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Abstract: It is shown that prime sequences of arbitrary length, of which the prime pairs, (p, p+2),
the prime triplet conjecture, (p, p+2, p+6) are simple examples, are true and that prime sequences
of arbitrary length can be found and shown to repeat indefinitely. Asymptotic formulae compa-
rable to the prime number theorem are derived for arbitrary length sequences. An elementary
proof is also derived for the prime number theorem and Dirichlet’s Theorem on the arithmetic
progression of primes.
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1 Introduction

We build up the sequences of primes using a variant of the sieve process devised by Eratosthenes.
In the sieve process the integers are written down sequentially up to the largest number we wish
to check for primality. We first remove from consideration every number of the form 2n (n≥2),
find the smallest number >2 that was not removed, that is 3 (the next prime), and similarly now
remove all numbers of the form 3n (n≥2). As before find again the next number not removed,
that is the next prime 5. The process is continued up to a desired prime Pr. We now write down
N zeros, the position of the rth zero being a placemarker for the number r. A zero at position r
denotes r is either known to be a prime, or is a candidate to be prime, a one at position r denotes
that r is known to be composite. Changing a zero to a one then denotes the fact that the prime
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candidate is found to be composite. We denote by σr the sequence of zeros and ones after the rth

prime has been used in the sieve process and denote by τr the repeating sequence part within σr.
The first four are as follows:

σ0: 000000000000000000000000000000000000000000000000000000000000000000 .....
σ1: 000 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 ...
σ2: 00010101 110101 110101 110101 110101 110101 110101 110101 110101 110101 ....
σ3: 000101011101011101011101 111101011111011101011101011101 111101011111 .....

The spaces between the digits indicate the limits of the repeating subsequences, where τ1=10
in σ1, τ2=110101 in σ2, and τ3=111101011111011101011101011101 in σ3, at starting positions
22, 32, and 52 respectively. Each new prime Pr when used to change a zero to a one first affects
the sequence in position P 2

r as changes at positions Pq.Pr (q < r), have already been taken care of
with prime Pq. Each new prime will therefore generate a new repeating sequence, which begins
at the P 2

r position. In sequence σr, all zeros at positions k, k < P 2
r represent primes, at positions

k > P 2
r , the zeros are candidates to be prime. Position 1 is not used as a prime even though

it is 0.

2 Preliminary expressions

Lemma 1. The repeating sequence length using the first n primes is given by:
n∏
r=1

Pr.

Proof. Define Sn as the repeating sequence length. As every 1 within a τr sequence will repeat
at the same relative position, we must have:

krPr + Sn = lrPr, k − r > 0, lr > 0, > kr, r = 1, 2, . . . n,

and thus Pr|Sn for each r, and:

Sn = C
∏n

r=1 Pr,

for some C. Choosing lr = kr + 1 we see C must be 1.

Note that unlike the repeating sequences for primes 2 and 3, the repeating sequence is not
complete before the sequence starts for the next prime 7; the τ3 sequence for 5 starts at 25 and
ends at 54, while the next prime 7 first affects the sequence at position 49. After prime P2 =3,
the repeating sequence of length Sn (starting at position P 2

n ) in never completed before the next
prime is added because for Pn >3 one sees that:

Sn > P 2
n+1 − P 2

N > (Pn + 2)2 − P 2
n = 2Pn + 1,

which is clearly true for Pn >3.
When generating σr+1 from σr the only new zeros that are changed to ones are those at po-

sitions whose prime factors include primes not already used, i.e. P 2
r , PrPr+1, PrPr+2, ... . Without
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further primes added, the new sequence τr will repeat indefinitely with length
Sr = P1P2P3. . .Pr. What we now aim to show is that by adding new primes to the process
results in some zeros (prime candidates) being changed to ones (composites) within the repeating
τr sequences, but that an unchanged and increasing set of τr always remains after the application
of ever larger primes.

3 Identifying the prime sequences

To illustrate the process we first take the simplest sequence, the prime pairs (p, p+2). We consider
σ2 with S2 = 6 andN = 195 (the largest number considered), so there are 31 repeating sequences
of τ2 =110101. All the ‘ones’ in the repeating sequences represent composite numbers, with
factors 2α3β , for some α + β > 1, α, β ≥ 0. Applying the sieve process for all numbers ≤195

that have factors composed of primes > P2(= 3), we generate 31 composite numbers. Each
of those composite numbers occupying a zero position within one of the τ2 sequences within
σ2. Within 18 of the 31 repeating τ2 sequences a single zero is changed to a one (shown to be
composite), while for two sequences both zeros are changed. The number of prime pairs is thus
equal to the total number of τ2 sequences minus the number in which one or both of the zeros
is changed to ones. The number of changed sequences thus equals the total number of zeros
changed to ones minus the number where both zeros are changed, which in this example is 20,
leaving 11 as the correct number of prime pairs in the range (9,195).

For identifying prime triplets a similar process is be performed, but now using σ3 with
τ3 = 111101011111011101011101011101, and S3 = 30. Each τ3 sequence includes possible
prime triplets which by observation includes (p, p+ 2, p+ 6), (p, p+ 2, p+ 8), (p, p+ 8, p+ 12),
but also prime quadruplets, and more complicated sequences up to a maximum prime octuplet
(i.e. using all the zeros within τ3). As before with τ2, the ‘ones’ in the repeating τ3 sequences
represent composite numbers, but now with factors 2α3β5γ , for some α+β+ γ > 1, α, β, γ ≥ 0.
The sieve process is applied but now with primes > P3(= 5), and as before the number of triplets
will be equal to the number of unchanged subsequences (e.g. a (p, p+ 2, p+ 6) subsequence).

4 Principle theorem used and shorthand notation

The basis of the following derivations use a general theorem enunciated by Hardy & Wright [2]
(see pp. 233–234), which we repeat here: If there are N objects of which Nα, have the property
α, Nβ have β, ..., Nαβ have both α and β, Nαβγ , have α, β, and γ, and so on, the number of
objects which have none of the α, β, γ, ... is:

N −Nα −Nβ − . . .+Nαβ + ...−Nαβγ − . . . (1)

Following those authors, the number of integers less than or equal to N and not divisible by
any one of a coprime set of integers a, b, ... , is:

[N ]−
∑[

N

a

]
+
∑[

N

ab

]
− . . . (2)
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For clarity in the ensuing equations, we use the following shorthand notation for representing
sums of products of inverse primes. We define:

<N>∑
k=1

1

P{k}
, (3)

as the sum of all products of powers of inverse distinct primes, taken k at a time. We use the
< N > to indicate the series is truncated so that no inividual term is < 1

N
, and an < N > over a

product indicates the terms in the expansion are similarly truncated. We omit the lower bound if
r = 1. Two examples:

<N>∑ 1

P{1}
=

m∑
r=1

1

Pr
=

1

2
+

1

3
+

1

5
+ . . .+

1

Pm
, (4)

where Pm is the largest prime ≤ N .

<N>∑ 1

P{2}
=

m∑
r=1

n∑
s=r+1

1

PrPs
=

1

2 · 3
+

1

2 · 5
+ . . .+

1

3 · 5
+

1

3 · 7
+ . . . , (5)

where as before no terms are < 1
N

. When using integer parts,
<N>∑ [

1
P{1}

]
indicates

m∑
r=1

[
1

P{r}

]
, i.e.

a square bracket around each individual term, and similarly for P{2}, etc.

5 Derivation of the prime number theorem

We now apply Hardy & Wrights’ theorem (2) to the simplest sequence, the primes, and show how
the prime number theorem can be derived from a different perspective.

Theorem 1. If Pr is the rth prime, and e(N) the error term, the number of primes less than or

equal to N can be written as: N
<N>∏
r=1

(
1− 1

Pr

)
+ e(N).

Proof. In (2) we now choose the set of integers a, b, ... to be all the primes ≤ N , (P1, P2, ...,

PK , K = π(N)), and in the new notation the number of integers not divisible by any one of those
primes must be the first positive integer, i.e. 1, the expression is 0 if N < P1(= 2), and we have:

U(N − P1) = [N ]−
<N>∑([

N

P{1}

]
−
[
N

P{2}

]
+ . . .

)
= 1 if N ≥ P1, 0 if N < P1, (6)

and U(N − P1) is seen to be the unit step function with argument N − P1. The sums within the
brackets all have have a finite number of non-zero terms. Changing the step function argument,
we now write:

U(N − q) =

[
N

q

]
−

<N>∑([
N

qP{1}

]
−
[

N

qP{2}

]
+ . . .

)
= 1 if N ≥ q, 0 if N < q, (7)

32



Summing now for a set of q sucessively taking the value of all primes ≤ N we get:

π(N) =
K∑
k=1

U(N − Pk) =
K∑
k=1

([
N

Pk

]
−

<N>∑([
N

PkP{1}

]
−
[

N

PkP{2}

]
+ . . .

))
(8)

where K = π(N). This is an exact representation for π(N), the number of primes ≤ N . To
derive the standard distribution function we remove the integer parts [ ] and obtain:

π(N) =

(
K∑
k=1

1

P{k}

)
N

(
1−

<N>∑(
1

P{1}
− 1

P{2}
+ . . .

))
+ E(N), (9)

where E(N) is the error term between the exact formulation given in (8) and the similar expres-
sion (9) without the [ ] brackets.

Clearly in (8) each Pk only contributes 1 to the final result, and using any set of K numbers
within the range (P1, N) would result in the same value of π(N). This is not the case in the
continuous formulation (9), where the error will be dependent on the choice of the Pk, due to the

factor
(

K∑
k=1

1
Pk

)
. Setting:

K∑
k=1

([
N

Pk

]
−

<N>∑([
N

PkP{1}

]
−
[

N

PkP{2}

]
+ . . .

))

=

(
K∑
k=1

1

sk

)
N

(
1−

<N>∑(
1

P{1}
− 1

P{2}
+

1

P{1}
− . . .

))
+ e(N),

(10)

where e(N) is the error term when the sk set is chosen instead of the Pk set (e(N 6= E(N)).
Choosing sk = π(N) for all k we get:

π(N) = N

(
1−

<N>∑(
1

P{1}
− 1

P{2}
+

1

P{3}
− . . .

))
+ e(N)

= N
<N>∏
r=1

(
1− 1

Pr

)
+ e(N),

(11)

and the theorem is proved.

We now determine the magnitude of the error term in (11)

Theorem 2. The error term e(N) is given by: e(N) = O(Log(Log(N))), as N →∞.

Proof. With reference to (10) and (11) we repeat the equations, but using K instead of π(N), for
simplicity:

K∑
k=1

1 =
K∑
k=1

([
N

K

]
−

<N>∑([
N

KP{1}

]
−
[

N

KP{2}

]
+ . . .

))

=
K∑
k=1

(
N

K
−

<N>∑(
N

KP{1}
− N

KP2

+ . . .

))
+ e(N),

(12)
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therefore:

e(N) = K

<N>∑((
N

KP{1}
−
[

N

KP{1}

])
−

K∑
k=1

(
N

KP{2}
−
[

N

KP{2}

])
+ . . .

)
(13)

For each bracketed individual term within the
∑

, the difference between each continuous
term and the corresponding integer one is:

(
N
a

)
−
[
N
a

]
; using the maximum difference of 1 for

each even term and the minimum of 0 for each odd term we can bound the upper limit, and then
using the 0 for each even term and 1 for each odd term we bound the lower limit:

<N>∑(
− 1

P{2}
− 1

P{4}
− . . .

)
≤ e(N) ≤

<N>∑(
1

P{1}
+

1

P{3}
+ . . .

)
(14)

Each
<N>∑

1
P{r}

term is divergent as N → ∞ because each includes a term
N∑
r=k

1
Pr

. Using

Everset & Ward [1] (p. 13), we find:

<N>∑ 1

P{1}
=

N∑
r=1

1

Pr
= Log(Log(N)) + .261 +O

(
1

Log(N)

)
, (15)

and noting that: 1
P{k+1}

< 1
2

1
P{k}

for all k ≥ 1, we get:

e(N) = cLog(Log(N)) + d+O

(
1

Log(N)

)
, (16)

with −0.666 ≤ c ≤ 1.666 and −0.174 ≤ d ≤ 0.435 resulting in the desired bound.

Using the product definition of the Riemann Zeta function

ζ(s) =
∞∏
r=1

(
1− 1

P s
r

)−1
= 1 +

1

2s
+

1

3s
+ . . . , s > 1, (17)

and also the well-known expansion of the logarithm:

N∑
r=1

1

r
= Log(N) + γN , (18)

where γN is the N th approximant to the Euler-Mascheroni constant, we use (11) and write:

π(N) = N

<N>∏
r=1

(
1− 1

Pr

)
+ e(N) =

N
N∑
r=1

1
r

+ ∆(N)

+ e(N)

=
N

Log(N) + γN + ∆(N)
+ e(N)

(19)

where ∆(N) is the error term in the conversion of the product to the sum. There appears no easy
way to determine ∆(N) directly from the following expression:

<N>∏
r=1

(
1− 1

Pr

)(<N>∑
r=1

1

r
+ ∆(N)

)
= 1 (20)

but it can be derived with the following limiting process:
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Theorem 3. ∆(N) = −1

Proof. We take equation (20) but add an extra parameter s, writing:

<N>∏
r=1

(
1− 1

P s
r

)(<N>∏
r=1

(
1− 1

P s
r

)−1
+ ∆s(N)

)

=

(
∞∑
r=1

µ(r)

rs
−

∞∑
r=<N>+1

µ(r)

rs

)(
∞∑
r=1

1

rs
−

∞∑
r=<N>+1

1

rs
+ ∆s(N)

)

=

(
ζ(s)−1 −

∞∑
r=<N>+1

µ(R)

rs

)(
ζ(s)−

∞∑
r=<N>+1

1

rs
+ ∆s(N)

)
= 1,

(21)

where µ(r) is the Möbius function, and ζ(s) the Riemann Zeta function. For all s > 1 the terms
in (21) are convergent. Letting s→ 1, results in (20). Solving for ∆s(N) we get:

∆s(N) =

∞∑
r=<N>+1

µ(r)
rs

+ ζ(s)−1
(

∞∑
r=<N>+1

1
rs

)
ζ(s)−1 −

∞∑
r=<N>+1

µ(r)
rs

(22)

Letting s→ 1 now results in ζ(s)−1 → 0, and we find ∆(N) = ∆1(N) = −1.

Equation (19) thus represents the standard asymptotic prime number formula:

π(N) ∼ N

Log(N) + γN − 1
+ cLog(Log(N)) + d

∼ N

Log(N)
, as N →∞.

(23)

6 Derivation of Dirichlet’s Theorem

Using the above results we can now deduce an alternate derivation of Dirichlet’s Theorem on the
distribution of primes in a linear equation. We consider the sequence:

dk = αk + β, k = 1, 2, . . .M, (24)

with (α, β) = 1, and M =
[
N−β
α

]
. Let the prime factors of α be: {Q} = Q1, Q2, . . . , Qk. P ∗{r}

denotes the set of primes but with factors of α omitted. We also define the sum function of the
sequence as π1(α,N) to differentiate from the prime numbers sum function π(N). The subscript
1 refers to the fact that vwe are only considering one sequence, and as we shall see later β is not
needed.

Theorem 4. The number of times dk is prime in range (0, N) is given by:

π1(α,N) ∼ M
<M>∏

(1− 1
Pr

)
<M>∏

(1− 1
Qr

)
,
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Proof. In any subset of Pi terms, Pi prime:

dn = αn+ β, n = k, k + 1, . . . , k + Pi − 1, (α, Pi) = 1, (25)

one of the dn terms will be divisible by Pi, and therefore
[
M
Pi

]
terms of the linear sequence that

are divisible by Pi. With reference to (8), the number of terms not divisible by any of the primes
Pr (Pr ≤ N), omitting the primes {Q} is:

π1(α,N) =
L∑
k=1

U(M − Pk) =
L∑
k=1

([
M

P ∗k

]
−

<M>∑ ([
M

P ∗kP{1}

]
−
[

M

P ∗kP{2}

]
+ . . .

))
(26)

and following the same procedure given in (9) and (10), we remove the [] brackets and obtain:

π1(α,N) =
L∑
k=1

([
M

P ∗k

]
−

<M>∑ ([
M

PkP ∗{1}

]
−

[
M

PkP ∗{2}

]
+ . . .

))

=

(
L∑
k=1

1

sk

)
M

(
1−

<N>∑(
1

P ∗{1}
− 1

P ∗{2}
+

1

P ∗{1}
− . . .

))
+ e′(M),

(27)

and with reference to (11), we now choose all sk = π1(α,N) and obtain:

π1(α,N) =
M

<M>∏ (
1− 1

Pr

)
<M>∏ (

1− 1
Qr

) + e′(M) (28)

and the theorem is proved.

So with reference to (19) we can now substitute for the two product terms and write:

π1(α,N) =

(
N − β)

α
(
Log(N−β

α
) + γN−β

))
 1

<M>∏
r=1

(
1− 1

Qr

)


∼ N − β
Φ(α)(Log(N − β) + γN−β − 1− Log(α))

,

(29)

where Φ(α) is the Euler Totient function, and e′(M) the error term, cf. (19). Therefore as
N →∞, this results in the standard Dirichlet formula:

π1(α,N) ∼ N

Φ(α)Log(N)
. (30)

7 Main results

We assume at this point that r primes have been used in the generation of sequence σr in range
(0, N), with repeating subsequence τr of length Sr, starting at position P 2

r . As before, any zeros
(prime candidates) in the range (P 2

r , N) can only have prime factors P > Pr, as prime factors
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P ≤ Pr, have already been used in the generation of positions with a one. We number the i zeros
of the first occurrence of the repeating sequence τr in range (P 2

r , P
2
r +Sr−1) as: Zr1 , Zr2 , . . . , Zrk .

With no loss of generality, and for simplicity we require N − P 2
r + 1 to be divisible by Sr so that

N corresponds with the last position of the final τr sequence. Each zero will repeat at positions:

nSr + Zri , for all i = 1, 2, . . . , k, nSr + Zri ≤ N (31)

We note that Zr1 can only equal Pr+1‘ when Pr+1 ≥ P 2
r . The number of repeating τr intervals

of length Sr, Sr, in range (P 2
r + Sr, N) is given by:

mr =

[
N

Sr

]
−
[
P 2
r

Sr

]
=

[
N

Sr

]
(32)

The
[
P 2
r

Sr

]
term is zero as Pr < 2Pr−1 for all r (Hardy & Wright) [2] (p. 343). Using now

πk(Sr, N) for the number of unchanged sequences ≤ N , where the start of the τr sequences (at
P 2
r ), and k is the number of primes within the desired sequence, 2 for prime pairs, 3 for prime

triplets, etc. It is understood that each replicating prime is defined by a different linear sequence
with all αk = Sr and βk = Zrk .

Theorem 5. The number of unchanged sequences ≤ N is given by:

πk(Sr, N) ∼ Sk−1r

Φ(Sr)k
N

(Log(N))k

Proof. Considering the first prime Pr+1, it will be a divisor of the terms generated by: nSr +

Zri , n = 1, 2, . . . ,mr,
[

N
Pr+1Sr

]
times. The total number of repeating τr sequences for which one

repeating zero is divisible by Pr+1 is given by
[

N
SrPr+1

]
, and thus for k sets of repeating zeros

there are:

k

[
N

SrPr+1

]
, (33)

of them, and thus with reference to (10), the number of σr sequences where no zero within a τr
sequence is divisible by Pr+1 is given by:[

N

Sr

]
−
(
k

1

)[
N

SrPr+1

]
+

(
k

2

)[
N

SrP 2
r+1

]
−
(
k

3

)[
N

SrP 3
r+1

]
+. . .+(−1)k

(
k

k

)[
N

SrP k
r+1

]
(34)

We now remove the [ ] and can write, cf. (11), the number of generated values not divisible
by Pr+1 to be:

N

Sr

(
1− 1

Pr+1

)k
+ e”k(N) (35)

The maximum difference between
(

N
SrP 2

r+1

)
−
[

N
SrP 2

r+1

]
is 1, therefore the error term can be

bounded as follows, cf. (14):

−2k−1 = −
(
k

1

)
−
(
k

3

)
− . . . ≤ e”k(N) ≤ 1 +

(
k

2

)
+

(
k

4

)
+ . . . = 2k−1, or

e”k(N) ≤ |2k−1|
(36)
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For any k and N , e”k(N) is bounded and so may be ignored in the asymptotic expression and
thus, cf. (28) for all primes P > Pr, the number of sequences not divisible by any P > Pr is
asymptotic to:

∼ N

Sr

<N>∏
i=r+1

(
1− 1

Pi

)k
(37)

and thus with reference to (28) and (30) we have the following asymptotic expression for the
number of unchanged σr sequences ≤ N :

πk(Sr, N) ∼ Sk−1r

Φ(Sr)k
N

(Log(N))k
(38)

To derive the error term for (37) we proceed as follows. With reference to (8) we have for a
given Sr, N and k:

πk(Sr, N) =
L∑
l=1

([
N

SrPl

]
−

<N>∑([
N

SrPlP
{k}
{1}

]
−

[
N

SrPlP
{k}
{2}

]
+ . . .

))
, (39)

where P {k}{1} runs over k equal sets of primes > Pr, P
{k}
{2} runs over the same k equal sets two at a

time, and so on. Following the same reasoning we used to derive (11) we write:

πk(Sr, N) =
N

Sr

<N>∏
l=r+1

(
1− 1

Pl

)k
+ er,k(N) (40)

and again using Everest & Ward [1], cf. (15), (36), we can bound the error term:

ek,r ≤ 2k−1
(
Log(Log(N))− Log(Log(Pr)) +O

(
1

Log(N)

))
(41)

and as N →∞, we find:|er,k(N)| → |2k−1e(N)|.

We list three examples below, the first are the prime pairs (p, p + 2) generated by σ2, with
S2 = 6 and k = 2; the second a prime triplet (p, p+ 2, p+ 6) generated by σ3, with S3 = 30, and
k = 3, and the third also from σ3, a prime quadruplet (p, p+ 8, p+ 20, p+ 24) with k = 4.

Table 1.
Range Prime Prime Prime Prime Prime Prime Prime Prime Prime

pair pair pair triplet triplet triplet quadruplet quadruplet quadruplet
actual eqn. % error actual eqn. % error actual eqn. % error

102 8 7 12.5 3 1 75.0 2 1 50.0

103 34 31 8.8 9 4 55.5 5 2 40.0

104 204 177 13.2 27 19 54.5 10 7 30.0

105 1223 1131 7.5 130 99 23.8 41 31 24.4

106 8168 7858 3.8 679 590 13.1 179 154 14.0

107 58979 57738 2.1 4319 3777 12.5 855 848 8.2

108 440311 442059 −3.9 27934 25636 8.2 4733 5060 −6.9
109 3423505 3492809 −2.0 189837 181888 4.2 28507 32021 −12.3
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Authors Tomas Oliveira e Silva [3], state there are 808,675,888,577,4536 twin prime pairs
below 1018, and the asymptotic formula (38) gives 8.08175 × 1014 which results in a percentage
error of 5.1%. The error in the formula results from three sources, the first two from ignoring the
error terms e(N) and ∆(N). cf. (19), ignoring e(N) lowers the resulting value while ignoring
∆(N) increases it. The third derives from the fact that this is essentially an averaging algorithm
as the positions of the individual terms within the P{1}, P{2}, . . ., are not known, only their sums.

8 Refinement of the results

We can derive an alternate but similar formula for πk(Sr, N) which for large N has a smaller
error than (38). Each repeating zero (prime candidate) is in the same position of each τ sequence,
with the number of unchanged sequences defined by an expression of the form (29). For the first
prime we write:

N1 ∼
N

Φ(Sr)(Log(n) + γ)
(42)

N1 being the number of unchanged τr sequences, with repeating sequence length Sr. Let the
starting position of these unchanged τr sequences be:

P 2
r + qiSr, i = 1, 2, . . . , N1 (43)

The number of primes remaining after the second prime is used is given by:

N2 =

N1∑
r=1

(π1(Sr, Sr(qi + 1) + Pk)− π1(Sr, Srqi + Pk))

∼
N1∑
i=1

(
Sr(qi + 1)

Φ(Sr)(Log(Sr(qi + 1)) + γ − Log(Sr))
− Srqi

Φ(Sr)(Log(Srqi) + γ

)
,

(44)

Noting that:

N1∑
i=1

(
Sr(qi + 1)

Φ(Sr)(Log(Sr(qi + 1)) + γ − Log(Sr))
− Srqi

Φ(Sr)(Log(Srqi) + γ

)
→ N1Sr

Φ(Sr)Log(N1)
, as N1 →∞,

(45)

we find in the limit, the position of the individual intervals within the range (0, N) is irrelevant to
the final result, so we position the N1 all together in the middle of the (0, N) range and use the
following asymptotic equivalent recurrence relation:

Nk+1 =
Nk

Φ(Sr)

(
N+NkSr

2

Log
(
N+NkSr

2

)
+ γ
−

N−NkSr

2

Log
(
N−NkSr

2

)
+ γ

)
, k = 1, 2, . . . ,M − 1. (46)

For finite N it is clear the value of Nk+1 is dependent on where the range is placed within
(0, N), with a maximum value at the beginning and a minimum at the end. Using the known
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result that π
[
N
2

]
∼ π[N ] − π

[
N
2

]
, as N → ∞, we would expect the minimum error to be near

the mid point. Both (38), and the recurrence relation (46) with initial value (42), tend to the same
asymptotic value as N →∞.

Evaluating (46) with N = 1018, we obtain the result of 808,545,347,142,264 prime pairs,
giving a percentage error of .016%. Evaluating the prime quadruplet in Table 1, using a four step
recurrence relation defined by (46) reduces the percentage error from -12.3% to -6.8%.

9 Conclusions and remarks

The primary result is that all primes sequences within a (P 2
r , P

2
r + Sr − 1) range will replicate

indefinitely as N → ∞. It is also interesting is that in the limit, all sequences of the same order
(same number of primes), have the same asymptotic sum function. The value of the reccurrence
relation solution in the previous section, is in its more rapid convergence, but no improvement
appears possible in that direction.
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