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1 Introduction

As usual, we have

ζ(s) =
∞∑
k=1

1

ks
, (1)

where s ∈ C (C is the set of complex numbers) and <(s) > 1. So, ζ(s) is the so-called Riemann
zeta function.

Also, by P (s) we mean:

P (s) =
∑
p

1

ps
, (2)
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where the sum is taken over all primes. So, P (s) is the so-called prime zeta function. For P (s)
there is a well known representation

P (s) =
∞∑
k=1

µ(k)

k
ln(ζ(ks)),

(see [1, 2, 3]).
Below, we find a new representation for P (s).
Let P be the set of all primes and P be the set of all composite numbers m > 1. We set

P (s) =
∑
m

1

ms
, (3)

where m is taken over P .
From (1), (2) and (3) we have obviously:

P (s) + P (s) = ζ(s)− 1. (4)

Our aim is to express P (s) with the help of P (s) and ζ(s). By this reason, we consider the
product

P (s).
∞∑
i=2

1

is
, (5)

i.e., the product

I1.I2 =

(∑
p

1

ps

)
.

(
∞∑
l=2

1

is

)
. (6)

It is clear that the multiplication of I1 and I2 yields P , but also, some repeating terms will be
there.

Below, we describe these repeating terms under the condition that the integer s > 1.
Let p ∈ I1 and a ∈ I2 be such ones that for q ∈ I1, q 6= p and b ∈ I2 we have

1

ps
.
1

as
=

1

qs
.
1

bs
.

Then
ps.as = qs.bs.

Hence, p divides b and therefore, b = kp. Replacing the last into the above equality, we obtain:

as = ks.qs.

Hence, q divides a and therefore a = tq. Hence

ts = ks.

Therefore, t = k. Hence, a = kq, b = kp, where p 6= q are primes and k = 1, 2, 3, ....
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Now, it is clear that the expression

S =

(
∞∑
k=1

1

ks

)(∑ 1

psqs

)
, (7)

where
∑

1
psqs

is the sum taken over all primes p and q, for which p 6= q, is meeting twice. Hence,

P (s) = I1.I2 − S. (8)

We may rewrite (7) in the form
S = ζ(s).J

(s)
2 , (9)

where
J
(s)
2 =

∑ 1

psqs
. (10)

Now, from (5), (6), (9) and (10) we obtain

P (s) = P (s).(ζ(s)− 1)− ζ(s).J (s)
2 . (11)

Replacing (11) into (4), we obtain

ζ(s).P (s)− ζ(s).J (s)
2 = ζ(s)− 1. (12)

Solving (12) with respect to P (s), we obtain

P (s) = 1− 1

ζ(s)
+ J

(s)
2 . (13)

It remains only to find J (s)
2 , but we have:

(P (s))2 =

(∑
p

1

ps

)2

=
∑
p

1

p2s
+ 2J

(s)
2 (14)

and ∑
p

1

p2s
= P (2s). (15)

From (14) and (15) it follows:

J
(s)
2 =

(P (s))2 − P (2s)
2

. (16)

Using (13) and (16), we obtain easily

(1− P (s))2 = 2

ζ(s)
− 1 + P (2s).

So, we prove the following important result.
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Theorem 1. For integer s > 1, the following recurrent relation

(1− P (s))2 = 2

ζ(s)
− 1 + P (2s). (17)

holds.

Corollary 1. For integer s > 1, the following recurrent relation

P (s) = 1−

√
2

ζ(s)
− 1 + P (2s) . (18)

holds.

The proof is obvious from (17) and the fact that 0 < P (s) < 1.

Now, we make a remarkable application of (18). These equalities yield:

P (2s) = 1−

√
2

ζ(2s)
− 1 + P (4s) ,

P (4s) = 1−

√
2

ζ(4s)
− 1 + P (8s) ,

P (8s) = 1−

√
2

ζ(8s)
− 1 + P (16s) ,

etc.
Using these infinitely many equalities and putting each of them into the previous one, we

come to our main result.

Theorem 2. Prime zeta function P (s), for every fixed integer s > 1, could be expressed with the
help of the values of Riemann zeta function: ζ(2k.s), k = 0, 1, 2, 3, . . . , by the formula:

P (s) = 1−

√√√√√√ 2

ζ(s)
−

√√√√√ 2

ζ(2s)
−

√√√√ 2

ζ(4s)
−

√
2

ζ(8s)
· · · .
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