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Abstract: A resolving set of a graph G is a set S ⊆ V (G), such that, every pair of distinct
vertices of G is resolved by some vertex in S. The metric dimension of G, denoted by β(G),
is the minimum cardinality of all the resolving sets of G. Shamir Khuller et al. [10], in 1996,
proved that a graph G with β(G) = 2 can have neither K5 nor K3,3 as its subgraph. In this paper,
we obtain a forbidden subgraph, other than K5 and K3,3, for a graph with metric dimension two.
Further, we obtain the metric dimension of the total graph of some graph families. We also estab-
lish a Nordhaus–Gaddum type inequality involving the metric dimensions of a graph and its total
graph and obtain the metric dimension of the line graph of the two dimensional grid Pm × Pn.
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AMS Classification: 05C56.

1 Introduction

The graphs that we consider throughout this paper are simple, finite, undirected and connected.
Given a graph G = (V,E), a vertex w ∈ V resolves a pair of vertices u, v ∈ V if d(u,w) 6=
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d(v, w). A resolving set of G is a set of vertices S ⊆ V , with the property that, every pair of
distinct vertices ofG is resolved by some vertex in S. That is, a resolving set S = {w1, w2, . . . , wk}
is a set of vertices in G such that, each u ∈ V (G) is identified by a k-vector of the form
r(u|S) = (d(u,w1), d(u,w2), . . . , d(u,wk)). The vector r(u|S) is called a metric code or S-
location or S-code of u ∈ V (G).

The metric dimension of G, denoted by β(G), is the minimum cardinality among all the
resolving sets of G. A resolving set with minimum cardinality is called a metric basis. The
vertices of G in a metric basis are called land marks.

The concept of resolving sets was first introduced and studied by P.J. Slater [11] under the
term locating set. In fact, resolving sets were studied much earlier in the context of the coin-
weighing problem [3, 4, 7]. However, working independently, F. Harary and R. A. Melter [8]
obtained some more results on this parameter and coined the terms resolving sets and metric
dimension. Since then, these notations came into use and got widely accepted. We follow the
same as well in this paper.

Since the introduction, considerable amount of work has been carried out by various au-
thors [16, 18, 13, 6, 2, 14, 9, 17, 19] on resolving sets and metric dimension. Also, resolving
sets have been used to study some real world problems such as navigation of robots, network
discovery and verification.

In this paper, we obtain a forbidden subgraph, other than K5 and K3,3, for a graph with metric
dimension two. Further, we obtain the metric dimension of the total graph of some graph families
and characterize graphs whose total graphs have metric dimension two. We establish a Nordhaus–
Gaddum type inequality involving the order, diameter and metric dimensions of a graph and its
total graph. We also obtain the metric dimension of the total graph and line graph of the two
dimensional grid Pm × Pn.

2 Some known results on metric dimension

In this section, we recall some of the earlier work on metric dimension for immediate reference
in the next and subsequent sections of the paper.

Theorem 2.1 (S. Khuller, B. Raghavachari and A. Rosenfeld [10]). For a simple connected graph
G, β(G) = 1 if and only if G ∼= Pn.

Theorem 2.2 (F. Harary and R. A. Melter [8]). For any integer n ≥ 3, the metric dimension of a
cycle on n vertices is 2.

Theorem 2.3 (S. Khuller, B. Raghavachari and A. Rosenfeld [10]). Let G = (V,E) be a graph
with metric dimension 2 and let {a, b} ⊂ V be a metric basis in G. The following are true:

1. There is a unique shortest path P between a and b.

2. The degrees of a and b are at most 3.

3. Every other node on P has degree at most 5.
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Theorem 2.4 (F. Harary and R.A.Melter [8]). For any positive integer n, β(G) = n − 1 if and
only if G ∼= Kn.

Theorem 2.5 (G. Chartrand, D. Erwin, F. Harary and P. Zhang [5]). If G is a connected graph of
order n, then β(G) ≤ n− diam(G).

In view of Theorem 2.1 and Theorem 2.5, we have the following lemma.

Lemma 2.6. For any connected graph G on n vertices which is not a path,

2 ≤ β(G) ≤ n− diam(G)

3 A forbidden subgraph for graphs with dimension two

In the year 1996, Shamir Khuller et al. [10] proved that a graphGwith β(G) = 2 can have neither
K5 norK3,3 as its subgraph. In this section, we obtain a forbidden subgraph as shown in Figure 1,
other than K5 and K3,3, for graphs of dimension two in the form of the following theorem useful
to prove results in the later sections of the paper.

Theorem 3.1. If G is a graph of order n such that β(G) = 2, then G cannot have a subgraph
isomorphic to the graph H of Figure 1.
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Figure 1: The graph H

Proof. Suppose that G has a subgraph isomorphic to the graph H . Let {v1, v2, . . . , v7} be the
set of vertices of the subgraph H in G. Let S = {u, v} be a resolving set for G with minimum
cardinality where u, v ∈ V (G). Let d(u, v1) = a and d(v, v1) = b. Then r(v1|S) = (a, b) and
r(v2|S) ∈ {(a, a + 1), (a, b − 1), (a + 1, b), (a + 1, b − 1), (a + 1, b + 1), (a − 1, b), (a − 1, b −
1), (a− 1, b+ 1)}. We now analyse each of these cases as follows;

Case 1: r(v2|S) = (a, b+ 1)

In this case, r(v3|S) ∈ {(a+ 1, b), (a− 1, b), (a+ 1, b+ 1)}

Subcase 1.1: Suppose r(v3|S) = (a+ 1, b).
Then, the only possible code is r(v4|S) = (a+ 1, b+ 1), but then r(v5|S) ∈ {(a, b),
(a, b+ 1), (a+ 1, b), (a+ 1, b+ 1)} = {r(v1|S), r(v2|S), r(v3|S), r(v4|S)}, so that
S does not resolve G.
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Subcase 1.2: Suppose r(v3|S) = (a+ 1, b+ 1).
Then, r(v4|S) = (a+1, b). As discussed above, it is easy to see that S will not resolve
the vertex v5.

Subcase 1.3: Suppose r(v3|S) = (a− 1, b).
Then, r(v4|S) = (a− 1, b+ 1) which again implies that S will not resolve the vertex
v5.

Subcase 1.4: Suppose r(v3|S) = (a− 1, b+ 1).
Then, r(v4|S) = (a− 1, b) and hence v5 cannot be resolved by S.

Case 2: r(v2|S) = (a, b− 1)

In this case, r(v3|S) ∈ {(a+ 1, b), (a+ 1, b− 1), (a− 1, b), (a− 1, b− 1)}.

Subcase 2.1: Suppose r(v3|S) = (a+ 1, b).
Then, r(v4|S) = (a+ 1, b− 1) so that S will not resolve v5.

Subcase 2.2: Suppose r(v3|S) = (a+ 1, b− 1).
Then, r(v4|S) = (a+ 1, b) which implies that S will not resolve v5.

Subcase 2.3: Suppose r(v3|S) = (a− 1, b).
Then again, S will not resolve v5 as r(v4|S) = (a− 1, b+ 1).

Subcase 2.4: Suppose r(v3|S) = (a− 1, b− 1).
Then, r(v4|S) = (a− 1, b) and hence again v5 is unresolved by S.

Case 3: r(v2|S) = (a+ 1, b)

In this case, r(v3|S) ∈ {(a, b+ 1), (a, b− 1), (a+ 1, b− 1), (a+ 1, b+ 1)}.

Subcase 3.1: Suppose r(v3|S) = (a, b+ 1).
In this case, r(v4|S) = (a+ 1, b+ 1), so again S will not resolve v5.

Subcase 3.2: Suppose r(v3|S) = (a+ 1, b− 1).
In this case, r(v4|S) = (a+ 1, b), so S will not resolve v5.

Subcase 3.3: Suppose r(v3|S) = (a+ 1, b− 1).
In this case, r(v4|S) = (a, b− 1) so that metric code of v5 will repeat.

Subcase 3.4: Suppose r(v3|S) = (a+ 1, b+ 1).
In this case, r(v4|S) = (a, b+ 1) and hence again v5 is unresolved.

Case 4: r(v2|S) = (a+ 1, b− 1).
In this case, r(v3|S) ∈ {(a, b− 1), (a+ 1, b)}.

Subcase 4.1: Suppose r(v3|S) = (a, b− 1).
In this case, r(v4|S) = (a+ 1, b), so again S will not resolve v5.

Subcase 4.2: Suppose r(v3|S) = (a+ 1, b).
In this case, r(v4|S) = (a, b− 1), so S will not resolve v5.

Case 5: r(v2|S) = (a+ 1, b+ 1).
In this case, r(v3|S) ∈ {(a, b+ 1), (a+ 1, b)}.
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Subcase 5.1: Suppose r(v3|S) = (a, b+ 1).
In this case, r(v4|S) = (a+ 1, b), so again S will not resolve v5.

Subcase 5.2: Suppose r(v3|S) = (a+ 1, b).
In this case, r(v4|S) = (a, b+ 1), so S will not resolve v5.

Case 6: r(v2|S) = (a− 1, b).
In this case, r(v3|S) ∈ {(a, b+ 1), (a, b− 1), (a− 1, b+ 1), (a− 1, b− 1)}.

Subcase 6.1: Suppose r(v3|S) = (a, b+ 1).
In this case, r(v4|S) = (a− 1, b+ 1), so again S will not resolve v5.

Subcase 6.2: Suppose r(v3|S) = (a, b− 1).
In this case, r(v4|S) = (a− 1, b− 1), so S will not resolve v5.

Subcase 6.3: Suppose r(v3|S) = (a− 1, b+ 1).
In this case, r(v4|S) ∈ {(a, b + 1), (a − 2, b), (a − 2, b + 1)}, so again S will not
resolve v5.

Subsubcase 6.3.1: r(v4|S) = (a, b+ 1).
In this case, S will not resolve v5.

Subsubcase 6.3.2 r(v4|S) = (a− 2, b).
In this case, r(v5|S) = (a− 2, b+ 1) and hence S will not resolve V6.

Subsubcase 6.3.3 r(v4|S) = (a− 2, b+ 1).
In this case, r(v5|S) = (a− 2, b) and hence S will not resolve V6.

Case 7: r(v2|S) = (a− 1, b− 1).
In this case, r(v3|S) ∈ {(a, b− 1), (a− 1, b).

Subcase 7.1: Suppose r(v3|S) = (a, b− 1).
In this case, r(v4|S) ∈ {(a, b− 2), (a− 1, b), (a− 1, b− 2).

Subsubcase 7.1.1: r(v4|S) = (a, b− 2).
In this case, r(v5|S) = (a− 1, b− 2) and S will not resolve v6.

Subsubcase 7.1.2: r(v4|S) = (a− 1, b).
In this case, S will not resolve v5.

Subsubcase 7.1.3: r(v4|S) = (a− 1, b− 2).
In this case, r(v5|S) = (a, b− 2) and v6 ∈ {(a+ 1, b− 1), (a+ 1, b− 2)}.
Subsubsubcase 7.1.3.1: r(v6|S) = (a+ 1, b− 1).

In this case, S will not resolve the vertex v7.

Subsubsubcase 7.1.3.2: r(v6|S) = (a+ 1, b− 2).
In this case, S will not resolve the vertex v7.

Case 8: r(v2|S) = (a− 1, b+ 1).
In this case, r(v3|S) ∈ {(a, b+ 1), (a− 1, b)}.

Subcase 8.1: Suppose r(v3|S) = (a, b+ 1).
In this case, r(v4|S) = (a− 1, b), so S will not resolve v5.
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Subcase 8.2: r(v3|S) = (a− 1, b).
In this case, r(v4|S) = (a, b+ 1), so S will not resolve v5.

As discussed above, in each of the cases, at least two vertices of H receive the same metric
code with respect to the set of vertices S = {u, v} so that S cannot be a resolving set for G.
Hence, β(G) > 2, a contradiction.

The above theorem is central to this paper and will be used to prove other results in the later
sections.

4 Dimension of total graph of some classes of graphs

The total graph of a graph G, denoted by T (G), is defined as the graph with vertex set V (G) ∪
E(G), such that, two vertices x and y in T (G) are adjacent if and only if x and y are either
adjacent or incident in G.

The following are some observations on the total graph of a graph.

Observation 4.1. If G1 and G2 are two graphs such that T (G1) ∼= T (G2), then G1
∼= G2.

Observation 4.2. From the definition of total graph, for any non-trivial graph G, it is clear that
T (G) 6∼= Pn for any n ∈ Z+.

Observation 4.3. Since T (G) 6∼= Pn if n > 1, in view of Theorem 2.1, it follows that β(T (G)) ≥ 2

whenever order of G is at least two.

Observation 4.4. If G is a graph of order p and size q, then the order of the total graph T (G) is
p+ q.

In this section, we obtain the metric dimension of the total graph of three standard classes of
graphs namely cycle, path and star graph. Also, we prove a Nordhaus–Gaddum type result [12]
bounding the sum of the metric dimensions of a graph and its total graph in terms of its order and
diameter.

Theorem 4.5. For n ≥ 3, the metric dimension of the total graph of a cycle graph Cn is equal
to 3.

Proof. Since T (Cn) is a 4-regular graph, it has no vertex of degree 3 and hence by condition 2 of
Theorem 2.3, it follows that T (G) cannot have a metric basis of cardinality 2 so that β(T (G)) ≥ 3.

The codes generated in Figure 2, Figure 3 and Figure 4, show that β(T (Cn)) = 3 for
n = 3, 4, 5.

We now consider the case n ≥ 6. Let V (Cn) = {v1, v2, . . . , vn} and E(Cn) = {ei : ei =
vivi+1, 1 ≤ i ≤ n− 1} ∪ {en = vnv1}. Consider a subset S = {v1, e1, v2} of vertices of T (Cn).
Now, the codes for the vertices of T (Cn) generated with respect to S are:

1. r(ei|S) = (i, i− 1, i− 1), for 2 ≤ i ≤ dn
2
e
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(0, 1, 1) 

(1, 2, 1) (1, 1, 2) 

(1, 1, 0) (1, 0, 1) 
(2, 1, 1) 

Figure 2: The graph T (C3) and its metric basis

(0, 1, 2) (1, 2, 2) (1, 1, 2) 

(2, 2, 1) (2, 1, 0) (2, 1, 1) 

(1, 2, 1) (1, 0, 1) 

Figure 3: The graph T (C4) and its metric basis

2. r(vi|S) = (i− 1, i− 1, i− 2), for

{
3 ≤ i ≤ n+1

2
if n is odd

3 ≤ i ≤ n+2
2

if n is even

3. r(en−i|S) = (i+ 1, i+ 1, i+ 2), for

{
0 ≤ i ≤ n−1

2
if n is odd

0 ≤ i ≤ n−4
2

if n is even

4. r(vn−i|S) = (i, i+ 1, i+ 1), for

{
1 ≤ i ≤ n

2
if n is even

1 ≤ i ≤ n−3
2

if n is odd

5. r(vn+3
2
|S) =

(
n−1
2
, n+1

2
, n−1

2

)
, only when n is odd.

It is easy to verify that the codes of all the vertices of Cn are distinct so that S is a resolving set
for T (Cn). Thus β(T (Cn)) = 3.

Theorem 4.6. For a graph G, β(T (G)) = 2 if and only if G is a path Pn , n ≥ 2.

Proof. Consider the graph G = Pn, a path on n vertices. By Observation 4.3, it suffices to
prove that β(T (Pn)) ≤ 2. Let {v1, v2, . . . , vn} be the vertices of Pn with vi adjacent to vi+1

for all i = 1, 2, . . . , n − 1. Let ei = vivi+1, for i = 1, 2, ....., n − 1. The set V (T (Pn)) =

{v1, v2, . . . , vn} ∪ {e1, e2, . . . , en−1}.
Define S = {v1, vn}. The vertices vi of T (Pn) for 1 < i ≤ n, and the vertices ej for

1 ≤ j ≤ n − 1 are uniquely identified by S as r(vi|S) = (i − 1, n − i); r(ei|S) = (i, n − i).
Thus S serves as a resolving set for T ((Pn)) and hence β(T (Pn)) ≤ |S| = 2.

Conversely, let G be a graph of order n and β(T (G)) = 2. Suppose to contrary that G is not
a path. Then G has at least one vertex of degree three or every vertex of degree two.
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(0, 1, 2) (1, 0, 1) 

(2, 1, 1) 

(2, 1, 0) 

(3, 2, 1) 

(2, 2, 1) 

(2, 3, 2) 

(1, 2, 3) 

(1, 1, 2) 

(1, 2, 2) 

Figure 4: The graph T (C5) and its metric basis

Case 1: G has at least one vertex of degree three.
In this case, T (G) has a subgraph isomorphic to the graph H shown in Figure 1. Hence by
Theorem 3.1, we get β(T (Pn)) > 2, a contradiction.

Case 2: G is 2-regular.
In this case, G is a cycle and hence by Theorem 4.5, it follows that β(T (G)) = 3 > 2, a
contradiction.

From either of the cases, it follows that G is a path.

Theorem 4.7. For any integer n ≥ 1,

β(T (K1,n)) =


2, if n = 1,

n, if 2 ≤ n ≤ 4,

n− 1, if n ≥ 5.

Proof. Consider the graph K1,n with v0 as the central vertex and v1, v2, . . . , vn as the pendant
vertices. Let the edges be ei = vovi for 1 ≤ i ≤ n.

For n = 1 and n = 2, the result follows from Theorem 4.6. For n ≥ 3, we consider the
following cases.

Case 1: n = 3.

In this case, as K1,3 6∼= P3, it follows that β(T (K1,3)) ≥ 3. On the other hand, the reverse
inequality β(T (K1,3)) ≤ 3 follows from Figure 5.

Case 2: n = 4.

In this case, the code generated in graph shown in Figure 6 implies that β(T (K1,4)) ≤ 4.
To prove the reverse inequality, we now show that |S| ≥ 4 for every resolvable set S.
If possible, let S be a metric basis of T (K1,4) with cardinality three. Then, we have the
following;

Subcase 1: S contains only edges of K1,4.

Without loss of generality, we take S = {e1, e2, e3}. Then for the vertices v0, e4 ∈
V (T (K1,4))− S, we get r(v0|S) = r(e4|S) = (1, 1, 1), a contradiction.
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Figure 5: A metric code for the graph T (K1,3).
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Figure 6: Metric codes of total graph of a star K1,4.

Subcase 2: S contains two edges and one vertex of K1,4.

In this case the vertex in S should be non-adjacent to the edges in S, else the two
(non-central) vertices in V (T (K1,4)) − S receive the same code (2,2,2) which is not
possible. Therefore, without loss of generality we assume S = {e1, e2, v3}. But then
r(e3|S) = (1, 1, 1) = r(v0|S) = (1, 1, 1), a contradiction.

Subcase 3: S contains one edge and two vertices of K1,4.

In this case none of the vertices in S is adjacent to the edge in S, else V (T (K1,4)− S
has two vertices that receive the same code (2,2,2) which is not possible. Therefore,
without loss of generality, we take S = {e1, v2, v3}. But then, r(v1|S) = (1, 2, 2) =

r(e4|S), a contradiction.

Subcase 4: S contains only three vertices of K1,4.

Without loss of generality, we take S = {v1, v2, v3}. Then r(v4|S) = (2, 2, 2) =

r(e4|S), a contradiction.

Hence S should contain at least four elements so that β(T (K1,4)) ≥ 4. Hence β(T (K1,4)) =

4.

Case 3: n ≥ 5.
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Necessity: Let S be a minimal resolving set of T (K1,n). Due to minimality, it then follows
that the central vertex v0 is not in S as v0 is the only vertex adjacent to every vertex in
T (K1,n). We now show that |S| ≥ n− 1.

Otherwise, |S| ≤ n− 2. Then by pigeonhole principle there exist at least two vertices
in T (K1,n) not in S, corresponding to a vertex of K1,n. Without loss of generality,
let these two vertices be v1, v2. But then, at least one of the vertices e1, e2 of T (K1,n)

should be in S, otherwise which both v1, v2 are at an equal distance, that being two,
in T (K1,n) from every element in S. We choose e2 ∈ S due to symmetry. Then,
there exists one more vertex v3 6∈ S which corresponds to a vertex of K1,n since
|S| ≤ n − 2. Now, following the same argument, for the new pair (v1, v3), S should
contain at least one of the edges e1, e3. Again, because of symmetry, we take e3 ∈ S.
Continuing this argument, we end up with the set S containing only edges of K1,n.
Finally, since |S| ≤ n− 2 and contains only edges of K1,n, it follows that v1, en 6∈ S.
Now for any x ∈ S, d(x, v1) = d(x, vn) = 2 (since in d(vi, x) = 1 in T (K1,n) if and
only if x = v0 or ei), a contradiction to the fact that S is a resolving set of T (K1,n).
Therefore, β(T (K1,n)) ≥ n− 1.

Sufficiency: Consider the set S =

{
{v1, e2, v3, e4, . . . , en−2, vn−1} if n is even
{v1, e2, v3, e4, . . . , vn−2, en−1} if n is odd

,

Then, as d(vi, ej) = 2 for i 6= j and d(ei, ej) = 1 for all i 6= j, it easily follows that

For each ei ∈ V (T (K1,n))− S,

r(ei|S) = (a1, a2, . . . , an−1), where ak =

{
1 if k = i

2 otherwise

For each vi ∈ V (T (K1,n))− S,

r(vi|S) = (a1, a2, . . . , an−1), where ak =

{
1 if k = i or i = 0

2 otherwise

This shows that S is a resolving set. Thus β(T (K1,n)) ≤ n− 1.

Hence the theorem.

We end the section with a result bounding the sum of the metric dimensions of a graph and its
total graph in terms of its order and diameter, which follows from the previous results.

Theorem 4.8. If G is a connected graph of order at least n ≥ 2 and diameter d, then
3 ≤ β(G) + β(T (G)) ≤ 2n− d and β(G) + β(T (G)) = 3 if and only if G = Pn.

5 Dimension of the total graph and line graph
of two dimensional grid

If G = (V,E) is a graph with |E| ≥ 1, the line graph of G, denoted L(G) = (V1, E1), is a
graph with V1 = E(G) with the property that two vertices in V1 are adjacent if and only if the
corresponding edges in G are adjacent.
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The two dimensional grid is the graph obtained by taking the cartesian product of the paths
Pm and Pn and is denoted Pm × Pn. In this section, we obtain the metric dimension of the total
graph and the line graph of the two dimensional grid Pm × Pn.

Theorem 5.1. The metric dimension of total graph of a 2-dimensional grid is three.

Proof. Let G = Pm×Pn. The case m = 2, n = 2 follows directly by Theorem 4.5 as P2×P2 =

C4. For the other cases, due to symmetry of cartesian product, it suffices to consider only the case
m > 2 and n ≥ 2. In this case, the graph T (G) contains a subgraph isomorphic to the graph H
of Figure 1, so by Lemma 3.1, it follows that β(T (G)) ≥ 3.

Now, to prove the reverse inequality, let {u1, u2, . . . , um} and {v1, v2, . . . , vn} be the set of
vertices of the graph Pm and Pn respectively. Classify the vertices of T (Pm × Pn) as;

Vertices of Pm × Pn: vi,j = (ui, vj), for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Edges of Pm × Pn:
Type 1 : Ri,j = vi,jvi,j+1 for 1 ≤ i ≤ m; 1 ≤ j ≤ n− 1 and
Type 2 : Ci,j = vi,jvi+1,j for 1 ≤ i ≤ m− 1; 1 ≤ j ≤ n.

So, the vertex set of T (G) is {vi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
⋃
{Ri,j : 1 ≤ i ≤ m, 1 ≤ j ≤

n− 1}
⋃
{Ci,j : 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n}.

Now, consider the subset S = {v1,1, v1,n, vm,n} of vertex set of G. It is easy to see that the
S-codes for each vertices of G are as follows;

r(vi,j|S) = (d(vi,j, v1,1), d(vi,j, v1,n), d(vi,j, vm,n)) = (i+ j − 2, n+ i− j − 1,m+ n− i− j)

r(Ri,j|S) = (d(Ri,j, v1,1), d(Ri,j, v1,n), d(Ri,j, vm,n)) = (i+ j− 1, n+ i− j− 1,m+n− i− j)

r(ci,j|S) = (d(ci,j, v1,1), d(ci,j, v1,n), d(ci,j, vm,n)) = (i+ j − 1, n+ j − i,m+ n− i− j)

Claim: S is a resolving set.

If not, then there exists two distinct vertices u and v in T (G) such that r(u|S) = r(v|S).
Now, as u and v are interchangeable, we have only the following cases;

Case 1: u = vi,j and v = vk,l
In this case, r(u|S) = r(v|S) ⇒ (i + j − 2, n + i − j − 1,m + n − i − j) =

(k + l − 2, n + k − l − 1,m + n − k − l), This yields i = k and j = l, so u = v, a
contradiction.

Case 2: u = Ri,j and v = Rk,l

In this case, r(u|S) = r(v|S) ⇒ (i + j − 1, n + i − j − 1,m + n − i − j) =

(k + l − 1, n+ k − l − 1,m+ n− k − l) This yields to i = k and j = l, so u = v a
contradiction.

Case 3: u = Ci,j and v = Ck,l

In this case, r(u|S) = r(v|S) ⇒ (i + j − 1, n + i − j − 1,m + n − i − j) =

(k + l − 1, n + k − l − 1,m + n − k − l) This yields i = k and j = l, so u = v a
contradiction.
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In the remaining cases, that is, u = vi,j and v = Rk,l, u = vi,j and v = Ck,l and u = Ri,j and
v = Ck,l, we get contradictory expressions as well.

Hence the claim. Thus, S is a resolving set so that β(T (G)) ≤ 3.
To conclude, β(T (G)) = 3.

Theorem 5.2. For integers m ≥ 2, n ≥ 2, with m ≥ n,

β(L(Pm × Pn)) =

{
2, if m ≥ 2 and n = 2,

3, if n ≥ 3 and m ≥ 3

Proof. Let u1, u2, . . . , um be the vertices of Pm such that ui is adjacent to ui+1 for i = 1, 2, . . . ,

m−1. Let v1, v2, . . . , vn be the vertices of Pn such that vi is adjacent to vi+1 for i = 1, 2, . . . , n−1.
Then the vertex (ui, vj) is adjacent to (ul, vk) in Pm×Pn if and only if either [l = i±1 and j = k]
or [k = j ± 1 and i = l].

Let us categorise the edges of Pm×Pn as row edges ri,j = {(ui, vj), (ui, vj+1)} for 1 ≤ i ≤ m,
1 ≤ j ≤ n− 1 and column edges ci,j = {(ui, vj), (ui+1, vj)} for 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n.

For the case m = 2, n = 2, the graph P2 × P2
∼= C4 and L(Cn) = Cn, so that, by Theorem

2.2 β((L(P2 × P2)) = β(L(C4)) = β(C4) = 2.
Form > 2, n = 2, as Pm×Pn is not a path, it is obvious by Lemma 2.6 that β(L(Pm×P2)) ≥

2.
Now to prove the reverse inequality, let S = {c1,1, cm−1,1}. Then the codes for the vertices of

the line graph of Pm × P2 with respect S are

r(c1,j|S) = (j − 1,m− j − 1) for 1 < j < m− 1

r(c2,j|S) = (j,m− j), for 1 < j < m− 2

r(ri,1|S) = (i− 1,m− i), for 1 < i < m

r(c1,2|S) = (2,m− 1),

r(cm−1,2|S) = (m− 1, 2),

r(r1,1|S) = (1,m− 1),

r(rm,1|S) = (m− 1, 1)

It is easy to verify that no two vertices in Pm × P2 receive the same S-code. Thus,
β(L(Pm × P2)) = 2.

We now consider the case m > 3, n ≥ 3.

Claim 1: β(L(Pm × Pn)) ≥ 3.

If not, then there exists a resolving set S = {u, v} for L(Pm × Pn). But then, as the line
graph of Pm × Pn contains exactly eight vertices namely r1,1, cm−1,1, c1,n, cm−1,n, r1,n−1,
rm,n−1, r1,1, rm,1 of degree three, by Theorem 2.3, it follows that both u and v must be
any two of these eight vertices of degree three. Also, by the uniqueness of shortest path
between u and v, again by Theorem 2.3, the only possibilities are the following.

Case 1: u = r1,1, v = c1,1

In this case we get r(r2,1|S) = r(c2,1|S), a contradiction to the fact that S is a resolv-
ing set.
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Case 2: u = r1,1, v = r1,m−1

In this case we get r(r2,m−1|S) = r(cm−1,2|S), again a contradiction.

Case 3: u = r1,1, v = cm−1,1

In this case we get r(rm−2,2|S) = r(cm−1,1|S), a contradiction. Hence the claim.

The other cases follow by symmetry.

Claim 2: β(Pm × Pn) ≤ 3.

Let S = {c1,1, c1,m−1, cn,2}. Then

r(ci,j|S) = (d(ci,j, r1,1), d(ci,j, c1,m−1), d(ci,j, cn,2))

r(ri,j|S) = (d(ri,j, r1,1), d(ri,j, c1,m−1), d(ri,j, cn,2))

implies that

r(ci,j|S) =


(i+ j − 2,m− j + i− 2, n− i+ j − 2) if 2 < j < m− 1, 1 ≤ i ≤ n− 1

(i+ j − 1,m+ j − i− 2, n+ i− j) if j = 1, 1 ≤ i ≤ n

(i+ j − 2,m− j + i− 2, n− i+ j − 1) for j = 2, 1 ≤ i ≤ n

(i+ j − 2,m− j + i− 1, n− i+ j − 2) for j = m− 1, 1 ≤ i ≤ n

r(ri,j|S) =



(i+ j − 2,m+ j − i− 1, n+ i− j − 3) if 2 < j < m− 1, 1 ≤ i ≤ n− 1

(i+ j − 1,m− j + i− 1, n− i+ j) if j = 1, 1 ≤ i ≤ n

(i+ j − 2,m− j + i− 1, n− i+ j − 2) for j = 2, 1 ≤ i ≤ n

(i+ j − 2,m+ j − i− 1, n+ i− j − 3) for j = m− 1, 1 ≤ i ≤ n

(i+ j − 2,m− j + i, n− i+ j − 3) for i = m, 1 ≤ j ≤ n− 1

From the above computation, it is easy to observe that no two vertices receive the same
S-code. Therefore S is a resolving set with cardinality three. Hence the claim.

From Claim 1 and Claim 2, it is clear that β(L(Pm × Pn)) = 3.
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