. for the prime factorization of n in

the Introduction, Ω(n) =
r∑
i=1

ar).

Proof. By relation (4) of Lemma 1, and by Lemma 3 , relation (8), one can write

↑ n ≥ (p1 + 2)a1 . . . (pr + 2)ar ≥ (pa11 + 2a1) . . . (parr + 2ar) ≥ n+ 2a1+···+ar = n+ 2Ω(n),

which proves (10). The proof of (11) goes on the same lines, by using relation (5) of Lemma 1
and relation (9) of Lemma 3.

Now, we extend relation (7).

Theorem 2.2. One has
↑ n− ↓ n ≥ 2Ω(n), for any n ≥ 2. (11)

Proof. Actually, we will prove a stronger result , by using the following inequality of Hölder.

Lemma 4. If {xi}ri=1 and {yi}ri=1 be two sequences of positive real numbers. Then one has

((x1 + y1) . . . (xr + yr))
1/r ≥ (x1 . . . xr)

1/r + (y1 . . . yr)
1/r. (12)
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Apply now inequality (7), and (13) for xi = 2ai , yi = (↑ pi)ai . Then we get

↑ n ≥ (2Ω(n)/ω(n) + (↓ n)1/ω(n))ω(n), (13)

where r = ω(n) denotes the number of distinct prime factors of n.
It is immediate now that (14) is a refinement of (12), which follows at once from the inequality

(a + b)r ≥ ar + br, with a the first term, while b is the second term in the parentheses of (14).
Therefore, (14) follows, even in the improved form (12).

The following limit properties are valid:

Theorem 2.3. One has
lim
p→∞

↓ p
p

= lim
p→∞

↑ p
p

= lim
p→∞

↓ p
↑ p

= 1, (14)

lim inf
n→∞

↓ n
n

= 0, lim sup
n→∞

↓ n
n

= 1, (15)

lim inf
n→∞

↑ n
n

= 1, lim sup
n→∞

↑ n
n

=∞. (16)

Proof. Let p1 < p2 < · · · < pk−1 < pk < pk+1 < . . . be the increasing sequence of the
consecutive primes, and suppose that p = pk. Then one has ↓ p = pk−1 and ↑ p = pk+1.Therefore,
relation (15) becomes

lim
k→∞

pk−1

pk
= lim

k→∞

pk+1

pk
= lim

k→∞

pk−1

pk+1

= 1. (17)

The first two relations are well-known (see e.g. [3]), and are in fact consequences of the prime
number theorem written in the form

lim
k→∞

pk
k log k

= 1. (18)

The last relation of (18) follows by the identity
pk−1

pk+1

=
pk−1

pk
.
pk
pk+1

,

and the first two relations. For the proof of the first relation of (16) it is sufficient to consider the
sequence of numbers n = 3k. Then

↓ n
n

=

(
2

3

)k
,

which tends to zero, as k tends to infinity.
For the second relation of (16) remark that ↓n

n
≤ 1, and for the particular case n = p (prime),

by (15) the limit is 1. Therefore the lim sup should be equal to 1.
The first equality of (17) follows on the same lines, by remarking that ↓n

n
≥ 1, and using again

(15). For the second relation, let us take again n = 3k, when

↓ n
n

=

(
5

3

)k
,

which tends to infinity for k tending to∞.
It is immediate consequence of (15) and (17) that

lim inf
n→∞

↑ n
↓ n

= 1 and lim sup
n→∞

↑ n
↓ n

=∞.
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By a particular case of a theorem of Maynard ([2]) one gets that

lim inf
n→∞

(pk+1 − pk−1) ≤ C,

where C > 0 is a constant. This implies immediately:

Theorem 2.4. One has
lim inf

p→∞

↑ p− ↓ p
log p

= 0. (19)

One has
lim inf

n→∞

↑ n− ↓ n
log n

= 0 and lim sup
n→∞

↑ n− ↓ n
log n

=∞. (20)

The first relation of (20) is a consequence of (19), while the second relation follows by the
remark that

pk+1 − pk−1

log pk
>
pk+1 − pk

log pk
= wk

and it is well-known by a result of Westzynthius (see, [3]) that lim supwk =∞.
Suggested by Lemma 2, we formulate

Conjecture 1. For each prime number p:

lim inf
p→∞

(↑ p− ↓ p) = 6.

For the prime number p let us define

∆(p) =
↑ p+ ↓ p

2
,

E(p) =
↑ p− ↓ p

2
,

Z(p) = |p−∆(p)|.

Let us construct the following Table.

p ∆(p) E(p) Z(p)

5 5 2 0

7 8 3 1

11 10 3 1

13 14 3 1

17 16 3 1

19 20 3 1

23 24 5 1

29 27 4 2

31 33 4 2

37 36 5 1

41 40 3 1

p ∆(p) E(p) Z(p)

47 44 3 1

53 53 6 0

59 57 4 2

61 63 4 2

67 66 5 1

71 70 3 1

73 75 4 2

79 78 5 1

83 84 5 1

89 90 8 1

97 95 8 2
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Conjecture 2. For each prime number p:

[ln p] ≤ max
q≤p

E(q).

Conjecture 3. For each prime number p:

[ln ln p] ≤ max
q≤p

Z(q).
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