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1 Introduction

It has been a tradition to use number sequences as entries for right circulant matrices. Works
on these special matrices normally would concentrate on the investigation of their eigenvalues,
determinants, Euclidean norms, spectral norms and inverses. Recent works on this study include
that of Bahsi and Solak [?] and Bueno [?], [?].

Bahsi and Solak used arithmetic sequence as entries. They provided the explicit formulas for
the determinant, eigenvalues, Euclidean and spectral norms, and inverses of these special type of
right circulant matrices. They also investigated the Euclidean and spectral norms of the inverses
of these matrices. Bueno also did the same in [?] (using geometric sequence) and in [?] (using
Fibonacci sequence).

In this study, we will use the sequence {sk}+∞k=0 where sk = Fk

ark
is the ratio of the kth Fibonacci

number and the kth element of geometric sequence. Hence, the right circulant matrix takes the
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form

CR(~s) =



s0 s1 s2 ... sn−2 sn−1
sn−1 s0 s1 ... sn−3 sn−2
sn−2 sn−1 s0 ... sn−4 sn−3

...
...

... . . . ...
...

s2 s3 s4 ... s0 s1
s1 s2 s3 ... sn−1 s0


.

As a continuing tradition on the study of right circulant matrices, we will derive the explicit
forms of the eigenvalues, determinant, Euclidean norm and inverse of the matrix CR(~s).

For the rest of the paper we will use |CR(~s)|, ||CR(~s)||E andC−1R (~s) to denote the determinant,
the Euclidean norm and the inverse of CR(~s).

2 Main results

We now present the main results of our study.

Theorem 2.1. The eigenvalues of CR(~s) are given by

λm =
−rFn − (Fn−1 − rn)ω−m

arn−1(r − φω−m)(r − ψω−m)
(1)

where m = 0, 1, . . . , n− 1, φ = 1+
√
5

2
, ψ = 1−

√
5

2
and ω = e2πi/n.

Proof: The discrete Fourier transform is used to solve the eigenvalues of right circulant matrices.
Solving for the eigenvalues of CR(~s) yields

λm =
n−1∑
k=0

Fk
ark

ω−mk

=
n−1∑
k=0

φk − ψk

ark
ω−mk

where m = 0, 1, . . . , n− 1, φ = 1+
√
5

2
, ψ = 1−

√
5

2
and ω = e2πi/n.

Continuing we have

λm =
1

a
√
5

[
n−1∑
k=0

(
φω−m

r

)k
−
(
ψω−m

r

)k]

=
1

a
√
5

[
1− (φ/r)n

1− φω−m/r
− 1− (ψ/r)n

1− ψω−m/r

]
=

1

arn−1
√
5

[
rn − φn

r − φω−m
− rn − ψn

r − ψω−m

]
=
−r(φn − ψn) + rnω−m(φ− ψ)− ω−m(φn−1 − ψn−1)

arn−1
√
5(r − φω−m)(r − ψω−m)
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=
−rFn + rnF1ω

−m − Fn−1ω−m

arn−1
√
5(r − φω−m)(r − ψω−m)

=
−rFn − (Fn−1 − rn)ω−m

arn−1(r − φω−m)(r − ψω−m)
.

�

Theorem 2.2.
|CR(~s)| =

(−1)nrnFn − (rn − Fn−1)n

anrn(n−1)(r2n − Ln + (−1)n)
(2)

where Ln = φn + ψn, the nth Lucas number.

Proof: Recall that the determinant is the product of the eigenvaluesm so we have

|CR(~s))| =
n−1∏
m=0

−rFn − (Fn−1 − rn)ω−m

arn−1(r − φω−m)(r − ψω−m)

Note that for any x and y,

n−1∏
m=0

(x− yω−m) = xn − yn

Using this relationship results to

|CR(~s)| =
(−1)nrnF n

n − (rn − Fn−1)n

anrn(n−1)(r2n − rn(φn + ψn) + (−1)n)

=
(−1)nrnFn − (rn − Fn−1)n

anrn(n−1)(r2n − Ln + (−1)n)

�

Theorem 2.3.

||CR(~s)||E =

√
n
5
[An − 2Bn]

|arn−1|
(3)

where An = 2r2n+2−r2L2n+r2L2+L2n−2

r4−r2L2+1
and Bn = r2n−(−1)n

r2+1
.

Proof:

||CR(~s)||E =

√√√√n
n−1∑
k=0

∣∣∣∣φk − ψkark
√
5

∣∣∣∣2

=

√√√√ n

5a2

n−1∑
m=0

[
φ2k + ψ2k − 2(−1)k

r2k

]

=

√
n

5a2

[
1− φ2n/r2n

1− φ2/r2
+

1− ψ2n/r2n

1− ψ2/r2
− 2(1− (−r−2))n

1 + r−2

]

=

√
n

5a2r2(n−1)

[
r2n − φ2n

r2 − φ2
− r2n − ψ2n

r2 − ψ2
− 2

(
r2n − (−1)n
r2 + 1

)]
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Simplifying further, we obtain

||CR(~s)||E =

√
n
5

[
2r2n+2−r2L2n+r2L2+L2n−2

r4−r2L2+1
− 2

(
r2n−(−1)n

r2+1

)]
|arn−1|

�

Theorem 2.4.
C−1R = CR (t0, t1, . . . , tn−1) (4)

where

tk = −
arn−1

n

n−1∑
m=0

(r − φω−m)(r − ψω−n)
rFn + (Fn−1 − rn)ω−m

(5)

where k = 0, 1, . . . , n− 1 and provided that (rn − Fn−1)ω−m 6= rFn.

Proof: The first row entries of the inverse of a right circulant matrix is just the inverse discrete
Fourier transform of the reciprocal of the eigenvalues. Hence, we will have

tk =
1

n

n−1∑
m=0

λ−1m ωmk

where k = 0, 1, . . . , n− 1.
Note that for the inverse to exist, all eigenvalues should be non-zero. So for all m, (rn −

Fn−1)ω
−m 6= rFn.

The above equation results to

tk = −
arn−1

n

n−1∑
m=0

(r − φω−m)(r − ψω−n)
rFn + (Fn−1 − rn)ω−m

�

3 Conclusion

In summary, we have obtained the closed form of the eigenvalues, determinant, Euclidean norm
and the inverse of CR(~s). Furthermore, we have the following observations:

• The eigenvalues, the determinant and the inverse of CR(~s) are all functions of Fn, Fn−1, φ,
ψ, a, r and n.

• The Euclidean norm of CR(~s) is a function of L2, L2n, L2n−2, a, r and n.
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