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1 Introduction

If N is a positive integer, then we write σ(N) for the sum of the divisors of N . A number
N is perfect if σ(N) = 2N . We denote the abundancy index I of the positive integer w as

I(w) =
σ(w)

w
. We also denote the deficiency D of the positive integer x as D(x) = 2x − σ(x)

[11].
Euclid and Euler showed that that an even perfect number E must have the form

E = (2p − 1) 2p−1,

where 2p − 1 is a Mersenne prime. On the other hand, Euler showed that an odd perfect number
O must have the form

O = qkn2,
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where q is an Euler prime (i.e., q ≡ k ≡ 1 (mod 4) and gcd(q, n) = 1).
It is currently unknown whether there are any odd perfect numbers. On the other hand, only 49

even perfect numbers have been found, a couple of which were discovered by the Great Internet
Mersenne Prime Search [9]. It is conjectured that there are infinitely many even perfect numbers,
and that there are no odd perfect numbers.

Descartes, Frenicle and subsequently Sorli conjectured that k = 1 [1]. Sorli conjectured
k = 1 after testing large numbers with eight distinct prime factors for perfection [14].

Holdener presented some conditions equivalent to the existence of odd perfect numbers in
[10]. In this paper, we prove the following results:

Lemma 1.1. If N = qkn2 is an odd perfect number with Euler prime q, then k = 1 if and only if

σ(n2)

q
| n2.

Lemma 1.2. If N = qkn2 is an odd perfect number with Euler prime q, then

I(n2) ≤ 2− 5

3q
.

Lemma 1.3. If N = qkn2 is an odd perfect number with Euler prime q, then k = 1 if and only if

D(n2) | n2.

Theorem 1.1. If N = qkn2 is an odd perfect number with Euler prime q, then

I(n2) = 2− 5

3q

holds if and only if k = 1 and q = 5.

All of the proofs given in this note are elementary.

2 Preliminaries

Let N = qkn2 be an odd perfect number with Euler prime q.
First, we show that the following equations hold.

Lemma 2.1. If N = qkn2 is an odd perfect number with Euler prime q, then

gcd
(
n2, σ(n2)

)
=

D(n2)

σ(qk−1)
=
σ(N/qk)

qk
.

Proof. Since N = qkn2 is an odd perfect number, we have

σ(qk)σ(n2) = σ(N) = 2N = 2qkn2,

from which it follows that qk | σ(n2) (because gcd
(
qk, σ(qk)

)
= 1). Hence,

σ(n2)

qk
=
σ(N/qk)

qk
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is an integer.
First, we prove that

D(n2)

σ(qk−1)
=
σ(N/qk)

qk
.

We rewrite the equation
σ(qk)σ(n2) = 2qkn2

as (
qk + σ(qk−1)

)
σ(n2) = 2qkn2

σ(qk−1)σ(n2) = qk
(
2n2 − σ(n2)

)
= qk ·D(n2)

σ(n2)

qk
=

D(n2)

σ(qk−1)
,

and we are done.
Next, we show that

gcd
(
n2, σ(n2)

)
=

D(n2)

σ(qk−1)
.

We already know that

σ(n2) = qk ·
(
D(n2)

σ(qk−1)

)
.

Since σ(qk)σ(n2) = 2qkn2, we also obtain

2n2

σ(qk)
=
σ(n2)

qk
=

D(n2)

σ(qk−1)
.

This implies that

n2 =
σ(qk)

2
·
(
D(n2)

σ(qk−1)

)
.

It follows that

gcd
(
n2, σ(n2)

)
=

D(n2)

σ(qk−1)

since

gcd

(
qk,

σ(qk)

2

)
= gcd(qk, σ(qk)) = 1.

This concludes the proof.

Remark 2.1. Dris obtained the lower bound 3 for σ(N/qk)/qk in [6] and [7]. The following
papers obtain (ever-increasing) lower bounds for this quantity: [8, 4, 2, 5].

Remark 2.2. Notice that
σ(n2)

qk
=

2n2

σ(qk)
>

8

5
·
(
n2

qk

)
since I(qk) < 5/4 holds unconditionally (i.e., for k ≥ 1). Additionally, note that

8

5
·
(
n2

qk

)
>

8n

5

is true if qk < n.
Dris conjectured in [6] that qk < n. Recently, Brown has announced a proof for q < n, and

that qk < n holds “in many cases” [3].
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Remark 2.3. It is an easy exercise to prove that qk < n implies the biconditional

qk < n⇔ σ(qk) < σ(n)⇔ σ(qk)

n
<
σ(n)

qk
.

We refer the interested reader to MSE (http://math.stackexchange.com/q/713035)
for an expository proof.

Next, we prove the following lemmas.

Lemma 2.2. If N = qkn2 is an odd perfect number with Euler prime q, then

I(n2) ≥ 2− 5

3q
⇒ (k = 1 ∧ q = 5) .

Proof. Note that

I(n2) =
2

I(qk)
=

2qk(q − 1)

qk+1 − 1
= 2− 2 ·

(
qk − 1

qk+1 − 1

)
.

If
I(n2) ≥ 2− 5

3q
,

then we obtain

2− 2 ·
(

qk − 1

qk+1 − 1

)
≥ 2− 5

3q

5

3q
≥ 2 ·

(
qk − 1

qk+1 − 1

)
5qk+1 − 5 ≥ 6qk+1 − 6q

0 ≥ qk+1 − 6q + 5,

which then implies that k = 1. (Otherwise, if k > 1 we have

0 ≥ qk+1 − 6q + 5 ≥ q6 − 6q + 5,

since k ≡ 1 (mod 4), contradicting q ≥ 5.) Now, since k = 1, we get

0 ≥ q2 − 6q + 5 = (q − 5)(q − 1),

which implies that 1 ≤ q ≤ 5. Together with q ≥ 5, this means that q = 5. This concludes the
proof.

Lemma 2.3. If N = qkn2 is an odd perfect number with Euler prime q, then k = 1 implies

I(n2) ≤ 2− 5

3q
.
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Proof. Suppose that k = 1. By Lemma 1.1, we have σ(n2)/q | n2. This implies that there exists
an (odd) integer d such that

n2 = d ·
(
σ(n2)

q

)
.

Note that, from the equation σ(N) = 2N , we obtain (upon setting k = 1)

(q + 1)σ(n2) = σ(q)σ(n2) = 2qn2,

from which we get

d =
n2

σ(n2)/q
=
q + 1

2
.

Notice that, when k = 1, we can derive

5

3
≤ I(n2) =

2

I(q)
=

2q

q + 1
< 2,

so that we have
q

2
< d =

q

I(n2)
≤ 3q

5
.

Additionally, note that, when k = 1, we have

I(n2) =
2

I(q)
=

2q

q + 1
=

2q + 2

q + 1
− 2

q + 1
= 2− 1

q+1
2

= 2− 1

d
.

Consequently, we obtain
q

2
< d ≤ 3q

5
5

3q
≤ 1

d
<

2

q

2− 2

q
< 2− 1

d
= I(n2) ≤ 2− 5

3q
,

and we are done.

3 The proof of Lemma 1.1

Let N = qkn2 be an odd perfect number with Euler prime q.
By Lemma 2.1, we have

D(n2)

σ(qk−1)
=
σ(N/qk)

qk
.

This equation can be rewritten as

D(n2) =
σ(n2)

q
· I(qk−1).

Suppose that σ(n2)/q | n2. Trivially, we know that σ(n2)/q | σ(n2). Thus, we have

σ(n2)

q
|
(
2n2 − σ(n2)

)
= D(n2),
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giving
σ(n2)

q
| σ(n

2)

q
· I(qk−1).

This implies that I(qk−1) is an integer. Since 1 ≤ I(qk−1) < 5/4, we obtain k = 1.
Now assume that k = 1. We obtain

2n2 − σ(n2) = D(n2) =
σ(n2)

q
.

Again, since σ(n2)/q | σ(n2), this implies

σ(n2)

q
| n2

since σ(n2)/q is odd.
This concludes the proof of Lemma 1.1.

4 The proof of Lemma 1.2

Let N = qkn2 be an odd perfect number with Euler prime q.
Assume to the contrary that

I(n2) > 2− 5

3q
.

Following the proof of Lemma 2.2, we get

0 > qk+1 − 6q + 5.

Since k ≡ 1 (mod 4), then k ≥ 1, which implies that

0 > qk+1 − 6q + 5 ≥ q2 − 6q + 5 = (q − 5)(q − 1).

This then finally gives 1 < q < 5, contradicting q ≥ 5.
We therefore conclude that

I(n2) ≤ 2− 5

3q
,

and this finishes the proof of Lemma 1.2.

5 The proof of Lemma 1.3

Let N = qkn2 be an odd perfect number with Euler prime q.
By Lemma 2.1, we have

D(n2)

σ(qk−1)
=

2n2

σ(qk)
.

Multiplying throughout the last equation by σ(qk−1)σ(qk), we get

D(n2)σ(qk) = 2n2σ(qk−1).
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If k = 1, then it is evident that D(n2) | 2n2, from which it follows that D(n2) | n2, since D(n2)

is odd.
Now, assume that D(n2) | n2. Then we have

σ(qk)

2σ(qk−1)
=

n2

D(n2)

is an integer. Since gcd
(
σ(qk−1), σ(qk)

)
= 1, the previous equation then implies that k = 1.

This concludes the proof of Lemma 1.3. In particular, we have shown that the Descartes–
Frenicle–Sorli conjecture for odd perfect numbers qkn2 is true if and only if the non-Euler part
n2 is deficient-perfect [12].

6 The proof of Theorem 1.1

Let N = qkn2 be an odd perfect number with Euler prime q.
We want to prove that the equation

I(n2) = 2− 5

3q

holds if and only if k = 1 and q = 5.
Suppose that

I(n2) = 2− 5

3q
.

Following the proof of Lemma 2.1, we get

0 = qk+1 − 6q + 5.

Assume to the contrary that k > 1. Since k ≡ 1 (mod 4), we obtain

0 = qk+1 − 6q + 5 ≥ q6 − 6q + 5.

This contradicts q ≥ 5. Thus, we have established that k = 1.
Substituting k = 1 into 0 = qk+1 − 6q + 5, we have

0 = q2 − 6q + 5 = (q − 5)(q − 1)

which implies that q = 5 since q ≥ 5. This takes care of one direction of Theorem 1.1.
For the other direction, assume that k = 1 and q = 5. We want to show that

I(n2) = 2− 5

3q
.

Note that, when k = 1 and q = 5, we obtain

I(n2) =
2

I(q)
=

2q

q + 1
=

5

3
.

We also get

2− 5

3q
= 2− 1

3
=

5

3
,

so that we have
I(n2) = 2− 5

3q
,

as desired.
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7 Concluding remarks

We end with some remarks related to the biconditional

k = 1⇐⇒
(
D(n2) | n2

)
.

Suppose that k = 1. By Lemma 1.3 and Lemma 2.1, we obtain

D(n2) = gcd
(
n2, σ(n2)

)
=
σ(n2)

q
=

n2

(q + 1)/2
.

Multiplying throughout the equations by q(q + 1)/2, we have

D(n2) ·
(
q(q + 1)

2

)
=

(
q + 1

2

)
· σ(n2) = qn2 = N.

In fact, as shown by Slowak [13], every odd perfect number N has the form

N = qk · σ(q
k)

2
· d

for some d > 1. We give a quick proof of this fact here.
By Lemma 2.1, we obtain

D(n2)

σ(qk−1)
= gcd

(
n2, σ(n2)

)
=
σ(n2)

qk
=

n2

σ(qk)/2
.

Multiplying throughout the equations by qkσ(qk)/2, we get

qkσ(qk)

2
· D(n2)

σ(qk−1)
=
qkσ(qk)

2
· gcd

(
n2, σ(n2)

)
= qkn2 = N,

where

d =
D(n2)

σ(qk−1)
= gcd(n2, σ(n2)) > 1

by Remark 2.1.
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