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Identities for balancing numbers using generating
function and some new congruence relations
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Abstract: It is well-known that the balancing numbers are the square roots of the triangular
numbers and are the solutions of the Diophantine equation 1 + 2 + . . . + (n − 1) = (n + 1) +

(n+ 2) + . . .+ (n+ r), where r is the balancer corresponding to the balancing number n. Thus
if n is a balancing number, then 8n2 + 1 is a perfect square and its positive square root is called
a Lucas-balancing number. The goal of this paper is to establish some new identities of these
numbers.
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1 Introduction

A. Behera et.al [2] introduced the sequence of balancing numbers as follows. A positive integer
n is called a balancing number with balancer r if it is the solution of Diophantine equation

1 + 2 + . . .+ (n− 1) = (n+ 1) + (n+ 2) + . . .+ (n+ r).

The balancing numbers though obtained from a simple Diophantine equation, are very useful
for the computation of square triangular numbers. An important result about balancing numbers is
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that,B is balancing number if and only ifB2 is a triangular number i.e. 8B2+1 is a perfect square.
For each balancing number B, C =

√
8B2 + 1 is called a Lucas-balancing number [9, 10]. First

four balancing numbers are 1, 6, 35 and 204 with balancers 0, 2, 14 and 84 respectively. Let Bn

and Cn are respectively denoted by nth balancing number and nth Lucas-balancing number. The
balancing numbers satisfy the recurrence relation

Bn+1 = 6Bn −Bn−1; n ≥ 2, (1)

with B1 = 1 and B2 = 6 [2] whereas, the Lucas-balancing numbers defined recursively by

Cn+1 = 6Cn − Cn−1; n ≥ 2, (2)

with C1 = 3 and C2 = 17 [9]. Many useful identities involving balancing and Lucas-balancing
numbers are available in the literature. One can go through [1, 3, 4, 5, 6, 7, 8, 11, 12]. There are
many well-known relationships between balancing and Lucas-balancing numbers. Most of the
relationships were established from the Binet’s formulas

Bn =
λn − λ−n

2
√
8

, Cn =
λn + λ−n

2
, (3)

where λ = 3 +
√
8 and λ−1 = 3 −

√
8. It is well known that matrices are used to represent

the Fibonacci numbers. Also these can be used to represent balancing numbers and their related
sequences. In [13], Ray has introduced a second order balancing QB matrix whose entries are the
first three balancing numbers 0, 1 and 6. He has also shown that the nth power of the balancing
matrix QB is given by

Qn
B =

(
Bn+1 −Bn
Bn −Bn−1

)
.

This matrix representation turns out to be an elegant way of finding relationships between
the balancing and Lucas-balancing numbers. Ray, in [16], has established some balancing and
Lucas-balancing sums using matrix method. The observation det(QB) = 1 = det(Qn

B) at once
gives the Cassini formula for the balancing numbers B2

k −Bk+1Bk−1 = 1.
In this article, we establish some combinatorial properties of balancing numbers and then

establish some new congruences relations for these numbers.

2 Some known properties for balancing numbers
by matrix method

In this section, we recover some well known properties of balancing numbers by matrix method.

2.1 Binet’s formula

Consider a pair of two consecutive vectors (Bn+1, Bn) from the balancing sequence

. . . , Bn, Bn+1, Bn+2, Bn+3, . . .
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In fact, the recurrence relation can be described in the following manner(
6 −1

)( Bn+1

Bn

)
= 6Bn+1 −Bn = Bn+2.

The two consecutive vectors can be written in a matrix form as(
Bn+2 −Bn+1

Bn+1 −Bn

)
,

so that for n = 0 we recover the balancing matrix QB =

(
6 −1
1 0

)
.

Also, it can be observed that

Qn
B

(
1

0

)
=

(
Bn+1

Bn

)
. (4)

The power of a non-diagonal matrix is difficult to compute, therefore in order to use (4) to
describe Bn, we must diagonalize QB as follows: Clearly λ1 = 3 +

√
8 and λ2 = 3 −

√
8 are

eigenvalues of the matrix QB. These roots satisfy the following relations

λ21 = 6λ1 − 1, λ22 = 6λ2 − 1,

λ1λ2 = 1, λ1 + λ2 = 6, λ1 − λ2 = 2
√
8.

Also it has been observed that the eigenvectors corresponding to the eigenvalues λ1 and λ2
are of the form (λ1, 1)

T and (λ2, 1)
T respectively. Putting these eigenvectors into a change of

basis matrix P which is in the form

P =

(
λ1 λ2
1 1

)
.

If Q̃B =

(
λ1 0

0 λ2

)
denotes the diagonalization of the balancing matrix QB and since

λ1 − λ2 = 2
√
8, we have

QB = PQ̃BP
−1,

where P−1 = 1
2
√
8

(
1 −λ2
−1 λ1

)
. It follows that

Qn
B = PQ̃B

n
P−1.

Thus by (4), we have(
Bn+1

Bn

)
=

1

2
√
8

(
λ1 λ2
1 1

)(
λn1 0

0 λn2

)(
1 −λ2
−1 λ1

)(
1

0

)

=
1

2
√
8

(
λn+1
1 + λn+1

2

λn1 − λn2

)
.
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Comparing the second row and first column element, we obtain

Bn =
λn1 − λn2
λ1 − λ2

,

which is popularly known as Binet’s formula for balancing numbers.

2.2 Generating function of balancing numbers by matrix method

Recall that the generating function G(x) for any sequence {an} is given by the formula

G(x) =
∞∑
k=0

akx
k.

Behera et.al established the generating function for balancing numbers in [2] as

g(s) =
s

1− 6s+ s2
.

This result can also be obtained by matrix method. Consider the matrix

I − sQB =

(
1− 6s s

−s 1

)
, (5)

where I be the identity matrix same order as QB. Since the determinant value of the matrix (5) is
1− 6s+ s2, its inverse will be

(I − sQB)
−1 =

1

1− 6s+ s2

(
1 −s
s 1− 6s

)
. (6)

Therefore, if g(s) =
∞∑
k=0

skQk
B = (I − sQB)

−1 be the generating function, then using (6) we

can write

s0Q0
B + s1Q1

B + s2Q2
B + . . . =

(
1

1−6s+s2
−s

1−6s+s2

s
1−6s+s2

1−6s
1−6s+s2

)
.

Comparing the like coefficient from both sides, we get the generating function for balancing
numbers as

B0 + sB1 + s2B2 + . . . = g(s) =
s

1− 6s+ s2
. (7)

If we choose Qk
B instead of QB and proceeding as before, we get

det(I − sQk
B) = 1− s(Bk+1 −Bk−1) + s2.

Since Bk+1 −Bk−1 = 2Ck where Ck is the kth Lucas-balancing number, it follows that

det(I − sQk
B) = 1− 2sCk + s2,

and therefore its inverse is given by

(I − sQk
B)
−1 =

1

1− 2sCk + s2

(
1 + sBk−1 −sBk

sBk 1− sBk+1

)
.
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Since
∞∑
n=0

snQnk
B = (I − sQk

B)
−1, it follows that

B0k +B1k + sB2k + s2B3k + . . . =
Bk

1− 2sCk + s2
,

for instance, with k = 2 we have

B0 +B2 + sB4 + s2B6 + . . . =
6

1− 34s+ s2
.

3 Some combinatorial identities using generating function

In this section, we will establish some new results involving balancing numbers with the help of
generating function.

Theorem 3.1. If Bn denotes the nth balancing number, then

Bn =

bn−1
2
c∑

i=0

(−1)i
(
n− i− 1

i

)
6n−2i−1.

Proof. By virtue of (7), we get

B0 + sB1 + s2B2 + . . . = s
(
1− (6s− s2)

)−1
= s

[
1 + (6s− s2) + (6s− s2)2 + . . .

]
.

Equating the coefficient of sn from both the sides, we obtain

Bn = (6s− s2)n−1.

Expanding the right hand side expression of the above equation binomially we obtain the desired
result.

The proof of the following result is analogous to Theorem 3.1

Theorem 3.2. If Bk and Ck are the kth balancing and kth Lucas-balancing numbers respectively
then

Bnk = Bk

bn−1
2
c∑

i=0

(−1)i
(
n− i− 1

i

)
(2Ck)

n−2i−1.

The following result will be shown by using Binet’s formula.

Theorem 3.3. The following identity is valid for any natural number n.

Bn =

bn−1
2
c∑

l=0

(
n

2l + 1

)
(
√
8)2l3n−2l−1.
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Proof. Recall that λ1 = 3 +
√
8 and λ2 = 3 −

√
8. Setting λ1 = x + y and λ2 = x − y so that

x = 3, y =
√
8 and therefore y

x
=
√
8
3
. Using binomial theorem, we have

λn1 − λn2 = (x+ y)n − (x− y)n =
n∑

k=0

(
n

k

)
xn−kyk(1− (−1)k). (8)

Putting k = 2l + 1, we observe that for k = 0, the right side expression vanish, so k = 1 if l = 0

and k = n if l = n−1
2
. Therefore (8) reduces to

λn1 − λn2 =

bn−1
2
c∑

l=0

(
n

2l + 1

)
2xn

(y
x

)2l+1

.

It follows that

λn1 − λn2
2
√
8

= Bn =

bn−1
2
c∑

l=0

(
n

2l + 1

)
(
√
8)2l3n−2l−1.

This completes the proof.

We notice that, B0 = 0, B1 = 1, B2 = 6B1−B0, . . . , Bk+2 = 6Bk+1−Bk. Adding all these
results, we get the following important identity.

Bk+2 = 1 + 4
k∑

i=0

Bi + 5Bk+1.

4 Some congruence relations for balancing numbers

Ray has studied many congruence properties for balancing numbers and their related sequences
[14, 15]. In [15], he applied some congruences identities to establish some divisibility properties
of these numbers. In this section, we find some new results concerning congruences for balancing
numbers.

Theorem 4.1. For any natural number k, B2k ≡ 0 (mod 2) and B2k ≡ 0 (mod 3).

Proof. Mathematical induction play the role to prove these results. Basis step is clear for the
first part of the theorem as B0 = 0 ≡ 0 (mod 2). Notice that B2 = 6 ≡ 0 (mod 2). Assuming
B2m ≡ 0 (mod 2) for every m ≤ k and since Bk+l = BkBl+1 −Bk−1Bl, we have

B2(m+1) = B2mB3 −B2m−1B2 ≡ 0 (mod 2).

Similarly the second part of the theorem can be proved.

The following corollary is an immediate consequence of Theorem 4.1

Corollary 4.2. For any natural number k, B2k ≡ 0 (mod 6).
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Theorem 4.3. For any natural number k, B3k ≡ 0 (mod 5).

Proof. The proof is analogous to Theorem 4.1.

Therefore by virtue of Theorem 4.1 and Theorem 4.2, we have the following result.

Corollary 4.4. For any natural number k, B6k ≡ 0 (mod 10).

The following result can be easily shown by induction.

Theorem 4.5. For any natural number k, B6k+2 ≡ 0 (mod 2) and B6k ≡ 0 (mod 2).

Theorem 4.6. For any odd natural number k, B3k+1 ≡ 4 (mod 5).

Proof. By virtue of Theorem 3.3, we have

Bn =

bn−1
2
c∑

l=0

(
n

2l + 1

)
(
√
8)2l3n−2l−1. (9)

Replacing n by 3k + 1, we get

B3k+1 =

b 3k
2
c∑

l=0

(
3k + 1

2l + 1

)
(
√
8)2l33k−2l.

Notice that for every odd natural number k, 5k + 4 ≡ 4 (mod 5) and the result follows.

Theorem 4.7. If k is any odd natural number such that 4k + 1 is a prime, then B4k+1 ≡
4k (mod 4k + 1).

Proof. Let k ∈ N and k odd such that 4k + 1 is a prime. Putting n = 4k + 1 in (9) and since
8k + 1 ≡ 4k (mod 4k + 1), we have

B4k+1 =
2k∑
l=0

(
4k + 1

2l + 1

)
(
√
8)2l34k−2l ≡ 8k + 1 ≡ 4k (mod 4k + 1).

This ends the proof.

Similarly, putting n = 4k + 2 and n = 4k in (9) and since 8k + 2 ≡ 0 (mod 4k + 1) and
8k − 4 ≡ 4k − 5 (mod 4k + 1), we have the following results.

Theorem 4.8. If k is any odd natural number such that 4k + 1 is a prime, then B4k+2 ≡
0 (mod 4k + 1).

Theorem 4.9. If k is any odd natural number such that 4k + 1 is a prime, then B4k ≡ 4k −
5 (mod 4k + 1).

The following corollary is an immediate consequence of Theorem 4.8.

Corollary 4.10. If k is any odd natural number such that 4k + 1 is a prime, then B4k+2 ≡
0 (mod 4k + 3).

47



References

[1] Alvarado, S., Dujella, A., & Luca, F. (2012) On a conjecture regarding balancing with
powers of Fibonacci numbers, Integers, 12, 1127–1158.

[2] Behera, A., & Panda, G. K. (1999) On the square roots of triangular numbers, The Fibonacci
Quarterly, 37(2), 98–105.

[3] Belbachair, H., & Szalay, L. (2014) Balancing in direction (1,−1) in Pascal’s triangle, Ar-
menian Journal of mathematics, 6(1), 32–40.
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