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1 Introduction

Given integers a1, . . . , ak, the linear equation a1x1 + · · · + akxk = n has solutions in integers
x1, . . . , xk if and only if g = gcd(a1, . . . , ak) divides n. However, if we restrict our solutions to
nonnegative integers, the divisibility condition is only necessary. It is therefore nontrivial to ask
for the number of solutions (x1, . . . , xk) to the equation a1x1 + · · · + akxk = n, where each xi

is nonnegative, and without loss of generality to assume that gcd(a1, . . . , ak) = 1. The Frobe-
nius number for the set {a1, . . . , ak} is the largest integer n for which this equations admits no
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solution in nonnegative integers x1, . . . , xk. In an attempt to generalize the concept of Frobenius
number, there has been some recent study (see [1, 3]) of determining the number of solutions and
characterizing n which have exactly m solutions, for each nonnegative integer m. We have been
unable to find any other references to this problem in the literature.

Given a positive and relative prime set of integers A and a nonnegative integer n, let NA(n)

denote the number of representations of n over nonnegative integers with elements in A. So if
A = {a1, . . . , ak}, with gcd(a1, . . . , ak) = 1, let

NA(n) =
∣∣{(x1, . . . , xk) : a1x1 + · · ·+ akxk = n, xi ≥ 0 for 1 ≤ i ≤ k

}∣∣ (1)

For each nonnegative integer m, let

Sm(A) =
{
n ∈ N ∪ {0} : NA(n) = m

}
, gm(A) = max Sm(A), nm(A) =

∣∣Sm(A)
∣∣ (2)

For positive integers a, d, h, k, gcd(a, d) = 1, let A = {a, ha + d, ha + 2d, . . . , ha + kd}. In
this article, we determine the set S1(A) of nonnegative integers that are uniquely expressible as
a nonnegative integer linear combination of integers in A. In particular, we determine the largest
integer and the number of integers in S1(A). We remark that when h = 1, the integers in A are
in arithmetic progression. In Section 2, we resolve the case |A| = 2. In Section 3, we solve the
problem for |A| > 2.

2 Results for A = {a, b}
Let A = {a, b}, with gcd(a, b) = 1. Explicit formula for NA(n), given by Popoviciu [4], and
later in a slightly different form by Tripathi [5], easily resolve the problem of determining Sm(A),
gm(A) and nm(A), given in (2). Popoviciu showed that

NA(n) =
n

ab
−
{
b−1n

a

}
−
{
a−1n

b

}
+ 1,

where a−1a ≡ 1 (mod b), b−1b ≡ 1 (mod a), and {x} = x − bxc for x ∈ R. We use a slightly
different form of this formula, together with some properties satisfied by the function NA(n) to
resolve the problem.

Proposition 1. (Tripathi, [5]) Let A = {a, b}, where a, b are positive and relatively prime. Then

NA(n) =
n + aa′(n) + bb′(n)

ab
− 1,

where a′(n) ≡ −na−1 (mod b), 1 ≤ a′(n) ≤ b, and b′(n) ≡ −nb−1 (mod a), 1 ≤ b′(n) ≤ a.
The function NA(n) satisfies

NA(n + kab) = NA(n) + k for k ≥ 0.

For 0 ≤ n ≤ ab− 1,
NA(n) = 0 or 1,
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with
NA(n) = 1 if and only if n ∈ Γ(A).

In particular, NA(n) = 1 for ab− a− b + 1 ≤ n ≤ ab− 1. Moreover,

NA(m) + NA(n) = 1 whenever m + n = ab− a− b.

The problem of determining Sm(A), gm(A) and nm(A) was resolved by Beck & Robins [2], with
perhaps a slightly different notation to describe their results. However, we provide a proof of
this here not only for the sake of completeness towards resolution of the main problem, but also
because it follows easily enough from Proposition 1.

Theorem 1. (Beck & Robins, [2]) Let A = {a, b}, where a, b are positive and relatively prime.
Then

S0(A) = T0(A) =
{
n : n = ab− aa′(n)− bb′(n)

}
,

and for m ≥ 1,
Sm(A) =

(
T0(A) + mab

)⋃(
T1(A) + (m− 1)ab

)
,

where

Ti(A) = Si(A) ∩ [0, ab− 1] =
{
n ∈ [0, ab− 1] : n = (i + 1)ab− aa′(n)− bb′(n)

}
, i ∈ {0, 1}.

Moreover,
max Sm(A) = max S0(A) + mab = (m + 1)ab− a− b,∣∣Sm(A)

∣∣ =
∣∣S0(A)

∣∣ = 1
2
(a− 1)(b− 1).

Proof: Let Ti(A) = Si(A) ∩ [0, ab− 1] for i = 0, 1. Note that T0(A), T1(A) partition [0, ab− 1].
Hence, for each t ≥ 0, T0(A) + tab, T1(A) + tab partition It = [tab, (t + 1)ab − 1]. Moreover,
NA(n) = t + i for n ∈ Ti(A) + tab for i = 0, 1. Hence n ∈ S0(A) = T0(A) if and only if
0 = NA(n) = n+aa′(n)+bb′(n)

ab
− 1.

Let m ≥ 1. Suppose n ∈ Sm(A). Then n ∈ Im−1∪Im. If n ∈ Im−1, then n−(m−1)ab ∈ T1;
if n ∈ Im, then n−mab ∈ T0. Therefore n ∈

(
T0(A) + mab

)
∪
(
T1(A) + (m− 1)ab

)
.

Conversely, suppose n ∈
(
T0(A) + mab

)
∪
(
T1(A) + (m− 1)ab

)
. If n ∈ T0(A) + mab, then

NA(n−mab) = 0, so that NA(n) = m. If n ∈ T1(A) + (m− 1)ab, then NA
(
n− (m− 1)ab

)
= 1,

so that NA(n) = m. Therefore n ∈ Sm(A).
Hence

Sm(A) =
(
T0(A) + mab

)⋃(
T1(A) + (m− 1)ab

)
.

It follows that St+1(A) = St(A) + ab for t ≥ 0. Therefore

max Sm(A) = max S0(A) + mab = (ab− a− b) + mab,

and ∣∣Sm(A)
∣∣ =

∣∣S0(A)
∣∣ = 1

2
(a− 1)(b− 1).
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3 Results for modified arithmetic progressions

For positive integers a, d, h, k, gcd(a, d) = 1, let A = {a, ha + d, . . . , ha + kd}. The case k = 1

is completely resolved in Section 2. Throughout this section, we may therefore assume k ≥ 2.
Theorem 2, given below, resolves the problem of determining Sm(A) for m = 0.

Theorem 2. (Tripathi, [6]) For positive integers a, d, h, k, gcd(a, d) = 1, let A = {a, ha +

d, . . . , ha + kd}. Then

S0(A) =
{
ax + dy : 1 ≤ y ≤ a− 1,−dy

a
< x ≤ h

⌈
y
k

⌉
− 1
}
.

In particular,

max S0(A) = ha
⌊
a−2
k

⌋
+ (h− 1)a + d(a− 1);∣∣S0(A)

∣∣ = 1
2
h(a + r)

⌈
a−1
k

⌉
+ 1

2
(a− 1)(d− 1),

where r ≡ a− 2 (mod k), 0 ≤ r ≤ k − 1.

The main purpose of this section is to extend Theorem 2 to m = 1. For m ≥ 1, we wish to
determine the set of nonnegative integers n for which the equation

ax0+(ha+d)x1+(ha+2d)x2+· · ·+(ha+kd)xk = a

(
x0 + h

k∑
i=1

xi

)
+d

(
k∑

i=1

ixi

)
= n (3)

has exactly m solutions in nonnegative integer tuples (x0, x1, . . . , xk). In the general case, this
appears difficult to achieve, and we restrict ourselves mainly to the case m = 1. When a = 1, it
is easy to see that the set S1(A) = {0, 1, 2, . . . , h + d − 1}. Henceforth, throughout this section,
we may therefore assume a > 1.

Each integer n can be expressed by the form ax + dy with x, y ∈ Z since gcd(a, d) = 1.
Since each xi ≥ 0 in (3), n must be of the form ax + dy with x, y ≥ 0 in order that NA(n) be
nonzero. Thus NA(n) = 0 for n < 0. Suppose n in (3) is of the form ax+dy with x, y ≥ 0. Since
gcd(a, d) = 1, we must have

k∑
i=1

ixi ≡ y (mod a).

The set S1(A) consists of nonnegative integers that are 1-representable. If mx denotes the
least nonnegative integer n in the residue class x modulo a that is representable by A, then S1(A)

must contain exactly those mx for which NA
(
mx

)
= 1. To determine mx, we must minimize

x0 + h
∑k

i=1 xi subject to
∑k

i=1 ixi ≡ x (mod a), where each xi ≥ 0. This is equivalent to
minimizing

∑k
i=1 xi subject to the same constraint since x0 = 0 for the minimum and since

h > 0. Now suppose
∑k

i=1 ixi = qk + r, where 0 ≤ r ≤ k − 1. To minimize
∑k

i=1 xi, we must
choose xk = q, and additionally xr = 1 in case r 6= 0; in both cases, we choose all other xi = 0.
Thus the minimum value of

∑k
i=1 xi is q if r = 0 and q + 1 is r 6= 0. The two cases can be

combined to yield the formula d s
k
e, where

∑k
i=1 ixi = s. We record this as

min

{
k∑

i=1

xi :
k∑

i=1

ixi = s, xi ≥ 0

}
=
⌈ s
k

⌉
(4)
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Since gcd(a, d) = 1, the set {dy : 0 ≤ y ≤ a − 1} represents a complete residue system
modulo a. Therefore, by Theorem 2,

mdy = ha
⌈
y
k

⌉
+ dy (5)

for 1 ≤ y ≤ a− 1. In fact, the same formula also applies to the case y = 0.

Proposition 2. For positive integers a, d, h, k, gcd(a, d) = 1, let A = {a, ha + d, . . . , ha + kd}.
Then

NA
(
mdy

)
=

1, if y ≤ k or k | y or k | (y + 1);

> 1, otherwise.

In particular, if k ≥ a, then mdy = ha + dy and NA
(
mdy

)
= 1 for 1 ≤ y ≤ a− 1.

Proof: Suppose (x0, . . . , xk) is a solution to (3) with n = mdy = ha
⌈
y
k

⌉
+dy. Then

∑k
i=1 ixi ≡ y

(mod a). If
∑k

i=1 ixi > y, then x0 + h
∑k

i=1 xi ≥ hdy+a
k
e by (4). But then the LHS in (3) is

greater than mdy. Therefore
∑k

i=1 ixi = y. We show there is a unique solution if y ≤ k or k | y
or k | (y + 1), but not in any other case.

If 1 ≤ y ≤ k, we must have
∑k

i=1 ixi = y and x0 + h
∑k

i=1 xi = h. By (4), the minimum
value assumed by

∑k
i=1 xi is 1, and this is possible only when xy = 1, with all other xi = 0.

Hence NA
(
mdy

)
= 1 in this case.

If y = qk or qk − 1, with q ≥ 1, we must have
∑k

i=1 ixi = y and x0 + h
∑k

i=1 xi = hq. By
(4), the minimum value assumed by

∑k
i=1 xi is q. If

∑k
i=1 xi > q, then x0 + h

∑k
i=1 xi > hq. So

we must have
∑k

i=1 ixi = y and
∑k

i=1 xi = q.
If y = qk, the only possibility is xk = q, with all other xi = 0. If y = qk − 1, the only

possibility is xk = q − 1, xk−1 = 1, with all other xi = 0. In all cases, NA
(
mdy

)
= 1.

We now show that NA
(
mdy

)
> 1 in all other cases. In all other cases, y = qk+r, 1 ≤ r ≤ k−2

and q ≥ 1. Note that there is no y in this case if k = 2, so we may henceforth also assume k ≥ 3.
It is easily verified that both (i) xk = q, xr = 1, and (ii) xk = q − 1, xk−1 = 1, xr+1 = 1 (set
xk−1 = 2 if r = k − 2) are solutions; in both cases, we set all other xi = 0. This completes the
proof that NA

(
mdy

)
> 1 for these cases. �

Proposition 3. For positive integers a, d, h, k, gcd(a, d) = 1, let A = {a, ha + d, . . . , ha + kd}.
If NA

(
n
)
≥ 1, then

NA
(
n + ma

)
> NA

(
n
)
,

where m = hda
k
e+ d.

Proof: Suppose (x0, x1, . . . , xk) is a solution to (3) for n. Then (x0 +m,x1, . . . , xk) is a solution
to (3) for n + ma. To find a distinct solution, write a = qk + r, 0 ≤ r < k. Set x′k = xk + q,
x′r = xr if r = 0 and x′r = xr + 1 if r > 0, with all other x′i = xi. Then

∑k
i=1 x

′
i−
∑k

i=1 xi equals
q if r = 0 and q + 1 if r > 1; and

∑k
i=1 ix

′
i −
∑k

i=1 ixi equals qk if r = 0 and qk + r if r > 1.
Hence

k∑
i=1

x′i −
k∑

i=1

xi =
⌈a
k

⌉
,

k∑
i=1

ix′i −
k∑

i=1

ixi = a.
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It follows that (x′0, x
′
1, . . . , x

′
k) is a solution to (3) for n + ma distinct from (x0 + m,x1, . . . , xk).

Thus NA
(
n + ma

)
> NA

(
n
)

whenever NA
(
n
)
≥ 1. �

Proposition 4. For positive integers a, d, h, k, gcd(a, d) = 1, let A = {a, ha + d, . . . , ha + kd}.
If NA

(
n
)
≥ 1 for some n ≡ dy (mod a) with 1 < y < a, then

NA
(
n + ha

)
> NA

(
n
)
.

Proof: Suppose (x0, x1, . . . , xk) is a solution to (3) for n. Then (x0 + h, x1, . . . , xk) is a solution
to (3) for n + ha. To find a distinct solution, write y = qk + r. If q = 0, there is a solution
with xr = 1; then (x0, x1 + 1, . . . , xr−1 + 1, xr − 1, . . . , xk) (merge x1 + 1 and xr−1 + 1 into
xr−1 + 2 when r = 2) is a solution to (3) for n + ha. If q > 0, there is a solution with xk = q;
then (x0, x1 + 1, . . . , xk−1 + 1, xk − 1) is a solution to (3) for n + ha. Since we obtain solutions
distinct from (x0 + h, x1, . . . , xk) in both cases, we have NA

(
n+ ha

)
> NA

(
n
)

in all cases where
y ∈ {2, 3, . . . , a− 1}. �

Proposition 5. For positive integers a, d, h, k, gcd(a, d) = 1, let A = {a, ha + d, . . . , ha + kd}.
If ` is the least positive integer such that NA

(
mdy + `a

)
> NA

(
mdy

)
, then

` =



hda
k
e+ d, if y = 0;

hba
k
c+ d, if y = 1;

h, if 1 < y < a, h ≤ d;

h, if 1 < y < a, h > d, k ≤ a + 1;

d, if 1 < y ≤ k − a, h > d, a + 1 < k < 2a− 1;

h, if k − a < y < a, h > d, a + 1 < k < 2a− 1;

d, if 1 < y < a, h > d, k ≥ 2a− 1.

Proof: We use m = hda
k
e+ d in the first two cases of this proof.

CASE 1.
(
y = 0

)
In view of Propositions 2 and 3, it is enough to show that NA

(
mdy + (m− 1)a

)
= NA

(
mdy

)
,

which reduces to showing NA
(
(m− 1)a

)
= 1.

Suppose (x0, . . . , xk) is a solution to (3) with n = (m − 1)a. Then
∑k

i=1 ixi = ta, with
t ≥ 0. If

∑k
i=1 ixi ≥ a, then

∑k
i=1 xi ≥ dake by (4). But then the LHS in (3) is at least as much

as ma. So
∑k

i=1 ixi = 0, which implies xi = 0 for i > 0. This forces x0 = m − 1. Hence
NA
(
(m− 1)a

)
= 1, as desired.

CASE 2.
(
y = 1

)
Note that da

k
e equals ba

k
c when k | a, and 1 + ba

k
c when k - a. We therefore consider two

subcases.
Subcase (i).

(
k | a

)
In view of Propositions 2 and 3, it is enough to show that NA

(
mdy + (m− 1)a

)
= NA

(
mdy

)
,

which reduces to showing NA
(
(h + m− 1)a + d

)
= 1.

Suppose (x0, . . . , xk) is a solution to (3) with n = (h+m−1)a+d. Then
∑k

i=1 ixi = ta+1,
with t ≥ 0. If

∑k
i=1 ixi ≥ a + 1, then

∑k
i=1 xi ≥ da+1

k
e = da

k
e + 1 by (4). But then the LHS in
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(3) is at least as much as (h+m)a+d. So
∑k

i=1 ixi = 1, which implies x1 = 1, xi = 0 for i > 1.
This forces x0 = m− 1. Hence NA

(
(m− 1)a

)
= 1, as desired.

Subcase (ii).
(
k - a

)
In view of Propositions 2 and 3, it is enough to show that NA

(
mdy + (m− h)a

)
> NA

(
mdy +

(m− h− 1)a
)

= NA
(
mdy

)
. This amounts to showing NA

(
ma + d

)
> NA

(
(m− 1)a + d

)
= 1.

Suppose (x0, . . . , xk) is a solution to (3) with n = (m − 1)a + d. As in subcase (i), if∑k
i=1 ixi ≥ a+1, then

∑k
i=1 xi ≥ da+1

k
e = da

k
e by (4). Thus the LHS in (3) is at least as much as

hada
k
e+d(a+1) > ma. Hence

∑k
i=1 ixi = 1, so that

∑k
i=1 xi = 1, which forces x0 = m−h−1.

This shows that NA
(
(m− 1)a + d

)
= 1, as desired.

We now exhibit two solutions to (3) with n = ma + d. If
∑k

i=1 ixi = 1, we get x1 = 1

and xi = 0 for i > 1. Thus
∑k

i=1 xi = 1, and setting x0 = m − h provides a solution. For
a second solution, suppose

∑k
i=1 ixi = a + 1. By (4), we may choose x1, . . . , xk such that∑k

i=1 xi = da+1
k
e = da

k
e. Setting x0 = 0 provides a solution. Hence NA

(
ma+d

)
> 1, as desired.

CASE 3.
(
1 < y < a, h ≤ d, or 1 < y < a, h > d, k ≤ a + 1, or k − a < y < a, h > d,

a + 1 < k < 2a− 1
)

In view of Proposition 4, it is enough to show that NA
(
mdy + (h− 1)a

)
= NA

(
mdy

)
.

We claim that (x0, x1, . . . , xk) is a solution to (3) with n = mdy if and only if (x0 + h −
1, x1, . . . , xk) is a solution to (3) with n = mdy + (h− 1)a.

If (x0, x1, . . . , xk) is a solution to (3) with n = mdy, it is easily verified that (x0 + h −
1, x1, . . . , xk) is a solution to (3) with n = mdy + (h− 1)a. Conversely, suppose (x′0, x

′
1, . . . , x

′
k)

is a solution to (3) with n = mdy + (h− 1)a. Thus
∑k

i=1 ix
′
i ≡ y (mod a).

If
∑k

i=1 ix
′
i ≥ y + a, then

∑k
i=1 x

′
i ≥ d

y+a
k
e by (4). Hence the LHS in (3) is at least as much

as hady+a
k
e+ d(y + a).

If h ≤ d, then for 1 < y < a, hady+a
k
e+ d(y + a) ≥ had y

k
e+ dy + ha = mdy + ha.

If h > d and k ≤ a, then for 1 < y < a, hady+a
k
e+d(y+a) > ha

(
1+d y

k
e
)

+dy = mdy +ha.
If h > d and k = a+ 1, then for 1 < y < a, y

k
< 1 < y+a

k
< 2. Hence hady+a

k
e+ d(y + a) >

ha
(
1 + d y

k
e
)

+ dy = mdy + ha.
If h > d and a + 1 < k < 2a− 1, then for k − a < y < a, dy+a

k
e > d y

k
e since y+a

k
> 1 > y

k
.

Therefore hady+a
k
e+ d(y + a) ≥ ha

(
1 + d y

k
e
)

+ dy = mdy + ha.
Hence

∑k
i=1 ix

′
i = y. Therefore (x′0, x

′
1, . . . , x

′
k) must satisfy x′0+h

∑k
i=1 x

′
i = h

(
1+d y

k
e
)
−1.

Hence x′0 ≡ −1 (mod h), and since x′0 must be nonnegative, x′0 ≥ h − 1. It now follows that(
x′0 − (h− 1), x′1, . . . , x

′
k

)
is a solution to (3) with n = mdy.

CASE 4.
(
1 < y ≤ k − a, h > d, a + 1 < k < 2a− 1, or 1 < y < a, h > d, k ≥ 2a− 1

)
Since y < a < k, we have mdy = ha + dy by (5) and NA

(
mdy

)
= 1 by Proposition 2.

Therefore we must show that NA
(
ha + dy + da

)
> NA

(
ha + dy + (d− 1)a

)
= 1.

Suppose (x0, . . . , xk) is a solution to (3) with n = (h + d − 1)a + dy. Thus
∑k

i=1 ixi ≡ y

(mod a). If
∑k

i=1 ixi ≥ y + a, then
∑k

i=1 xi ≥ 1 by (4). But then the LHS of (3) is at least as
much as ha + d(y + a), which is greater than (h + d − 1)a + dy. Therefore

∑k
i=1 ixi = y. If∑k

i=1 xi ≥ 2, we must have (h+ d− 1)a+ dy ≥ a(x0 + 2h) + dy. But then x0 ≤ d− 1− h < 0.
Thus

∑k
i=1 xi = 1. Hence a(x0 + h) + dy = (h + d − 1)a + dy, so that x0 = d − 1. Therefore

NA
(
ha + dy + (d− 1)a

)
= 1.
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We now exhibit two solutions to (3) with n = (h + d)a + dy. For the first solution, we
choose x1, . . . , xk such

∑k
i=1 ixi = y and

∑k
i=1 xi = 1. Thus we must have a(x0 + h) + dy =

ha+ d(y + a), so that x0 = d. For the second solution, choose x1, . . . , xk such
∑k

i=1 ixi = y + a

and
∑k

i=1 xi = dy+a
k
e = 1. Thus we must have a(x0 +h) + d(y+ a) = ha+ d(y+ a), so x0 = 0.

Therefore NA
(
ha + dy + da

)
≥ 2.

This completes the proof. �

Propositions 2, 3, 4, and 5 are each vital in providing a complete description of S1(A), on
lines similar to Theorem 2.

Theorem 3. For positive integers a, d, k, h, gcd(a, d) = 1, let A = {a, ha+d, ha+ 2d, . . . , ha+

kd}. Let

T1 =
{
ta : 0 ≤ t ≤ h

⌈
a
k

⌉
+ d− 1

}
,

T2 =
{
ha + d + ta : 0 ≤ t ≤ h

⌊
a
k

⌋
+ d− 1

}
,

T3 =
{
ha + dy + ta : 1 < y < k − 1, 0 ≤ t ≤ h− 1

}
,

T4 =
{
ha + dy + ta : 1 < y < a, 0 ≤ t ≤ d− 1

}
,

T5 =
{
ha + dy + ta : 1 < y < a, 0 ≤ t ≤ h− 1

}
,

T6 =
{
ha + dy + ta : 1 < y ≤ k − a, 0 ≤ t ≤ d− 1

}
,

T7 =
{
ha + dy + ta : k − a < y < a, 0 ≤ t ≤ h− 1

}
,

T8 =
{
q(ha + dk) + ta : 1 ≤ q ≤

⌊
a−1
k

⌋
, 0 ≤ t ≤ h− 1

}
,

T9 =
{
q(ha + dk)− d + ta : 1 ≤ q ≤

⌊
a
k

⌋
, 0 ≤ t ≤ h− 1

}
.

(i) If k ≤ a + 1, then S1(A) = T1 ∪ T2 ∪ T3 ∪ T8 ∪ T9.

(ii) If h ≤ d and k > a + 1, then S1(A) = T1 ∪ T2 ∪ T5.

(iii) If h > d and a + 1 < k < 2a− 1, then S1(A) = T1 ∪ T2 ∪ T6 ∪ T7.

(iv) If h > d and k ≥ 2a− 1, then S1(A) = T1 ∪ T2 ∪ T4.

In particular,

max S1(A) =



h
(
1 + ba

k
c
)

+ d− 1
)
a + d, if k ≤ a;

max {(h + d− 1)a + d, (2h− 1)a + d(a− 1)} , if k = a + 1;

max {(h + d− 1)a + d, (2h− 1)a + d(a− 1)} , if h ≤ d, k > a + 1;

(2h− 1)a + d(a− 1), if h > d, a + 1 < k < 2a− 1;

(h + d− 1)a + d(a− 1), if h > d, k ≥ 2a− 1.
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∣∣S1(A)
∣∣ =


h
(
2
⌈
a
k

⌉
+ 2

⌊
a
k

⌋
+ k − 4

)
+ 2d, if k ≤ a + 1;

h(a− 1) + 2d, if h ≤ d, k > a + 1;

h(2a− k) + d(k − a + 1), if h > d, a + 1 < k < 2a− 1;

h + ad, if h > d, k ≥ 2a− 1.

Proof: For each y ∈ {0, 1, . . . , a−1}, mdy denotes the least nonnegative integer n ≡ dy (mod a)

for which NA(n) > 0. By Proposition 2, mdy ∈ S1(A) if and only if y ≤ k or k | y or k | (y + 1).
Proposition 5 determines the least positive integer ` for which NA

(
mdy + `a

)
> NA

(
mdy

)
. Since

NA
(
n + a

)
≥ NA

(
n
)

for each n ≥ 0,

S1(A) =
{
mdy,mdy + a, . . . ,mdy + (`− 1)a : y ≤ k, or k | y, or k | (y + 1)

}
.

We consider the two cases (I) h ≤ d, and (II) h > d. Case (I) further has two subcases: (i)
k ≤ a+ 1, and (ii) k > a+ 1. Case (II) has three subcases: (i) k ≤ a+ 1, (ii) a+ 1 < k < 2a−1,
and (iii) k ≥ 2a − 1. Listing the elements in the set S1(A) follows from a careful examination
of the value of ` from Proposition 5. Computation of the largest element and the size of the set
S1(A) follows routinely from the characterization of S1(A). �
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