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On certain logarithmic inequalities
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Abstract: We show how a logarithmic inequality from the book [1] is connected to means, and
we offer new proofs, as well as refinements. We show that Karamata’s [2] and Leach–Sholander’s
[3] inequality are in fact equivalent.
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1 Introduction

In the very interesting problem book by K. Hardy and K. S. Williams [1] (see 3., page 1) one can
find the following logarithmic inequality:

lnx

x3 − 1
<

1

3
· x+ 1

x3 + x
, (1)

where x > 0, x 6= 1.

The proof of this surprisingly strong inequality is obtained in [1] by using a quite complicated
study of auxiliary functions.

We wish to note in what follows, how inequality (1) is related to the famous logarithmic mean
L, defined by

L(a, b) =
a− b

ln a− ln b
(a 6= b);L(a, a) = a, (2)

where a and b are positive real numbers. We will show that, in terms of logarithmic mean, (1) is
due in fact to J. Karamata [2]. For a survey of results on L and connected means, see e.g. [4, 5, 6].
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Let A(a, b) =
a+ b

2
, G(a, b) =

√
ab denote the classical arithmetic, resp. geometric mean of

a and b. It is well known that, the logarithmic mean separates the geometric and arithmetic mean:

G < L < A, (3)

where G = G(a, b), etc. and a 6= b. For the history of this inequality and new proofs, see
[5, 15, 17, 18, 19].

As inequality (3) is important in many fields of mathematics, (see e.g. [9, 12, 15]), the follow-
ing famous refinement of left side of (3), due to Leach and Sholander [3] should be mentioned

3
√
G2 · A < L. (4)

Now, let us introduce the following mean K by

K(a, b) =
a 3
√
b+ b 3

√
a

3
√
b+ 3
√
a

. (5)

Letting x = 3

√
a

b
(a 6= b), inequality (1) can be written, by using (2) and (5):

L(a, b) > K(a, b). (6)

This inequality is due to Karamata [2].
We will show that inequality (6) refines (4). Also, we will give new proof and refinements to

this inequality.

2 Main results

The first result shows that (6) is indeed a refinement of (4):

Theorem 1. One has
L > K >

3
√
G2A. (7)

Proof. We have to prove the second inequality of (7), i.e.,

a 3
√
b+ b 3

√
a

3
√
b+ 3
√
a

> 3

√
ab ·

(
a+ b

2

)
. (8)

Putting a = u3, b = v3, this inequality becomes

u3v + v3u

u+ v
> uv · 3

√
u3 + v3

2
,

or after elementary transformations:

2(u2 + v2)3 > (u+ v)3 · (u3 + v3). (9)
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This inequality, which is interesting in itself, can be proved by algebraic computations; here
we present an analytic approach, used also in our paper [11]. By logarithmation, the inequality
becomes

ln 2 + 3 ln(u2 + v2)− 3 ln(u+ v)− ln(u3 + v3) = f(u) > 0. (10)

Suppose u > v. Also, for simplicity one could take v = 1 (since (9) is homogeneous).

Then one has f ′(u) =
6u

u2 + 1
− 3

u+ 1
− 3u2

u3 + 1
=

(u− 1)3

(u2 + 1)(u3 + 1)
> 0, after elementary

computations, which we omit here. Thus f(u) > f(1) = 0, and the result follows.

Remark 1. Inequality K >
3
√
G2A has been discovered by the author in 2003 [10]. For the

extensions of (9), see [10] and [16].

Theorem 2. Inequality L > K is equivalent to inequality

L >
3AG

2A+G
(11)

Proof. By letting a = u3, b = v3 the inequality L(a, b) > K(a, b) becomes the equivalent in-
equality L(u3, v3) > K(u3, v3). Now, remark that L(u3, v3) = L(u, v)· u2+uv+v2

3
and K(u3, v3) =

uv(u2+v2)
u+v

, so we get the relation

L(u, v) >
3uv(u2 + v2)

(u+ v)(u2 + uv + v2)
(12)

Let now u =
√
p, v =

√
q in (12), with p 6= q positive real numbers. Remarking that

L(
√
p,
√
q) = 2√

u+
√
v
· L(p, q), after certain computations, (12) becomes

L(p, q) >
3
√
pq(p+ q)

p+ q +
√
pq

(13)

As
√
pq = G(p, q), p+ q = 2A(p, q); inequality (13) may be written as

L >
3AG

2A+G
, (14)

where L = L(p, q) etc. Clearly, this inequality is independents of the variables p and q, and could
take L = L(a, b), A = A(a, b), G = G(a, b) in inequality (14). This proves Theorem 2.

Remark 2. For inequalities related to (11), see also [11].

Now, the surprise is that, though (6) is stronger than (4), inequality (4) implies inequality (6)!
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Theorem 3. One has
L >

3
√
G2A >

3AG

2A+G
. (15)

Proof. The first inequality of (15) is the Leach–Sholander inequality (4).
Now, remark that 3

√
G2A = geometric mean of: G,G and A = 3

√
G ·G · A, which is greater

than the harmonic mean of these three numbers:

3
1
G
+ 1

G
+ 1

A

=
3

2
G
+ 1

A

=
3AG

2A+G
.

Therefore, inequality (15) follows.

Theorem 4. One has

L >
3

√(
A+G

2

)2

·G >
3G(A+G)

A+ 5G
>

3AG

2A+G
. (16)

Proof. The first inequality of (16) is a refinement of (4), and is due to the author [7]. See also
[13].

The second inequality of (16) follows by the same argument as the proof of Theorem 3: the
geometric mean of the numbers A+G

2
, A+G

2
, G is greater than their harmonic mean, which is

3
2

A+G
+ 2

A+G
+ 1

G

=
3G(A+G)

5G+ A
.

Finally, the last inequality is equivalent, after some computations with A2 − 2AG+G2 > 0,

or (A−G)2 > 0.

Remark 3. Connections of L with other means are studied in papers [6, 8, 14].
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