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1 Introduction

Throughout this paper, we will let N denote the set of positive integers, and we will let N0 denote
the set of nonnegative integers.

The arithmetic functions σk are defined, for every integer k, by σk(n) =
∑
c|n
c>0

ck. For each

integer k 6= 0, σk is multiplicative and satisfies σk(pα) =
pk(α+1) − 1

pk − 1
for all (integer) primes p

and positive integers α. The abundancy index of a positive integer n is defined by I(n) =
σ1(n)

n
.

A positive integer n is said to be t-perfect if I(n) = t for a positive integer t ≥ 2, and 2-perfect
numbers are called perfect numbers.
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For any square-free integer d, let OQ(
√
d) be the quadratic integer ring given by

OQ(
√
d) =

Z[1+
√
d

2
], if d ≡ 1 (mod 4);

Z[
√
d], if d ≡ 2, 3 (mod 4).

Throughout the remainder of this paper, we will work in the rings OQ(
√
d) for different values

of d. We will use the symbol “|” to mean “divides” in the ring OQ(
√
d) in which we are working.

Whenever we are working in a ring other than Z, we will make sure to emphasize when we wish
to state that one integer divides another in Z. For example, if we are working in Z[i], the ring of
Gaussian integers, we might say that 1 + i|1 + 3i and that 2|6 in Z. We will also refer to primes
inOQ(

√
d) as “primes,” whereas we will refer to (positive) primes in Z as “integer primes.” For an

integer prime p and a nonzero integer n, we will let υp(n) denote the largest integer k such that
pk|n in Z. For a prime π and a nonzero number x∈OQ(

√
d), we will let ρπ(x) denote the largest

integer k such that πk|x. Furthermore, we will henceforth focus exclusively on values of d for
which OQ(

√
d) is a unique factorization domain and d < 0. In other words, d ∈ K, where we will

define K to be the set {−163,−67,−43,−19,−11,−7,−3,−2,−1}. The set K is known to be
the complete set of negative values of d for which OQ(

√
d) is a unique factorization domain [3].

For an element a + b
√
d ∈ OQ(

√
d) with a, b ∈ Q, we define the conjugate by a+ b

√
d =

a − b
√
d. The norm and absolute value of an element z are defined, respectively, by N(z) = zz

and |z| =
√
N(z). For x, y ∈ OQ(

√
d), we say that x and y are associated, denoted x ∼ y, if and

only if x = uy for some unit u in the ringOQ(
√
d). Furthermore, we will make repeated use of the

following well-known facts.

Fact 1.1. Let d∈K. If p is an integer prime, then exactly one of the following is true.

• p is also a prime in OQ(
√
d). In this case, we say that p is inert in OQ(

√
d).

• p ∼ π2 and π ∼ π for some prime π ∈ OQ(
√
d). In this case, we say p ramifies (or p is

ramified) in OQ(
√
d).

• p = ππ and π 6∼ π for some prime π ∈ OQ(
√
d). In this case, we say p splits (or p is split)

in OQ(
√
d).

Fact 1.2. Let d∈K. If π∈OQ(
√
d) is a prime, then exactly one of the following is true.

• π ∼ q and N(π) = q2 for some inert integer prime q.

• π ∼ π and N(π) = p for some ramified integer prime p.

• π 6∼ π and N(π) = N(π) = p for some split integer prime p.

Fact 1.3. If d ∈ K, q is an integer prime that is inert in OQ(
√
d), and x ∈ OQ(

√
d)\{0}, then

υq(N(x)) is even and ρq(x) = 1
2
υq(N(x)).
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Fact 1.4. Let p be an odd integer prime. Then p ramifies in OQ(
√
d) if and only if p|d in Z. If

p - d in Z, then p splits in OQ(
√
d) if and only if d is a quadratic residue modulo p. Note that this

implies that p is inert in OQ(
√
d) if and only if p - d in Z and d is a quadratic nonresidue modulo

p. Also, the integer prime 2 ramifies in OQ(
√
−1) and OQ(

√
−2), splits in OQ(

√
−7), and is inert in

OQ(
√
d) for all d ∈ K\{−1,−2,−7}.

Fact 1.5. Let O∗Q(
√
d)

be the set of units in the ring OQ(
√
d). Then O∗Q(

√
−1) = {±1,±i},

O∗Q(
√
−3) =

{
±1,±1+

√
−3

2
,±1−

√
−3

2

}
, and O∗Q(

√
d)
= {±1} whenever d ∈ K\{−1,−3}.

For a nonzero complex number z, let arg(z) denote the argument, or angle, of z. We convene
to write arg(z) ∈ [0, 2π) for all z ∈ C. For each d ∈ K, we define the set A(d) by

A(d) =


{z ∈ OQ(

√
d)\{0} : 0 ≤ arg(z) < π

2
}, if d = −1;

{z ∈ OQ(
√
d)\{0} : 0 ≤ arg(z) < π

3
}, if d = −3;

{z ∈ OQ(
√
d)\{0} : 0 ≤ arg(z) < π}, otherwise.

Thus, every nonzero element ofOQ(
√
d) can be written uniquely as a unit times a product of primes

in A(d). Also, every z ∈ OQ(
√
d)\{0} is associated to a unique element of A(d). The author has

defined analogues of the arithmetic functions σk in quadratic rings OQ(
√
d) with d ∈ K [1], and

we will state the important definitions and properties for the sake of completeness.

Definition 1.1. Let d ∈ K, and let n ∈ Z. Define the function
δn : OQ(

√
d)\{0} → [1,∞) by

δn(z) =
∑
x|z

x∈A(d)

|x|n.

Remark 1.1. We note that, for each x in the summation in the above definition, we may cavalierly
replace x with one of its associates. This is because associated numbers have the same absolute
value. In other words, the only reason for the criterion x∈A(d) in the summation that appears in
Definition 1.1 is to forbid us from counting associated divisors as distinct terms in the summation,
but we may choose to use any of the associated divisors as long as we only choose one. This
should not be confused with how we count conjugate divisors (we treat 2+ i and 2− i as distinct
divisors of 5 in Z[i] because 2 + i 6∼ 2− i).

Remark 1.2. We mention that the function δn is different in each ring OQ(
√
d). Perhaps it would

be more accurate to write δn(z, d), but we will omit the latter component for convenience. We
note that we will also use this convention with functions such as In (which we will define soon).

We will say that a function f : OQ(
√
d)\{0}→R is multiplicative if f(xy) = f(x)f(y) when-

ever x and y are relatively prime (have no nonunit common divisors). The author has shown that,
for any integer n, δn is multiplicative [1].

Definition 1.2. For each positive integer n, define the function In : OQ(
√
d)\{0} → [1,∞) by

In(z) =
δn(z)

|z|n
. For a positive integer t ≥ 2, we say that a number z∈OQ(

√
d)\{0} is n-powerfully

t-perfect in OQ(
√
d) if In(z) = t, and, if t = 2, we simply say that z is n-powerfully perfect in

OQ(
√
d).
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As an example, we will let d = −1 so that OQ(
√
d) = Z[i]. Let us compute I2(9 + 3i). We

have 9+3i = 3(1+ i)(2− i), so δ2(9+3i) = N(1)+N(3)+N(1+ i)+N(2− i)+N(3(1+ i))+

N(3(2− i))+N((1+ i)(2− i))+N(3(1+ i)(2− i)) = 1+9+2+5+18+45+10+90 = 180.

Then I2(9 + 3i) =
180

N(3(1 + i)(2− i))
= 2, so 9 + 3i is 2-powerfully perfect in OQ(

√
−1).

Theorem 1.1. Let n ∈ N, d ∈K, and z1, z2, π ∈ OQ(
√
d)\{0} with π a prime. Then, if we are

working in the ring OQ(
√
d), the following statements are true.

(a) The range of In is a subset of the interval [1,∞), and In(z1) = 1 if and only if z1 is a unit in
OQ(

√
d). If n is even, then In(z1) ∈ Q.

(b) In is multiplicative.

(c) In(z1) = δ−n(z1).

(d) If z1|z2, then In(z1) ≤ In(z2), with equality if and only if z1 ∼ z2.

We refer the reader to [1] for a proof of Theorem 1.1. The author has already investigated
1-powerfully t-perfect numbers in imaginary quadratic rings with unique factorization, and he has
shown that, for any integers n ≥ 3 and t ≥ 2, no n-powerfully t-perfect numbers exist in these
rings [2]. Hence, the remainder of this paper will focus on the interesting topic of 2-powerfully
t-perfect numbers.

2 Investigating 2-powerfully t-perfect numbers

Trying to find 2-powerfully t-perfect numbers is quite a pleasant activity. One reason for this
is that 2 is the only positive integer n for which there exist n-powerfully t-perfect numbers that
are not associated to integers [2]. For example, in OQ(

√
−1), 3 + 9i is 2-powerfully perfect, and

30 + 30i is 2-powerfully 3-perfect. We will also utilize the helpful fact that, for any d ∈ K and
z ∈ OQ(

√
d)\{0}, we have N(z), δ2(z) ∈ N. In this section, we will focus on the rings OQ(

√
−1),

OQ(
√
−2), and OQ(

√
−7), which are the only rings OQ(

√
d) with d ∈ K in which 2 is not inert.

Theorem 2.1. Let us work in a ring OQ(
√
d) with d ∈ {−1,−2}. Then 2 ramifies in OQ(

√
d), so

we may write 2 ∼ ξ2 for some prime ξ satisfying ξ ∼ ξ and N(ξ) = 2. Suppose z is 2-powerfully
perfect in OQ(

√
d) and ξ|z. Then we may write z = ξγx, where γ ∈ N, x ∈ OQ(

√
d), ξ - x, and

2γ+1 − 1 is a Mersenne prime that is inert in OQ(
√
d). Furthermore, there exists an odd positive

integer m such that δ2(x) = 2γ+1m and N(x) = (2γ+1 − 1)m.

Proof. We know the first part of the theorem, which is stated simply to introduce notation. All
that we need to prove is the final sentence of the theorem, as well as the fact that 2γ+1 − 1 is a
Mersenne prime that is inert in OQ(

√
d). As z is 2-powerfully perfect in OQ(

√
d), we have

δ2(z) = 2N(z) = 2N(ξγ)N(x) = 2γ+1N(x).
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However, we also have

δ2(z) = δ2(ξ
γ)δ2(x) =

(
γ∑
j=0

N(ξj)

)
δ2(x) =

(
γ∑
j=0

2j

)
δ2(x) = (2γ+1 − 1)δ2(x).

Therefore, 2γ+1N(x) = (2γ+1 − 1)δ2(x). As 2γ+1 − 1 is odd, we find that 2γ+1|δ2(x) in Z. We
may then write δ2(x) = 2γ+1m for some positive integer m. Substituting this new expression
for δ2(x) into the equation 2γ+1N(x) = (2γ+1 − 1)δ2(x), we find N(x) = (2γ+1 − 1)m. This
tells us that m is odd because ξ - x (implying that 2 - N(x) in Z). Suppose that 2γ+1 − 1

is not a prime in OQ(
√
d) so that we may write 2γ+1 − 1 = y1y2, where y1, y2 ∈ OQ(

√
d) satisfy

1 < N(y1) ≤ N(y2) < N(2γ+1−1) = (2γ+1−1)2. Then, becauseN(y1)N(y2) = N(2γ+1−1) =
(2γ+1−1)2, we see that N(y1) ≤ 2γ+1−1. Now, let π0 be a prime that divides y1. Then π0|N(x),
which implies that either π0|x or π0|x. If π0|x, write π = π0. Otherwise, write π = π0. Then
N(π) ≤ N(y1) ≤ 2γ+1 − 1, and

x

π
is a nonunit proper divisor of x. This implies that

δ2(x) ≥ 1 +N
(x
π

)
+N(x) = 1 +

N(x)

N(π)
+N(x) = 1 +

(2γ+1 − 1)m

N(π)
+ (2γ+1 − 1)m

≥ 1 +
(2γ+1 − 1)m

2γ+1 − 1
+ (2γ+1 − 1)m = 1 + 2γ+1m.

However, this contradicts the fact that δ2(x) = 2γ+1m, so we conclude that 2γ+1− 1 is a prime in
OQ(

√
d). Furthermore, because 2γ+1−1 is an integer, we conclude that 2γ+1−1 is an inert integer

prime that is also a Mersenne prime.

Theorem 2.2. Let z, m, γ, and x be as in Theorem 2.1. Write q = 2γ+1 − 1 and m = qkv, where
k ∈ N0, v ∈ N, and q - v in Z. Then k is odd, v ≥ q + 2, and

m ≥ qk+1 + (q + 3)

k−1
2∑
j=0

q2j ≥ q2 + q + 3.

Proof. First, note that q is inert and υq(N(x)) = k + 1. Therefore, Fact 1.3 implies that k is odd

and ρq(x) =
k + 1

2
. Next, assume that v = 1. Then m = qk, so x ∼ q

k+1
2 . This implies that

δ2(x) =

k+1
2∑
j=0

q2j ≡ 1 (mod q). However, this contradicts Theorem 2.1, which tells us, under the

assumption m = qk, that δ2(x) = 2γ+1m = (q + 1)m = (q + 1)qk ≡ 0 (mod q). Therefore,
v > 1. Now, write y =

x

q(k+1)/2
. Then, using Theorem 2.1,

N(y) =
N(x)

N(q
k+1
2 )

=
qm

qk+1
=
qk+1v

qk+1
= v.

Because ρq(x) =
k + 1

2
, we see that y and qk+1 are relatively prime. Therefore,

δ2(x) = δ2(y)δ2(q
k+1
2 ) = δ2(y)

k+1
2∑
j=0

q2j ≥ (v + 1)

k+1
2∑
j=0

q2j.
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Theorem 2.1 states that δ2(x) = 2γ+1m = (q + 1)m, so we have

(q + 1)m ≥ (v + 1)

k+1
2∑
j=0

q2j = qk+1v + qk+1 + (v + 1)

k−1
2∑
j=0

q2j = qm+ qk+1 + (v + 1)

k−1
2∑
j=0

q2j.

We can simplify this last inequality to get

m ≥ qk+1 + (v + 1)

k−1
2∑
j=0

q2j. (1)

Therefore, v =
m

qk
≥ q + (v + 1)

k−1
2∑
j=0

q2j−k > q. As v and q are both odd and v > q, we conclude

that v ≥ q + 2. Substituting this into (1), we have

m ≥ qk+1 + (q + 3)

k−1
2∑
j=0

q2j ≥ q2 + q + 3,

which completes the proof.

It is interesting to note that, in the case z = 3+9i inOQ(
√
−1), the inequalities in Theorem 2.2

are, in fact, equalities. That is, q = 3, v = q + 2 = 5, and m = q2 + q + 3 = 15. It seems likely,
in light of the inequalities in Theorem 2.2, that the value of k in Theorem 2.2 should have to be 1.

We now prove results similar to Theorems 2.1 and 2.2 in the ring OQ(
√
−7).

Theorem 2.3. Let us work in the ring OQ(
√
−7) so that 2 splits as 2 = εε, where ε = 1+

√
−7

2
.

Suppose z is 2-powerfully perfect in OQ(
√
−7) and 2|N(z) in Z. Then either z = εγx or z = εγx,

where γ ∈ N, x ∈ OQ(
√
−7), 2 - N(x) in Z, and 2γ+1 − 1 is a Mersenne prime that is inert

in OQ(
√
−7). Furthermore, there exists an odd positive integer m such that δ2(x) = 2γ+1m and

N(x) = (2γ+1 − 1)m.

Proof. We know that we may write z = εγ1εγ2x, where γ1, γ2 ∈ N0, x ∈ OQ(
√
−7), and 2 -N(x)

in Z. Furthermore, we know from the fact that 2|N(z) in Z that γ1 and γ2 are not both zero. We
must prove that either γ1 = 0 or γ2 = 0. Then, after setting γ = γ1 + γ2, we need to prove
the final sentence of the theorem and the fact that 2γ+1 − 1 is a Mersenne prime that is inert in
OQ(

√
−7).

As z is 2-powerfully perfect in OQ(
√
−7), we have

δ2(z) = 2N(z) = 2N(εγ1)N(εγ2)N(x) = 2γ1+γ2+1N(x).

However, we also have

δ2(z) = δ2(ε
γ1)δ2(ε

γ2)δ2(x) =

(
γ1∑
j=0

N(εj)

)(
γ2∑
j=0

N(εj)

)
δ2(x)

=

(
γ1∑
j=0

2j

)(
γ2∑
j=0

2j

)
δ2(x) = (2γ1+1 − 1)(2γ2+1 − 1)δ2(x).
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Therefore, 2γ1+γ2+1N(x) = (2γ1+1 − 1)(2γ2+1 − 1)δ2(x). As (2γ1+1 − 1)(2γ2+1 − 1) is
odd, we find that 2γ1+γ2+1|δ2(x) in Z. We may then write δ2(x) = 2γ1+γ2+1m for some pos-
itive integer m. Substituting this new expression for δ2(x) into the equation 2γ1+γ2+1N(x)

= (2γ1+1 − 1)(2γ2+1 − 1)δ2(x), we find N(x) = (2γ1+1 − 1)(2γ2+1 − 1)m. This tells us that m is
odd because 2 - N(x) in Z. Now, 2γ1+γ2+1m = δ2(x) ≥ 1+N(x) = 1+(2γ1+1−1)(2γ2+1−1)m,
so 2γ1+γ2+1 > (2γ1+1 − 1)(2γ2+1 − 1) = 2 · 2γ1+γ2+1 − 2γ1+1 − 2γ2+1 + 1. Simplifying this in-
equality, we have 2γ1+1 + 2γ2+1 > 2γ1+γ2+1 + 1, which is impossible unless γ1 = 0 or γ2 = 0.
Therefore, either z = εγ1x or z = εγ2x. Either way, if we write γ = γ1 + γ2, then we have
δ2(x) = 2γ+1m and N(x) = (2γ+1 − 1)m. Suppose that 2γ+1 − 1 is not a prime in OQ(

√
−7)

so that we may write 2γ+1 − 1 = y1y2, where y1, y2 ∈ OQ(
√
−7) satisfy 1 < N(y1) ≤ N(y2) <

N(2γ+1−1) = (2γ+1−1)2. Then, becauseN(y1)N(y2) = N(2γ+1−1) = (2γ+1−1)2, we see that
N(y1) ≤ 2γ+1−1. Now, let π0 be a prime that divides y1. Then π0|N(x), which implies that either
π0|x or π0|x. If π0|x, write π = π0. Otherwise, write π = π0. Then N(π) ≤ N(y1) ≤ 2γ+1 − 1,
and

x

π
is a nonunit proper divisor of x. This implies that

δ2(x) ≥ 1 +N
(x
π

)
+N(x) = 1 +

N(x)

N(π)
+N(x) = 1 +

(2γ+1 − 1)m

N(π)
+ (2γ+1 − 1)m

≥ 1 +
(2γ+1 − 1)m

2γ+1 − 1
+ (2γ+1 − 1)m = 1 + 2γ+1m.

However, this contradicts the fact that δ2(x) = 2γ+1m, so we see that 2γ+1 − 1 is a prime in
OQ(

√
−7). Furthermore, because 2γ+1 − 1 is an integer, we find that 2γ+1 − 1 is an inert integer

prime that is also a Mersenne prime.

Theorem 2.4. Let z, m, γ, and x be as in Theorem 2.3. Write q = 2γ+1 − 1 and m = qkv, where
k ∈ N0, v ∈ N, and q - v in Z. Then k is odd, v ≥ q + 2, γ ≡ 1 (mod 3), q ≡ 3 (mod 7), and

m ≥ qk+1 + (q + 3)

k−1
2∑
j=0

q2j ≥ q2 + q + 3.

Proof. Fact 1.4 tells us that an integer prime is inert inOQ(
√
−7) if and only if that integer prime is

congruent to 3, 5, or 6 modulo 7. Also, it is easy to see that powers of 2 cannot be congruent to 6

or 7 modulo 7. Therefore, as q is a Mersenne prime that is inert in OQ(
√
−7), we must have q ≡ 3

(mod 7). This implies that 2γ+1 ≡ 4 (mod 7), so γ ≡ 1 (mod 3). The proof of the rest of the
theorem is identical to the proof of Theorem 2.2, except all references to Theorem 2.1 should be
replaced with references to Theorem 2.3.

Within the rings OQ(
√
−1), OQ(

√
−2), and OQ(

√
−7), Theorems 2.1 through 2.4 examine some

properties of 2-powerfully perfect numbers with even norms. These numbers are somewhat anal-
ogous to perfect numbers in Z. The analogues of odd perfect numbers are then 2-powerfully
perfect numbers with odd norms. We now briefly explore some of the properties that such num-
bers would need to exhibit.

Theorem 2.5. Let us work in a ring OQ(
√
d) with d ∈ K. Suppose z ∈ OQ(

√
d)\{0} is such that

I2(z) = 2 and N(z) is odd (suppose such a z exists). Then we may write z ∼ πkx2, where
π, x ∈ OQ(

√
d)\{0}, π is prime, and k ∈ N. Furthermore, k ≡ N(π) ≡ 1 (mod 4).
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Proof. First, let π0 be a prime whose norm is odd, and let α be a positive integer. As

δ2(π
α
0 ) =

α∑
j=0

N(πj0) =
α∑
j=0

N(π0)
j

and N(π0) is odd, we see that α and δ2(πα0 ) have opposite parities.
Now, from I2(z) = 2, we have δ2(z) = 2N(z). Because N(z) is odd, we find that δ2(z) ≡ 2

(mod 4). Write z =
r∏
j=1

π
αj

j , where, for all distinct j, l ∈ {1, 2, . . . , r}, πj is prime, αj is a

positive integer, and πj 6∼ πl. Then δ2(z) =
r∏
j=1

δ2(π
αj

j ). Because δ2(z) ≡ 2 (mod 4), we find

that there must be exactly one value of j ∈ {1, 2, . . . , r} such that δ2(π
αj

j ) is even. This means
that there is exactly one value of j ∈ {1, 2, . . . , r} such that αj is odd. Therefore, z ∼ πkx2,
where π, x ∈ OQ(

√
d), π is prime, and k is an odd positive integer. Furthermore, δ2(πk) ≡ 2

(mod 4).
If N(π) = q2, where q is an inert integer prime, then

δ2(π
k) =

k∑
l=0

N(πl) =
k∑
l=0

q2l ≡
k∑
l=0

1 ≡ k + 1 (mod 4).

Therefore, in this case, we have k ≡ 1 (mod 4). Also, because N(π) = q2 and q is odd, we
know that N(π) ≡ 1 (mod 4).

On the other hand, if N(π) = p is an integer prime, then

δ2(π
k) =

k∑
l=0

N(πl) =
k∑
l=0

pl ≡ 2 (mod 4),

which implies that p ≡ k ≡ 1 (mod 4).

Theorem 2.6. Let us work in a ring OQ(
√
d) with d ∈ {−1,−2}. Let z ∈ OQ(

√
d)\{0} be such

that I2(z) = 2 and N(z) is odd (suppose such a z exists). Then z has at least five nonassociated
prime divisors.

Proof. Suppose z has four or fewer nonassociated prime divisors. Then we may write z ∼
πα1
1 πα2

2 πα3
3 πα4

4 , where, for all distinct j, l ∈ {1, 2, 3, 4}, πj is prime, αj is a nonnegative integer,
and πj 6∼ πl.

First, let us deal with the case d = −1. In the ring OQ(
√
−1), the five primes (up to units) that

have the smallest odd norms are 2+ i, 1+ 2i, 3, 3+ 2i, and 2+ 3i, which have norms 5, 5, 9, 13,
and 13, respectively. Therefore,

I2(z) = I2(π
α1
1 πα2

2 πα3
3 πα4

4 )

=

(
α1∑
j=0

1

N(π1)j

)(
α2∑
j=0

1

N(π2)j

)(
α3∑
j=0

1

N(π3)j

)(
α4∑
j=0

1

N(π4)j

)
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<

(
∞∑
j=0

1

N(π1)j

)(
∞∑
j=0

1

N(π2)j

)(
∞∑
j=0

1

N(π3)j

)(
∞∑
j=0

1

N(π4)j

)

≤

(
∞∑
j=0

1

5j

)(
∞∑
j=0

1

5j

)(
∞∑
j=0

1

9j

)(
∞∑
j=0

1

13j

)
=

5

4
· 5
4
· 9
8
· 13
12

< 2,

which is a contradiction.
Second, let us deal with the case d = −2. In the ring OQ(

√
−2), the integer prime 3 splits as

3 = (1+
√
−2)(1−

√
−2). Suppose 1+

√
−2|z and 1−

√
−2|z. Then, because N(1+

√
−2) =

N(1 −
√
−2) = 3 6≡ 1 (mod 4), Theorem 2.5 implies that 1 +

√
−2 and 1 −

√
−2 must both

appear with even exponents in the prime factorization of z. In particular, (1+
√
−2)2(1−

√
−2)2|z.

Therefore, by part (d) of Theorem 2.2,

I2(z) ≥ I2((1 +
√
−2)2)I2((1−

√
−2)2) =

(
1 +

1

3
+

1

9

)2

> 2,

which is a contradiction. This implies that 1 +
√
−2 and 1 −

√
−2 cannot both divide z. Now,

the six primes (up to units) that have the smallest odd norms are 1 +
√
−2, 1−

√
−2, 3 +

√
−2,

3 −
√
−2, 3 + 2

√
−2, and 3 − 2

√
−2, which have norms 3, 3, 11, 11, 17, and 17, respectively.

Because 1 +
√
−2 and 1−

√
−2 cannot both divide z, we have

I2(z) = I2(π
α1
1 πα2

2 πα3
3 πα4

4 )

=

(
α1∑
j=0

1

N(π1)j

)(
α2∑
j=0

1

N(π2)j

)(
α3∑
j=0

1

N(π3)j

)(
α4∑
j=0

1

N(π4)j

)

<

(
∞∑
j=0

1

N(π1)j

)(
∞∑
j=0

1

N(π2)j

)(
∞∑
j=0

1

N(π3)j

)(
∞∑
j=0

1

N(π4)j

)

≤

(
∞∑
j=0

1

3j

)(
∞∑
j=0

1

11j

)(
∞∑
j=0

1

11j

)(
∞∑
j=0

1

17j

)
=

3

2
· 11
10
· 11
10
· 17
16

< 2,

which is a contradiction.

Theorem 2.7. Let us work in the ringOQ(
√
−7). Let z ∈ OQ(

√
−7)\{0} be such that I2(z) = 2 and

N(z) is odd (suppose such a z exists). Then z has at least eleven nonassociated prime divisors.

Proof. Suppose z has ten or fewer nonassociated prime divisors. Then we may write

z ∼
10∏
m=1

παm
m , where, for all distinct m, l ∈ {1, 2, . . . , 10}, πm is prime, αm is a nonnegative

integer, and πm 6∼ πl. In OQ(
√
−7), the eleven primes (up to units) that have the smallest odd

norms are
√
−7, 3, 2+

√
−7, 2−

√
−7, 4+

√
−7, 4−

√
−7, 5, 1+2

√
−7, 1−2

√
−7, 3+2

√
−7,

and 3 − 2
√
−7, which have norms 7, 9, 11, 11, 23, 23, 25, 29, 29, 37, and 37, respectively.

Therefore,

I2(z) =
10∏
m=1

I2(π
αm
m ) =

10∏
m=1

(
αm∑
j=0

1

N(πm)j

)
<

10∏
m=1

(
∞∑
j=0

1

N(πm)j

)
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≤

(
∞∑
j=0

1

7j

)(
∞∑
j=0

1

9j

)(
∞∑
j=0

1

11j

)(
∞∑
j=0

1

11j

)(
∞∑
j=0

1

23j

)(
∞∑
j=0

1

23j

)

·

(
∞∑
j=0

1

25j

)(
∞∑
j=0

1

29j

)(
∞∑
j=0

1

29j

)(
∞∑
j=0

1

37j

)

=
7

6
· 9
8
· 11
10
· 11
10
· 23
22
· 23
22
· 25
24
· 29
28
· 29
28
· 37
36

< 2,

which is a contradiction.

We conclude this section with a remark about 2-powerfully perfect numbers in OQ(
√
−1),

OQ(
√
−2), and OQ(

√
−7) that have odd norms. In each of these three rings, there is a prime, say

ξ, with norm 2. If d ∈ {−1,−2,−7}, z ∈ OQ(
√
d), I2(z) = 2, and N(z) is odd, then ξz is

2-powerfully 3-perfect in OQ(
√
d). This is simply because, under these assumptions, we find that

I2(ξz) = I2(ξ)I2(z) =
1 + 2

2
I2(z) =

3

2
· 2 = 3.

3 Further ideas and a conjecture

We admit that we directed almost all of our attention toward 2-powerfully perfect numbers,
rather than the more general 2-powerfully t-perfect numbers. Hence, the subject of 2-powerfully
t-perfect numbers awaits exploration. We also concentrated so heavily on the rings OQ(

√
−1),

OQ(
√
−2), and OQ(

√
−7) when dealing with 2-powerfully perfect numbers that we left open all

questions about the rings OQ(
√
d) with d∈K in which 2 is inert. We mentioned that 3 + 9i and

9 + 3i are 2-powerfully perfect and that 30 + 30i is 2-powerfully 3-perfect in OQ(
√
−1). Are there

other 2-powerfully t-perfect numbers in this ring? What about in other rings?
Referring to the concluding paragraph of Section 2, we might ask if there are other relation-

ships between different types of n-powerfully t-perfect numbers. More specifically, in a given
ring OQ(

√
d), are there certain criteria which would guarantee that some specific multiple of an

n1-powerfully t1-perfect number is n2-powerfully t2-perfect (for some n1, n2, t1, t2 ∈ N with
t1, t2 ≥ 2)?

Conjecture 3.1. The value of k in Theorem 2.2 must be 1. Similarly, if there is a 2-powerfully
perfect number in OQ(

√
−7), then the value of k in Theorem 2.4 must be 1.
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