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Abstract: Some general solutions of the title equation are established and exhibited. It is also 
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1 Introduction 

This article is concerned in finding solutions of the Diophantine equation  

1321

321

=+⋅⋅⋅+++
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k
xxx  

 2 ≤ x1 < x2 < x3 < … < xk (1) 
k = x1. 

Authors like B. M. Stewart, W. A. Webb [1, 2] and others have considered related 
problems and topics.  

In Section 2, some general solutions of (1) are established and exhibited. In Section 3, all 
the solutions of (1) are determined and demonstrated for each of the values x1 = 2, 3, 4. 
Moreover, it is shown that (1) has at least three solutions for each value of x1 when x1 ≥ 4. 
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2 Some general solutions 

We shall now establish and exhibit some general solutions of (1). 

For every value x1 ≥ 2, the sum of x1 unit fractions each of which equals to 
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implying the equality 

111
3
31

2
21

11

1

111

=⋅+⋅⋅⋅+⋅+⋅+
xx

x
xxx

, 

or 

 1
3
3

2
21

11

1

111

=
⋅

+⋅⋅⋅+++
xx

x
xxx

 (2) 

when x1 = x1, x2 = 2x1, x3 = 3x1, …, xk = x1. x1 are all distinct. Solution (2) is indeed the simplest 
solution of (1). 

Hereafter, we denote (2) as the Trivial Solution of (1) for every value of x1 when x1 ≥ 2.  
The identity 
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where N ≥ 1, M ≥ 1 are integers will be utilized in the following discussion. 
We will now show that for any fixed value of 1x  when 1x  ≥ 2, the Trivial Solution (2) 

immediately yields a solution of (1) with the smallest value being x1 + 1 < 2 x1. 
In (3), the smallest value of M is M = 1. Thus, the values M = 1 and N = x1 yield  

 
)1(

1
1

11

1111 +
+

+
=

xxxx
 (4) 

Substituting (4) into the Trivial Solution (2) results in the equality. 
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a solution of (1) satisfying all the conditions. 



32 
 

Additional solutions are now established for values larger than x1 + 1. In the Trivial 

Solution (2) substitute 
Tx +1

1  for 
1

1
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, where T is an integer and T = 2, 3, . . . , x1 – 1. From 
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a solution of (1). 

Observe that (6) is an identity which holds for any fixed value of x1, and each value of T. 

It follows therefore that it represents a set of solutions for various values of 
Tx +1

1 . 

3 All the solutions of equation (1) when x1 = 2, 3, 4 

In this section, we shall determine and exhibit all the solutions of (1) when x1 = 2, x1 = 3 and  
x1 = 4. This is demonstrated in the following Theorem 1.  
 
Theorem 1. The Diophantine equation in positive integers  
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 2 ≤ 1x  < 2x < 3x  < ∙ ∙ ∙ < kx  k = 1x  

has 
(i) one solution if x1 = 2,  
(ii) exactly two solutions if x1 = 3, 
(iii) exactly ten solutions if x1 = 4. 
 

Proof. Suppose (i), i.e., x1 = 2. Then we have 12
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 and 2x = 4. Thus, 

Solution 1. 1
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which is the Trivial Solution for x1 = 2. 

Suppose (ii), i.e. 1x  = 3. Then from (1), 132
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One can easily verify that the above equation has no solutions when x2 = 5 and also when 

x2 > 6. Hence, the only possible two values of x2 are then x2 = 4 and x2 = 6. The respective two 
solutions are: 
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Solution 2.  1
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as the Trivial Solution for x1 = 3.  
The above three solutions verify parts (i) and (ii). 
Suppose (iii), i.e. 1x  = 4. We have from (1) 

 2 3 4

2 3 4

1 2 3 4 1,
4

.
x x x

x x x

+ + + =

< <
  (7) 

First, when x2 ≥ 11, it is shown that (7) has no solutions. Secondly, the same is also true 
for x2 = 10 and x2 = 9, but for different reasons. 

Since 
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If x2 = 10, (7) yields 
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are the only possible values. It is now easily seen that when x3 = 11, 12 no integer x4 exists. 
Thus x2 ≠ 10. 

If x2 = 9, (7) implies that 
43

43
36
19

xx
+= . Since 

14
4

13
3

36
19

+> , it follows that 10 ≤ x3 ≤ 12. 

But, when x3 = 10, 11, 12, one can easily verify that x4 is not an integer. Hence x2 ≠  9. 
Therefore, in (7) x2 may assume any of the values x2 = 5, 6, 7, 8. Each of these values will 

now be considered separately.  

Let x2 = 5. From (7) it follows that 
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therefore 6 ≤ x3 ≤ 19. If x3 = 6, 7, 8, then 
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, and hence 9 ≤ x3 ≤ 19. For x3 = 9, x3 = 10 

and x3 = 12, the three solutions of (1) are: 
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For each of the following values x3 = 11 and 13 ≤ x3 ≤ 19, one can easily verify that x4 is 

not an integer. 
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The case x2 = 5 is complete. 

Let x2 = 6. From (7) we have 
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The values x3 = 8, x3 = 9 and x3 = 12 yield three solutions of (1): 
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For each of the following values x3 = 10, 11 and 13 ≤ x3 ≤ 16, it is easily seen that 4x  is 

not an integer. 
This concludes the case x2 = 6. 

Let x2= 7. Then (7) yields 
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8 ≤  x3 ≤ 14. For x3 = 14, the solution of (1) is  
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For each of the values 8 ≤  x3 ≤ 13, it follows that x4 is not an integer. 
The case x2 = 7 is complete. 

Let x2 = 8. From (7) we have 
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9 ≤ x3 ≤ 13. The values x3 = 9, x3 = 10 and x3 = 12 imply the following three solutions of (1), 
namely: 
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which is also the Trivial Solution. If x3 = 11 and x3 = 13, then x4 is not an integer. 
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This concludes the case 2x = 8. 
 
Solutions 4 – 13 establish part (iii). 
 
The proof of Theorem 1 is complete.   
 

Finally, we show that (1) has at least three solutions for each value of x1 when x1 ≥ 4. 
This is demonstrated in the following three solutions, namely Solution A, Solution B and 
Solution C the Trivial Solution. 

For x1 = 4, (1) has at least three solutions. Therefore, let x1 ≥ 5 be any fixed value. The 
two slightly modified solutions (6) and (5), together with solution (2), respectively yield the 
above mentioned three solutions. 
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Evidently, more solutions of (1) exist for each value of x1. 
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