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Abstract: In this paper, we propose an upper and a lower bound of the number π expressed as
the limit to infinity of two sequences. These sequences are constructed using geometric methods
based on the Vieta’s approach. As far as geometrical methods for computing π is concerned,
numerical results are provided to show that the proposed result is comparable to the existing
ones.
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1 Introduction

The number π is probably the most fascinating number in the history of mathematics. The in-
terest in this number can be traced, as far back as the days of Archimedes, or even earlier, up
to the present day. Many formulae and methods to calculate π have been derived; ranging from
geometrical methods of Archimedes and Vieta in the early 250 BC to calculus based methods
of Newton, Gauss and Euler in the late 1660s, to modular function based theory by Ramanujan
in the early 1910s and to infinite expansion methods using products and radicals by Osler and
Sato fairly recently in the early 2000 (see eg. [1, 2] and the list of references herein). All these
late methods aims to provide fast algorithms that is capable to approximate π up to a very high
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accuracy; up to the millionth digit. A very thorough and detailed study of the history various
formulae and algorithms for computing π is given in [1].

In this work, we focus on the early geometrical methods for finding π. The aim here is
not to break the record of the latest digit of π but rather to complete some missing formula in
the geometrical methods classification. For this, recall that the Archimedes method involves
approximating π by the perimeters of polygons inscribed and circumscribed about a given circle.
On the other hand, the Vieta’s method of computing π consist in comparing the areas of regular
polygons with 2k and 2k+1 sides inscribed in a circle and which led to obtaining the following
formula:
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The first term in the product,
√
2
2

, is the ratio of areas of a square and an octagon, the second term is
the ratio of areas of an octagon and a hexadecagon, etc. Based on the same spirit of Vieta, instead
of comparing the areas of 2k-gons inscribed and circumscribed about the unit circle (circle of
radius 1) we iteratively compute the difference of areas of two successive 2k-gons. So doing, we
obtain two telescopic series that leads to providing an upper and a lower bound of π in terms of
the limits to infinity of two sequences. As far as the author is aware, such geometrical results are
not available in the literature.

In the next section, the main results of the work is presented in the form of two theorems
followed by a corollary. Finally, some numerical results are presented and some conclusions are
drawn.

Notation: Throughout this work, the Euclidean distance between two points P and Q will be
denoted as |PQ| .

2 Main results

The first result of this section is summarized in the following theorem:

Theorem 1. Let (bn)n≥0 be the sequence defined by:

bn =
√
2

√√√√
1−

√
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(
bn−1
2

)2

(1)

with b0 = 2. Then,
π = lim

n→+∞
2nbn.

Proof. Consider a circle of radius 1 in which a square, with side b1, is inscribed inside it as
depicted in Figure 1.

It is clear that the area of the circle is equal to π and that b1 =
√
2. We denote by A0 the area

of this shaded square; that is A0 =
√
2 ×
√
2 = 2. In fact, A0 is a very rough approximation of

the area of the circle.
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Figure 1: 1st approximation: A0

Next, to obtain a better approximation of the area of the circle, we add, to A0, the areas of the
four isosceles triangles that are inscribed inside the four segments outside the square as depicted
in the shaded part of Figure 2.

Figure 2: 2nd approximation: A0 + A1

These isosceles triangles have as base the sides of the square. Also, the line joining the centre
of the circle and the vertex P1 of the triangle cuts the side of the square perpendicularly at its
midpoint M1. Consequently, one can use the Pythagoras theorem to compute the areas of the
shaded triangles. Indeed, one can easily check that the height of the triangle Q1P1R1 is given by:
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√
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2
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Consequently, by denoting the areas of all the 4 triangles by A1, we get

A1 = 4× 1

2
b1h1

= 2b1h1 = 2×
(√

2
)
×

(
1−
√
2

2

)
= 0.82843.

As a result, a better approximation of the area of the circle is:

π ≈ A0 + A1 = 2.82843.

Similarly, to obtain a better approximation of the area of the circle, we inscribe a new set of
isosceles triangles between the octagon and the circle, as shown in the shaded part of Figure 3.
The base of these triangles are the sides of the octagon. Also, the vertices of these triangles are
located at midpoint of each arc lying on the side of the octagon. As such, we obtain a 16-gons
figure.

Figure 3: 3rd approximation: A0 + A1 + A2

By using the Pythagoras theorem, one easily see that

b2 =

√(
b1
2

)2

+ (h1)
2.

Again, by applying the Pythagoras theorem and knowing that |OP2| = 1, we have

h2 = |M2P2| = 1−

√
1−

(
b2
2

)2

.

Finally, the area of the 8 triangles is given by

A2 = 8
b2h2
2

= 22b2h2 ' 0.23304.

Consequently, the 3rd approximation of π is given as: π ' A0 + A1 + A2 = 2.82843 +

0.23304 = 3.06147.
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By applying the same procedure as above, one can determine An for all n ∈ N as follows:

An = 2nbnhn (2)
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2 (3)
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(4)

with A0 = 2 and b0 = 2.

Now, by noticing that hn can be expressed in terms of bn, we can further simplify the relations
(2) and (3). In effect,
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By eliminating the square roots signs from this last relation, one can check that
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Finally, we can see that π can be expressed in the form of a telescoping series, that is
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This completes the proof of Theorem 1. �
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Remark 1. The above method is similar to the 2k-gons methods to compute the area of a circle
[2]. Also, the areas of the 2k-gons are not computed as a whole but as the difference of two
successive 2k-gons. One can therefore use trigonometry and the formula of the area of a 2k-gon
to obtain the above result. However, here for the sake of simplicity we have preferred to use basic
geometry to prove the above theorem and also to emphasize the geometric nature of the result.

We now present our next result:

Theorem 2. Let (cn)n≥0 be a sequence defined by:

cn =

4

(√
1 +

(
cn−1

2

)2 − 1

)
cn−1

(cn)

with c0 = 2. Then,
π = lim

n→+∞
2n+1cn. (5)

Proof. The proof of this theorem is similar to previous one but instead of inscribing a square into
the circle, we circumscribe a square outside the circle as depicted in Figure 4.

Figure 4: 1st approximation - A0

The area of the square will be denoted as A0. The side of the square has a length of 2, so
A0 = 2× 2 = 4. A0 is a very rough approximation of the area of the circle (π ' A0).

Next, to make a better approximation of the area of the circle we subtract the areas of the four
shaded triangles, A1, from A0 as depicted in Figure 5. Similarly we shall proceed to remove the
area of the eight shaded triangles, denoted by A2, as shown in Figure 6.
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Figure 5: 2nd approximation: A0 − A1 Figure 6: 3rd approximation: A0 − A1 − A2

Finally, by repeating this operation infinitely, we obtain: π = A0 −
+∞∑
n=1

An.

Now, we need to find the expression for An for all n ∈ N. For this, let us go back to the
second approximation and concentrate only on one triangle and determine its area as shown in
Figure 7.

Figure 7: Determination of A1

Let c1 = |C1C
∗
1 | be the length of the base of the triangle C1C0C

∗
1 , and h1 = |D1C0| be the

length of the height of the same triangle. It is easy to see that:

h1 = |D1C0| = |OC0| − |OD1| =
√
2− 1.

Since the triangles OC0D0 and D1C0C1 are similar, we have:

h1
1 + h1

=
c1/2

1 + h1

That is,
c1 = 2h1 = 2

√
2− 2.
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Consequently,
A1 = 4× c1

2
× h1 = 12− 8

√
2 ' 0.6863

We shall use the same method to find A2 (Figure 8).

Figure 8: Determination of A2

Let c2 = |C2C
∗
2 | be the length of the base of the triangle C2C1C

∗
2 and h2 = |D2C1| be the

height of the same triangle. By using Pythagoras’ theorem on the right angle triangle OC1D1, we
can see that

|OC1|2 = |C1D1|2 + |OD1|2 ,

so that

h2 =

√
1 +

(c1
2

)2
− 1.

Since OC1D1 and D2C1C
∗
2 are two right angle and similar triangles, we have

|OD1|
|D2C∗2 |

=
|C1D1|
|D2C1|

1

c2/2
=
c1/2

h2

That is
c2 =

4h2
c1

Consequently,
A2 = 23 × c2

2
× h2 ' 0.1311

We can now generalise the above for all n ∈ N.

c0 = 2 (6)

hn =

√
1 +

(cn−1
2

)2
− 1 (7)

cn =
4hn
cn−1

(8)
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An = 2ncnhn (9)

π = 4−
+∞∑
n=1

An. (10)

We can further simplify the above relations. First, from (8) and (7), we can see that

cnhn =
4h2n
cn−1

=

4
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2
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)2
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As a result,
An = 2ncnhn = 2n (cn−1 − 2cn) .

Consequently, here again, π is expressed in terms of a telescoping series
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This completes the proof of Theorem 2. �

Now as a corollary, we can state the following

Corollary 1. Let (bn)n≥0 and (cn)n≥0 be two sequences defined by:
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√
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2
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with b0 = c0 = 2. Then,
lim

n→+∞
2nbn ≤ π ≤ lim

n→+∞
2n+1cn. (13)

We now present some numerical results, in the table below, that were computed using Matlab
up to 12 decimal places.

Iteration step (n) 2nbn 2ncn

1 2.828427124746 3.313708498985

2 3.061467458921 3.182597878075

3 3.121445152258 3.151724907429

4 3.136548490546 3.144118385246

5 3.140331156955 3.142223629942

6 3.141277250933 3.141750369169

7 3.141513801144 3.141632080703

8 3.141572940367 3.141602510257

9 3.141587725277 3.141595117750

10 3.141591421511 3.141593269629

Table 1.

It can be seen that after iteration 5, we start obtain reasonable value for π. In fact, more
accurate approximation for π is obtained for n = 17, where 217b17 = 3.141592653515 and
217c17 = 3.141592653627.

3 Conclusions

In this work, we have proposed a geometrical method to compute π based on Vieta’s approach.
The proposed result is not intended for computing π with very high accuracy; although it gives
reasonable approximation compared to other geometrical methods such that of Archimedes and
Vieta. The results obtained are only intended to fill some gaps in the existing geometrical methods
that is available to compute π.
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