I have known Prof. József Sándor since the middle of 1980s, from the pages of the Argentinian journal *Bulletin of Number Theory and Related Topics*, which does not exists any more but in some sense was inherited by this journal. It seems that each of us has carefully followed the publications of the other, seeing that we are both interested in closely related topics in number theory. Over the years, we have developed an active correspondence, but although we live in neighbouring countries, we have never met so far.

In 1989, we published our first joint paper, but it took us almost 20 years to publish our next two collaborative papers, in 2008. Since then we have been working on a joint book on arithmetic functions, which, I sincerely believe, will be accomplished in 2017. Back in 1995, when Tony Shannon, Aldo Peretti and me were discussing the colleagues whom we would invite for members of the Editorial Board of the *Notes on Number Theory and Discrete Mathematics*, Prof. Sándor’s name was among the first ones being mentioned.

József Sándor was born on 19 November 1956 in Forteni (Farcád) near Odorheiu-Secuiesc (Székelyudvarhely), Romania. After attending elementary schools in Forteni, Taureni (Bikafalva) and Odorhei-Secuiesc, he graduated in 1980 at Babes-Bolyai University of Cluj (Kolozsvár), Romania. After 3 years of teaching and research of mathematics at Sibiu (Nagyszeben, Hermannstadt), he returned to his home town of Odorhei-Secuiesc, working in various middle schools and colleges. Beginning from 1997, and as of today, he is a member of the Department of Mathematics of Babes-Bolyai University of Cluj.
He started his research activity in 1978 as a student, publishing papers in Romania, Hungary and other countries from Europe, and later all over the world. His first publications were in the areas of number theory and mathematical analysis; then he published many papers also in other fields as geometry and geometric inequalities; special functions; theory of means; theory of inequalities; functional analysis and optimization theory; history of mathematics, etc. From the beginning, he solved many open problems related to prime numbers, Euler gamma function, Diophantine equations, arithmetic functions, approximation of functions, etc.

He found new proofs of certain results proved by others via difficult arguments, and his methods are indeed worth of a place in the “Book” imagined by P. Erdős. His first book, published by the Editorial House “Dacia” from Cluj, was “Geometric Inequalities” (in Hungarian) from 1988, known by many researchers in the field. In 1996 he published (in cooperation with Professors D. S. Mitrinovic and B. Crstici) his important monograph “Handbook of Number Theory”, by Kluwer Academic Publishers, and in 2005 and 2006 “Handbook of Number Theory I, II”, by Springer-Verlag. Other known books written by him, and connected with number theory are “Geometric Theorems, Diophantine Equations and Arithmetic Functions” (2002, USA), and “Selected Chapters of Geometry, Analysis and Number Theory: Classical Topics in New Perspectives” (2009, Germany).

Professor Sándor has published more than 1200 papers in journals all over the world. He is the Associate editor of 20 international journals, and one of the Editors-in-Chief of journal Notes in Number Theory and Discrete Mathematics. His name is known in Number theory related to “Sándor type functions”, “Sándor arithmetic inequalities”, or “Sándor–Tóth inequalities” and in the Theory of means by “Neuman–Sándor mean”, “Sándor mean”, “Sándor–Yang mean”; while in the Theory of inequalities as “Sándor–Szabó type inequalities”.

He is a member of American Mathematical Society, European Mathematical Society, János Bolyai Mathematical Society (Budapest), Romanian Mathematical Society (Bucuresti), Jangjeon Mathematical Society (Korea), Rado Ferenc Mathematical Society (Cluj). He is a reviewer of Mathematical Reviews (USA) and Zentralblatt für Matematik (Germany).

As Professor Sándor claims, he had, and has, the great joy of having many coworkers (over 50) and friends (many…) in mathematical research, and thinks, this is one of gifts that life has offered to him.

On behalf of the whole Editorial Board of the journal, for the next σ(60) years, I wish Prof. Sándor health and creative energy!

Selected papers of József Sándor in number theory and related fields

[12] Remarks on the functions $\sigma(n)$ and $\varphi(n)$, Seminar on Math. Analysis, Preprint no. 7, 1989, 7-12.

[20] On the arithmetical functions $\varphi_k(n)$ and $\sigma_k(n)$, Math. Student, 54(1990), 49-54.

[30] A note on the functions $\varphi_k(n)$ and $\sigma_k(n)$, Studia Univ. Babes-Bolyai, Math., 35(1990), no. 2, 3-6.

[38] On certain inequalities involving the Smarandache function, Smarandache Notions J., 7(1996), 3-6.

[45] On values of arithmetical functions at factorials I., Smarandache Notions J., 10(1999), 87-94.

[66] On the Diophantine equation \(\frac{1}{x} + \frac{1}{y} = \frac{1}{z} \), Octogon Math. Mag. 9(2001), no. 2, 912-913.

[84] On Diophantine equation \(\frac{1}{x_1} + \cdots + \frac{1}{x_n} = \frac{a}{b} \), Octogon Math. Mag., 11(2003), no. 1, 272-274.

[85] On a divisibility problem, Octogon Math. Mag., 11(2003), no. 1, 244-245.

[113] On certain Diophantine equations in the work of J. Bolyai (Hungarian) (with E. Kiss), Mat. Lapok, Cluj, 9(2005), 290-291.
[123] On the equation $\phi(m + n) = \phi(m) + \phi(n)$ (with L. Kovacs), Octogon Math. Mag., 14(2006), no. 2, 539-545.
[129] The Diophantine equation $x_1 \ldots x_n = y_1 \ldots y_m$, Octogon Math. Mag., 14(2006), no. 2, 894-895.
[131] On the equation \(\frac{4}{x!} = \frac{1}{y!} + \frac{1}{z!} + \frac{1}{t!} \) (with M. Bencze), Octogon Math. Mag., 14(2006), no. 2, 912-913.

[132] On the equation \(\frac{4}{\varphi(n)} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \), Octogon Math. Mag., 14(2006), no. 2, 918-919.

[140] On almost and quasi \(\varphi \), \(\sigma \), \(\psi \) and \(\sigma^x \)-lovely pairs. Octogon Math. Mag., 15(2007), no. 1, 226-228.

[142] On the arithmetical function \(\varphi(\psi(\varphi(n))) \), Octogon Math. Mag., 15(2007), no. 1, 519-521.

[143] On certain inequalities and conjectures for the functions \(\sigma \) and \(\psi \), Octogon Math. Mag., 15(2007), no. 1, 527-528.

[147] On the series \(\sum_{n=1}^j n \rho(n) \), Octogon Math. Mag., 15(2007), no. 2, 835-836.

[153] A note on the arithmetical functions \(d(n) \) and \(\alpha(n) \), Octogon Math. Mag., 16(2008), no. 1A, 270-274.

[155] On the equation $\sigma(n)/d(n)=n^{\varphi/2}$, Octogon Math. Mag., 16(2008), no. 1A, 288-290.

[156] On certain cases of insolvability of the Diophantine equation $ax^2 - by^2 = 1$, Octogon Math. Mag., 16(2008), no. 1A, 291-293.

[157] On the inequality $\sigma(n) < \frac{6n^2}{\pi^2} \psi(n)$, Octogon Math. Mag., 16(2008), no. 1A, 295-296.

[158] On Popoviciu type inequalities for the ψ and σ functions, Octogon Math. Mag., 16(2008), no. 1A, 320-322.

[159] On inequality $\sigma(n) > n + n^{1/2} + \ldots + n^{1/k}$, Octogon Math. Mag., 16(2008), no. 1B, 792-793.

[165] On $S(n! + 1)$, where S is the Smarandache function (with F. Luca), Octogon Math. Mag., 16(2008), no. 2, 1024-1026.

[166] On inequality $\prod_{k=1}^{n} \sigma(\varphi(k)) < n!$, Octogon Math. Mag., 16(2008), no. 2, 1031-1033.

[168] On the difference $\varphi(n) - \varphi(\sigma(n))$, Octogon Math. Mag., 16(2008), no. 2, 1281-1282.

[169] An elementary upper bound for $\sum_{k=1}^{n} \sigma(\varphi(k))$, Octogon Math. Mag., 16(2008), no. 2, 1289-1292.

[170] On the equation $\sigma(kn) = (k + 1)n - k$ (with Ilka Sándor), Octogon Math. Mag., 16(2008), no. 2, 1304-1306.

[171] On the equation $2\sigma(kn) = (\sigma(n))^k + (\sigma(k))^n$, Octogon Math. Mag., 16(2008), no. 2, 1312-1313.

[172] On the equation $\frac{\sigma(x)}{d(x)} = \frac{\sigma(y)}{d(y)}$ (with L. Kovács), Octogon Math. Mag., 16(2008), no. 2, 1313-1315.

[180] A divisibility property of $\sigma_1(n)$, Octogon Math. Mag., 17(2009), no. 1, 275-276.

[186] A better lower bound for $\sigma(n)$, Octogon Math. Mag., 17(2009), no. 2, 767-768.

[187] Inequalities involving $\sigma_2(n)$, Octogon Math. Mag., 17(2009), no. 2, 736-740.

[193] Even perfect numbers: divisibility properties (Hungarian), Polygon (Szeged), 19(2010), no. 1, 57-61.

[200] On the number and sum of digits of an integer (Hungarian), Polygon (Szeged), 21(20130, no. 1-2, 83-88.

[213] Wilson’s group-theoretical theorem (Hungarian), Matlap (Cluj), 13(2009), 330-331.

[214] On the sum of the first n primes (Hungarian), Matlap (Cluj), 18(2014), no. 8, 294-296.