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Abstract: In this paper, we introduce an equivalence relation ∼ on P for studying some spe-
cific classes of prime numbers. This relation and the famous prime number theorem allows us
to estimate the number of prime numbers of each equivalence class, the number of the different
equivalence classes and to show some other results.
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1 Introduction

Let P be the set of prime numbers, and for all x ∈ R, let π(x) be the prime-counting function.
The prime number theorem which was proved independently by de la Vallée Poussin [1], and
Hadamard [2] in 1896, states that:

π(x) ∼ x

lnx
, as x→ +∞. (1)

We can give an equivalent statement for this theorem as, for example, let pn denote the n-th
prime number. Then

π−1(n) = pn ∼ n lnn as n→ +∞. (2)

We define the following functions:

fn(x) =

n times︷ ︸︸ ︷
f ◦ f ◦ . . . ◦ f(x) and f−n(y) =

n times︷ ︸︸ ︷
f−1 ◦ f−1 ◦ . . . ◦ f−1(y),
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with f 0(x) = x and o is the composition operator.

The aim of this paper is to construct an equivalence relation ∼ on the set of primes, using the
restriction of the prime-counting function π to P, for studying some classes of primes. The fol-
lowing results illustrate asymptotic distribution of a number of functions that we have proposed.

2 Main results

We start with the following obvious lemma:

Lemma 2.1. Let π̃ be a restriction of π to P. Then, π̃ : P → N is a bijection and its inverse is
π̃−1 : N→ P.

Remark. Throughout this paper, we simply use the notation π to designate the restriction of π to
the set P instead of using π̃.

The proof of the following theorem is obvious.

Theorem 2.1.

1. We define the relation ∼ on the set of prime numbers P defined by: if p and q are two prime
numbers, p ∼ q if and only if there exists n ∈ Z such that p = πn(q). Then, ∼ is an
equivalence relation. The elements of the equivalence class ṗ are defined by:

ṗ = {. . . , π2(p), π(p), p, π−1(p), π−2(p), . . .}.

2. The smallest element p0 of ṗ is the prime number which verify π(p0) is not prime and it is
called origin of the class ṗ.

Example 1.

• 3̇1 = {2, 3, 5, 11, 31, 127, 709, 5381, 52711, . . .} with origin the number 2 since π(2) = 1

is not a prime.

• 7̇ = {7, 17, 59, 277, 1787, . . .} with origin the number 7 since π(7) = 4 is not a prime.

Notation. We denote by P0(x) the set of all origins p0 ≤ x defined by:

P0(x) = {2, 7, 13, 19, 23, 29, 37, 43, 47, . . .}.

And we denote simply by P0 the set of all origins p0.

Theorem 2.2. Let A be a finite set of increasing sequence of consecutive primes defined by:

A = {pi, 1 ≤ i ≤ n and p1 = 5}.

Then, there exists at least one class ṗ ⊂ A, p ∈ A, such that ṗ = {p}.
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Before giving the proof of this result, we give an illustrative example.

Example 2. Let A be a set which defined by

A = {5, 7, 11, 13, 17}.

• The class of the integer 5 is 5̇ = {5, 11} and its cardinality is greater than 1.

• We notice that 7 /∈ 5̇, therefore the integer 7 constitutes the origin of a new class which
is 7̇ = {7, 17} and its cardinality is greater than 1. It only remains to see that the prime
number 13 does not belong to the classes 2̇ and 7̇. Thus the prime number 13 constitutes
the origin of a new class 1̇3 and clearly its cardinality is 1.

Proof of theorem 2.2. Assuming that each class ṗi, 1 ≤ i ≤ n, containing at least two ele-
ments, and supposing that π(pn) is prime. According to the prime number theorem, the interval
[π(pn), pn] contains π(pn)− π2(pn) = k prime numbers. This leads to the two following cases:

• If k = 1, i.e., there exists only one prime number in [π(pn), pn], namely q. Therefore, we
obtain π−1(q) /∈ A and π(q) is not a prime number since π(q) and π(pn) are consecutive.
Then q̇ contains only one element in A which is the prime number q.

• If k > 1, i.e., there exist at least two prime numbers in [π(pn), pn], namely q1, . . . , qk.
We suppose that qt, t ∈ {1, . . . , k}, is a prime number. Then qt+1 is not prime and since
π−1(qt+1) /∈ A, then, the unique element of ˙qt+1 is qt+1.

Finally, in both cases, there exist at least one class ṗ, p ∈ A, such that p is a unique element of
this class in A, i.e., ṗ = {p}. The proof now is completed.

We have the following definition.

Definition 1. Let A be the set defined as in the Theorem 2.2 and p is a prime number belonging
to A. We say that ṗ is an outside class of A, if π(p) is not prime in A and π−1(p) /∈ A i.e., |ṗ| =
1 in A. In the case where |ṗ| ≥ 2, we say that ṗ is an inside class of A.

Lemma 2.2. 1. Let (xn) be a sequence defined by the recursive relation:xn+1 = p(xn) =
xn

lnxn
,

x0 ≥ e ≈ 2.7182818.

Then

p(x0) = e
∞∏
i=0

ln p(xi) = e
∞∏
i=0

ln pi+1(x0), (3)

Proof. 1. We set ln lnx = ln2 x and we have

x1 = p(x0) =
x0
lnx0

=⇒ lnx1 = lnx0 − ln2 x0

x2 = p(x1) =
x1
lnx1

=⇒ lnx2 = lnx1 − ln2 x1

...

xn+1 = p(xn) =
xn
lnxn

=⇒ lnxn+1 = lnxn − ln2 xn.
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And combining all these, we obtain

lnxn+1 = ln p(xn) = ln x0 −
n∑
i=0

ln2 xi,

which is equivalent to
x0
xn+1

=
n∏
i=0

lnxi.

Then, passing to the limit, we obtain

lim
n−→+∞

x0
xn+1

= lim
n→∞

x0
p(xn)

= lim
n−→+∞

n∏
i=0

lnxi = lim
n→∞

lnx0

n−1∏
i=0

ln p(xi).

Consequently,
x0
e

=
∞∏
i=0

lnxi = lnx0

∞∏
i=0

ln p(xi), (4)

and since
lim

n−→+∞
xn = e.

The formula (4) is obviously equivalent to

p(x0) = e
∞∏
i=0

ln p(xi),

which is the desired result.

Lemma 2.3. Let x > 0. We define the number of prime numbers belonging to the class ṗ0 less
than or equal to x as follows

πiter(x, p0) =
∑

p0≤p≤x
p∈ṗ0

1 =
∑

p0≤p≤x
p=π−l(p0)

1, l ∈ N.

Then, πiter(x, p0) is approximately equal to the number of iterations n of the sequence xn+1 =

p(xn) with x0 = x and the value of n verify xn ≥ p0 and xn+1 < p0, as x→ +∞.

Proof. From the prime number theorem, we have

π(x) ∼ p(x) =
x

ln(x)
, x→∞⇒ πn(x) ∼ pn(x), x→∞.

Next, we can choose an integer n such that πn(x) = p0 with π(p0) not a prime number, it follows
that

p0 ∼ pn(x), x→∞.

And,

πiter(x, p0) =
∑

p0≤p≤x
p∈ṗ0

1 =
∑

p0≤p≤x
p=π−l(p0)

1 ∼
∑

p0≤p≤x
p≈p−l(p0)

1 =

n(x,p0)∑
l=1

1 = n(x, p0) as x→∞,

such that n(x, p0) is the number of iterations n which depends obviously on x and p0.
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Theorem 2.3. Let x > 0. We define the function η(x, p0) as follows:

η(x, p0) =
∑

p0≤p≤x,
p∈ṗ0

ln ln p.

Then, we have
η(x, p0) ∼ lnx+ o(lnx).

Proof. In view of the proof of Lemma 2.3, we have,

p0 = πn(x) ∼ pn(x) implies that, lnx0
n∏
i=0

lnπ(xi) ∼ lnx0

n∏
i=0

ln p(xi) ∼
x0
p0

=
x

p0
,

which is equivalent to

ln lnx0 +
n∑
i=0

ln lnπ(xi) = ln lnx+
n∑
i=0

ln lnπ(xi) =
∑

p0≤p≤x,
p∈ṗ0

ln ln p ∼ lnx− ln p0.

Finally, for all fixed p0 and x −→∞, we have − ln p0/ lnx −→ 0 , then∑
p0≤p≤x,
p∈ṗ0

ln ln p ∼ lnx+ o(lnx).

i.e., η(x, p0) ∼ lnx+ o(lnx).

Theorem 2.4. We have,

1.

πiter(x, p0) ∼
η(x, p0)

ln lnx
, x→∞.

2.

πiter(x, p0) ∼ πiter(x) ∼
lnx

ln lnx
+ o

(
lnx

ln lnx

)
, x −→∞.

Proof. 1. For the proof of the first formula, we have, on the one hand

η(x, p0) =
∑

p0≤p≤x,
p∈ṗ0

ln ln p ≤ ln lnx
∑

p0≤p≤x,
p∈ṗ0

1 = πiter(x, p0) ln lnx.

Then we obtain

πiter(x, p0) ≥
η(x, p0)

ln lnx
.

On the other hand, for all x > e, xδ > p0 with 0 < δ < 1, we have

η(x, p0) ≥ ln lnxδ
∑

xδ<p≤x,
p∈ṗ0

1

= (ln δ + ln lnx)
∑

xδ<p≤x,
p∈ṗ0

1

= (ln δ + ln lnx)(πiter(x, p0)− πiter(xδ, p0))
≥ (ln δ + ln lnx)(πiter(x, p0)− (lnx)δ).

25



Then

πiter(x, p0) ≤ (lnx)δ +
η(x, p0)

ln δ + ln lnx
.

Now, according to Lemma 2.3, (lnx)δ = o(πiter(x, p0)), and then for x sufficiently large
(depending on δ), (lnx)δ ≤ (1− δ)πiter(x, p0), and thus

πiter(x, p0) ≤
η(x, p0)

δ(ln δ + ln lnx)
.

Now, for all ε > 0, we can choose δ more near to 1, for this δ, so that 1/δ = 1 + ε, and for
x sufficiently large, we have

πiter(x, p0) < (1 + ε)
η(x, p0)

ln lnx
.

2. According to Theorem 2.3, we have

πiter(x, p0) ∼
η(x, p0)

ln lnx
∼ η(x, p0)

ln lnx
∼ lnx

ln lnx
+ o

(
lnx

ln lnx

)
∼ πiter(x), x→∞.

Definition 2. 1. Let x be a positive real number. We denote by πc(x) the number of different
classes ṗ such that 2 ≤ p ≤ x. Precisely,

πc(x) :=
∑
p0≤x

1, p0 ∈ P0.

2. We denote by θ0(x) the function defined by

θ0(x) =
∑
p0≤x

ln p0.

Example 3. In the interval [2, 11], the value 2 represents the origin of the class 2̇ but the values
3, 5, 11 do not, since they belong to the same class 2̇. The value 7 represent the origin of the class
7̇. Thus in this case, we have πc(x) = 2.

We have the following result:

Theorem 2.5. 1. We have,
lim
x→∞

πc(x) = +∞.

2. Let p0 ∈ [2, x]. Then

πc(x) = π(x)− π(π(x)) = π(x)− π2(x). (5)

Proof. 1. Suppose that the number of different classes is finite as x→∞. We know that

∞∑
i=0

1

pi
=∞. (6)
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Next, let pki ∈ ṗk, where k is finite by hypothesis. We obtain
∞∑
i=0

1

pi
=
∑
k<∞

∞∑
i=0

1

pki
.

Therefore, we have
∑∞

i=0
1
pki
<∞, and since the second sum has a finite number of terms,

we deduce ∑
k<∞

∞∑
i=0

1

pki
<∞,

which contradicts formula (6).

2. To find the value of πc(x) means that we estimate the number of origins p0. Clearly, the
prime number p0 is an origin that means π(p0) is not a prime number. Then, let p0 be
between 2 and x, and let p0,x ∈ P0 be the greatest prime number in [2, x], therefore π(p0,x)
is not a prime number and for all integer l ≥ 1, π−l(π(p0,x) + 1) > p0,x. So, we only have
to search the numbers which are not primes and less than π(p0,x). Thus, we have

• The number of the even numbers less than or equal to p0,x equal to π(p0,x)

2
.

• the number of the odd numbers less than or equal to p0,x equal to π(p0,x)

2
− π(π(p0,x))

such that π(π(p0,x)) is the number of the prime numbers less than or equal to π(p0,x).

Next, we add the two quantities, we obtain, since p0,x ≤ x, the quantity πc(x) which is
equal to

πc(x) = π(x)− π(π(x)).

We easily obtain the following consequence.

Corollary 2.1. Let p be a prime and suppose that p0 = πn(p) be an origin. Then

p0 = π(p)−
n−2∑
i=0

πc
(
πi(p)

)
.

Proof. We have

πc(x) = π(x)− π(π(x))
πc(π(x)) = π(π(x))− π(π2(x))

...

πc(π
n−2(x)) = π(πn−1(x))− π(πn(x)).

Now, we add these equations together, we obtain the desired result.

For all initial value y0 � e, we define the following sequence:

yn+1 = yn ln yn. (7)

This sequence is stationary for y0 = e and increasing divergent to infinite for y0 > e and as
n → ∞. It is clear that, inductively, yn ≥ y0(ln y0 × ln y0 × . . . × ln y0) = y0(ln y0)

n, then we
have the following consequence:
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Lemma 2.4. We have,

πc(x) ≤
x ln lnx

ln2 x
+

∑
p0≤x ln p0

lnx
=
x ln lnx

ln2 x
+
θ0(x)

lnx
,

where p0 represents the origin of the classes ṗ.

Proof. Since for all p = pn, n > 0, we have p > p0 ln
n p0, then∑

p≤x

ln ln p ≥
∑

p0 ln
n p0≤x,n

ln ln p0 =
∑

p0,n≤ ln x−ln p0
ln ln p0

ln ln p0 =
∑
p0≤x

ln ln p0

⌊ lnx− ln p0
ln ln p0

⌋
∼
∑
p0≤x

(lnx− ln p0) = (ln x)πc(x)−
∑
p0≤x

ln p0

According to the following formula∑
p≤x

f(p) ≈
∑
n≤x

f(n)

lnn
≈
∫ x

2

f(t)

ln t
dt. (8)

we have ∑
p≤x

ln ln p ≈
x ln lnx

lnx
,

therefore, the inequality is obtained directly by substitution.

Proposition 2.1. We have,

1.

x

(
1− 1

lnx− ln lnx
− ln lnx

lnx

)
≤ θ0(x) ≤ x

(
1− 1

lnx− ln lnx

)
(9)

2.
θ0(x) ∼ x asx→∞.

Proof. 1. We have

π(x)−π(π(x)) ≤ x ln lnx

ln2 x
+

∑
p0≤x ln p0

lnx
⇒
∑
p0≤x

ln p0 ≥ (π(x)−π(π(x))) lnx−x ln lnx
lnx

.

Moreover, since ∑
p0≤x

ln p0 ≤ lnx
∑
p0≤x

1 = πc(x) lnx.

And recalling that
π(x) ∼ x

lnx
,

we obtain∑
p0≤x

ln p0 ≥
(

x

lnx
− x

lnx(lnx− ln lnx)

)
lnx− x ln lnx

lnx
= x

(
1− 1

lnx− ln lnx
− ln lnx

lnx

)
.

The second inequality is obtained in the same way,∑
p0≤x

ln p0 ≤ lnx

(
x

lnx
− x

lnx(lnx− ln lnx)

)
= x

(
1− 1

lnx− ln lnx

)
.

2. It is enough to tend x to +∞ in the inequality (9).

28



3 Future work

1. Our future work is to generalize this equivalence relation by introducing a new function

φ ◦ π : P→ N,

with φ a bijection defined in N to N.

2. Study of the following hypothesis: let p ∈ P. Suppose that the 2-tuple (p, p+h) are primes
infinitely often for all h ∈ 2N. Then, there exists at least an integer h among these integers
h verify the following equation: π(p + h) − π(p) = c infinitely often, such that π(p + h)

and π(p) are primes and c < h fixed.
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