Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 22, 2016, No. 3, 36–44

On integers that are uniquely representable by modified arithmetic progressions

Sarthak Chimni¹, Soumya Sankar² and Amitabha Tripathi³

¹ Department of Mathematics, Statistics, and Computer Science The University of Illinois at Chicago 851 South Morgan Street, Chicago, IL 60607, USA e-mail: sarthakchimni@gmail.com

² Department of Mathematics, University of Wisconsin–Madison Van Vleck Hall, 480 Lincoln Drive, Madison, WI 53706, USA e-mail: soumya121192@gmail.com

³ Department of Mathematics, Indian Institute of Technology Hauz Khas, New Delhi – 110016, India e-mail: atripath@maths.iitd.ac.in

Received: 29 September 2015 Revised: 29 June 2016 Accepted: 12 July 2016

Abstract: For positive integers a, d, h, k, gcd(a, d) = 1, let $A = \{a, ha+d, ha+2d, \dots, ha+kd\}$. We characterize the set of nonnegative integers that are uniquely representable by nonnegative integer linear combinations of elements of A.

Keywords: *m*-representable, Frobenius number.

AMS Classification: 11D04.

1 Introduction

Given integers a_1, \ldots, a_k , the linear equation $a_1x_1 + \cdots + a_kx_k = n$ has solutions in integers x_1, \ldots, x_k if and only if $g = \gcd(a_1, \ldots, a_k)$ divides n. However, if we restrict our solutions to nonnegative integers, the divisibility condition is only necessary. It is therefore nontrivial to ask for the number of solutions (x_1, \ldots, x_k) to the equation $a_1x_1 + \cdots + a_kx_k = n$, where each x_i is nonnegative, and without loss of generality to assume that $\gcd(a_1, \ldots, a_k) = 1$. The *Frobe*-*nius number* for the set $\{a_1, \ldots, a_k\}$ is the largest integer n for which this equations admits no

solution in nonnegative integers x_1, \ldots, x_k . In an attempt to generalize the concept of Frobenius number, there has been some recent study (see [1, 3]) of determining the number of solutions and characterizing n which have exactly m solutions, for each nonnegative integer m. We have been unable to find any other references to this problem in the literature.

Given a positive and relative prime set of integers A and a nonnegative integer n, let $N_A(n)$ denote the number of representations of n over nonnegative integers with elements in A. So if $A = \{a_1, \ldots, a_k\}$, with $gcd(a_1, \ldots, a_k) = 1$, let

$$\mathbb{N}_{A}(n) = \left| \left\{ (x_{1}, \dots, x_{k}) : a_{1}x_{1} + \dots + a_{k}x_{k} = n, x_{i} \ge 0 \text{ for } 1 \le i \le k \right\} \right|$$
(1)

For each nonnegative integer m, let

$$\mathbf{S}_m(A) = \left\{ n \in \mathbb{N} \cup \{0\} : \mathbb{N}_A(n) = m \right\}, \ \mathbf{g}_m(A) = \max \mathbf{S}_m(A), \ \mathbf{n}_m(A) = \left| \mathbf{S}_m(A) \right|$$
(2)

For positive integers a, d, h, k, gcd(a, d) = 1, let $A = \{a, ha + d, ha + 2d, ..., ha + kd\}$. In this article, we determine the set $S_1(A)$ of nonnegative integers that are uniquely expressible as a nonnegative integer linear combination of integers in A. In particular, we determine the largest integer and the number of integers in $S_1(A)$. We remark that when h = 1, the integers in A are in arithmetic progression. In Section 2, we resolve the case |A| = 2. In Section 3, we solve the problem for |A| > 2.

2 Results for $A = \{a, b\}$

Let $A = \{a, b\}$, with gcd(a, b) = 1. Explicit formula for $N_A(n)$, given by Popoviciu [4], and later in a slightly different form by Tripathi [5], easily resolve the problem of determining $S_m(A)$, $g_m(A)$ and $n_m(A)$, given in (2). Popoviciu showed that

$$\mathbb{N}_A(n) = \frac{n}{ab} - \left\{\frac{b^{-1}n}{a}\right\} - \left\{\frac{a^{-1}n}{b}\right\} + 1,$$

where $a^{-1}a \equiv 1 \pmod{b}$, $b^{-1}b \equiv 1 \pmod{a}$, and $\{x\} = x - \lfloor x \rfloor$ for $x \in \mathbb{R}$. We use a slightly different form of this formula, together with some properties satisfied by the function $\mathbb{N}_A(n)$ to resolve the problem.

Proposition 1. (Tripathi, [5]) Let $A = \{a, b\}$, where a, b are positive and relatively prime. Then

$$\mathbb{N}_A(n) = \frac{n + aa'(n) + bb'(n)}{ab} - 1,$$

where $a'(n) \equiv -na^{-1} \pmod{b}$, $1 \leq a'(n) \leq b$, and $b'(n) \equiv -nb^{-1} \pmod{a}$, $1 \leq b'(n) \leq a$. The function $\mathbb{N}_A(n)$ satisfies

$$\mathbb{N}_A(n+kab) = \mathbb{N}_A(n) + k \text{ for } k \ge 0.$$

For $0 \leq n \leq ab - 1$,

$$N_A(n) = 0 \text{ or } 1,$$

with

$$\mathbb{N}_A(n) = 1$$
 if and only if $n \in \Gamma(A)$.

In particular, $\mathbb{N}_A(n) = 1$ for $ab - a - b + 1 \le n \le ab - 1$. Moreover,

$$\mathbb{N}_A(m) + \mathbb{N}_A(n) = 1$$
 whenever $m + n = ab - a - b$.

The problem of determining $S_m(A)$, $g_m(A)$ and $n_m(A)$ was resolved by Beck & Robins [2], with perhaps a slightly different notation to describe their results. However, we provide a proof of this here not only for the sake of completeness towards resolution of the main problem, but also because it follows easily enough from Proposition 1.

Theorem 1. (Beck & Robins, [2]) Let $A = \{a, b\}$, where a, b are positive and relatively prime. *Then*

$$S_0(A) = T_0(A) = \{n : n = ab - aa'(n) - bb'(n)\},\$$

and for $m \geq 1$,

$$\mathbf{S}_m(A) = \Big(\mathbf{T}_0(A) + mab\Big) \bigcup \Big(\mathbf{T}_1(A) + (m-1)ab\Big),$$

where

 $\mathbf{T}_{i}(A) = \mathbf{S}_{i}(A) \cap [0, ab - 1] = \left\{ n \in [0, ab - 1] : n = (i + 1)ab - aa'(n) - bb'(n) \right\}, i \in \{0, 1\}.$

Moreover,

$$\max \mathbf{S}_m(A) = \max \mathbf{S}_0(A) + mab = (m+1)ab - a - b,$$
$$\left|\mathbf{S}_m(A)\right| = \left|\mathbf{S}_0(A)\right| = \frac{1}{2}(a-1)(b-1).$$

Proof: Let $T_i(A) = S_i(A) \cap [0, ab-1]$ for i = 0, 1. Note that $T_0(A)$, $T_1(A)$ partition [0, ab-1]. Hence, for each $t \ge 0$, $T_0(A) + tab$, $T_1(A) + tab$ partition $I_t = [tab, (t+1)ab-1]$. Moreover, $N_A(n) = t + i$ for $n \in T_i(A) + tab$ for i = 0, 1. Hence $n \in S_0(A) = T_0(A)$ if and only if $0 = N_A(n) = \frac{n + aa'(n) + bb'(n)}{ab} - 1$.

Let $m \ge 1$. Suppose $n \in S_m(A)$. Then $n \in I_{m-1} \cup I_m$. If $n \in I_{m-1}$, then $n - (m-1)ab \in T_1$; if $n \in I_m$, then $n - mab \in T_0$. Therefore $n \in (T_0(A) + mab) \cup (T_1(A) + (m-1)ab)$.

Conversely, suppose $n \in (T_0(A) + mab) \cup (T_1(A) + (m-1)ab)$. If $n \in T_0(A) + mab$, then $N_A(n - mab) = 0$, so that $N_A(n) = m$. If $n \in T_1(A) + (m-1)ab$, then $N_A(n - (m-1)ab) = 1$, so that $N_A(n) = m$. Therefore $n \in S_m(A)$.

Hence

$$\mathbf{S}_m(A) = \Big(\mathbf{T}_0(A) + mab\Big) \bigcup \Big(\mathbf{T}_1(A) + (m-1)ab\Big).$$

It follows that $S_{t+1}(A) = S_t(A) + ab$ for $t \ge 0$. Therefore

$$\max \mathbf{S}_m(A) = \max \mathbf{S}_0(A) + mab = (ab - a - b) + mab,$$

and

$$|\mathbf{S}_m(A)| = |\mathbf{S}_0(A)| = \frac{1}{2}(a-1)(b-1).$$

3 Results for modified arithmetic progressions

For positive integers a, d, h, k, gcd(a, d) = 1, let $A = \{a, ha + d, ..., ha + kd\}$. The case k = 1 is completely resolved in Section 2. Throughout this section, we may therefore assume $k \ge 2$. Theorem 2, given below, resolves the problem of determining $S_m(A)$ for m = 0.

Theorem 2. (Tripathi, [6]) For positive integers a, d, h, k, gcd(a, d) = 1, let $A = \{a, ha + d, ..., ha + kd\}$. Then

$$\mathbf{S}_0(A) = \Big\{ ax + dy : 1 \le y \le a - 1, -\frac{dy}{a} < x \le h \left\lceil \frac{y}{k} \right\rceil - 1 \Big\}.$$

In particular,

$$\max S_0(A) = ha \left\lfloor \frac{a-2}{k} \right\rfloor + (h-1)a + d(a-1); \left| S_0(A) \right| = \frac{1}{2}h(a+r) \left\lceil \frac{a-1}{k} \right\rceil + \frac{1}{2}(a-1)(d-1),$$

where $r \equiv a - 2 \pmod{k}$, $0 \le r \le k - 1$.

The main purpose of this section is to extend Theorem 2 to m = 1. For $m \ge 1$, we wish to determine the set of nonnegative integers n for which the equation

$$ax_0 + (ha+d)x_1 + (ha+2d)x_2 + \dots + (ha+kd)x_k = a\left(x_0 + h\sum_{i=1}^k x_i\right) + d\left(\sum_{i=1}^k ix_i\right) = n \quad (3)$$

has exactly m solutions in nonnegative integer tuples (x_0, x_1, \ldots, x_k) . In the general case, this appears difficult to achieve, and we restrict ourselves mainly to the case m = 1. When a = 1, it is easy to see that the set $S_1(A) = \{0, 1, 2, \ldots, h + d - 1\}$. Henceforth, throughout this section, we may therefore assume a > 1.

Each integer n can be expressed by the form ax + dy with $x, y \in \mathbb{Z}$ since gcd(a, d) = 1. Since each $x_i \ge 0$ in (3), n must be of the form ax + dy with $x, y \ge 0$ in order that $\mathbb{N}_A(n)$ be nonzero. Thus $\mathbb{N}_A(n) = 0$ for n < 0. Suppose n in (3) is of the form ax + dy with $x, y \ge 0$. Since gcd(a, d) = 1, we must have

$$\sum_{i=1}^{k} ix_i \equiv y \pmod{a}.$$

The set $S_1(A)$ consists of nonnegative integers that are 1-representable. If \mathbf{m}_x denotes the least nonnegative integer n in the residue class x modulo a that is representable by A, then $S_1(A)$ must contain exactly those \mathbf{m}_x for which $N_A(\mathbf{m}_x) = 1$. To determine \mathbf{m}_x , we must minimize $x_0 + h \sum_{i=1}^k x_i$ subject to $\sum_{i=1}^k i x_i \equiv x \pmod{a}$, where each $x_i \ge 0$. This is equivalent to minimizing $\sum_{i=1}^k x_i$ subject to the same constraint since $x_0 = 0$ for the minimum and since h > 0. Now suppose $\sum_{i=1}^k i x_i = qk + r$, where $0 \le r \le k - 1$. To minimize $\sum_{i=1}^k x_i$, we must choose $x_k = q$, and additionally $x_r = 1$ in case $r \ne 0$; in both cases, we choose all other $x_i = 0$. Thus the minimum value of $\sum_{i=1}^k x_i$ is q if r = 0 and q + 1 is $r \ne 0$. The two cases can be combined to yield the formula $\left\lceil \frac{s}{k} \right\rceil$, where $\sum_{i=1}^k i x_i = s$. We record this as

$$\min\left\{\sum_{i=1}^{k} x_i : \sum_{i=1}^{k} ix_i = s, x_i \ge 0\right\} = \left\lceil \frac{s}{k} \right\rceil$$
(4)

Since gcd(a, d) = 1, the set $\{dy : 0 \le y \le a - 1\}$ represents a complete residue system modulo a. Therefore, by Theorem 2,

$$\mathbf{m}_{dy} = ha \left[\frac{y}{k} \right] + dy \tag{5}$$

for $1 \le y \le a - 1$. In fact, the same formula also applies to the case y = 0.

Proposition 2. For positive integers a, d, h, k, gcd(a, d) = 1, let $A = \{a, ha + d, ..., ha + kd\}$. Then

$$\mathbb{N}_{A}(\mathbf{m}_{dy}) = \begin{cases} 1, & \text{if } y \leq k \text{ or } k \mid y \text{ or } k \mid (y+1); \\ > 1, & \text{otherwise.} \end{cases}$$

In particular, if $k \ge a$, then $\mathbf{m}_{dy} = ha + dy$ and $\mathbb{N}_A(\mathbf{m}_{dy}) = 1$ for $1 \le y \le a - 1$.

Proof: Suppose (x_0, \ldots, x_k) is a solution to (3) with $n = \mathbf{m}_{dy} = ha \left\lceil \frac{y}{k} \right\rceil + dy$. Then $\sum_{i=1}^k ix_i \equiv y \pmod{a}$. If $\sum_{i=1}^k ix_i > y$, then $x_0 + h \sum_{i=1}^k x_i \ge h \left\lceil \frac{y+a}{k} \right\rceil$ by (4). But then the LHS in (3) is greater than \mathbf{m}_{dy} . Therefore $\sum_{i=1}^k ix_i = y$. We show there is a unique solution if $y \le k$ or $k \mid y$ or $k \mid (y+1)$, but not in any other case.

If $1 \le y \le k$, we must have $\sum_{i=1}^{k} ix_i = y$ and $x_0 + h \sum_{i=1}^{k} x_i = h$. By (4), the minimum value assumed by $\sum_{i=1}^{k} x_i$ is 1, and this is possible only when $x_y = 1$, with all other $x_i = 0$. Hence $\mathbb{N}_A(\mathbf{m}_{dy}) = 1$ in this case.

If y = qk or qk - 1, with $q \ge 1$, we must have $\sum_{i=1}^{k} ix_i = y$ and $x_0 + h \sum_{i=1}^{k} x_i = hq$. By (4), the minimum value assumed by $\sum_{i=1}^{k} x_i$ is q. If $\sum_{i=1}^{k} x_i > q$, then $x_0 + h \sum_{i=1}^{k} x_i > hq$. So we must have $\sum_{i=1}^{k} ix_i = y$ and $\sum_{i=1}^{k} x_i = q$.

If y = qk, the only possibility is $x_k = q$, with all other $x_i = 0$. If y = qk - 1, the only possibility is $x_k = q - 1$, $x_{k-1} = 1$, with all other $x_i = 0$. In all cases, $\mathbb{N}_A(\mathbf{m}_{dy}) = 1$.

We now show that $\mathbb{N}_A(\mathbf{m}_{dy}) > 1$ in all other cases. In all other cases, y = qk+r, $1 \le r \le k-2$ and $q \ge 1$. Note that there is no y in this case if k = 2, so we may henceforth also assume $k \ge 3$. It is easily verified that both (i) $x_k = q$, $x_r = 1$, and (ii) $x_k = q - 1$, $x_{k-1} = 1$, $x_{r+1} = 1$ (set $x_{k-1} = 2$ if r = k - 2) are solutions; in both cases, we set all other $x_i = 0$. This completes the proof that $\mathbb{N}_A(\mathbf{m}_{dy}) > 1$ for these cases.

Proposition 3. For positive integers a, d, h, k, gcd(a, d) = 1, let $A = \{a, ha + d, ..., ha + kd\}$. If $\mathbb{N}_A(n) \ge 1$, then

$$\mathbb{N}_A(n+ma) > \mathbb{N}_A(n),$$

where $m = h \left\lceil \frac{a}{k} \right\rceil + d$.

Proof: Suppose (x_0, x_1, \ldots, x_k) is a solution to (3) for n. Then $(x_0 + m, x_1, \ldots, x_k)$ is a solution to (3) for n + ma. To find a distinct solution, write a = qk + r, $0 \le r < k$. Set $x'_k = x_k + q$, $x'_r = x_r$ if r = 0 and $x'_r = x_r + 1$ if r > 0, with all other $x'_i = x_i$. Then $\sum_{i=1}^k x'_i - \sum_{i=1}^k x_i$ equals q if r = 0 and q + 1 if r > 1; and $\sum_{i=1}^k ix'_i - \sum_{i=1}^k ix_i$ equals qk if r = 0 and qk + r if r > 1. Hence

$$\sum_{i=1}^{k} x_i' - \sum_{i=1}^{k} x_i = \left\lceil \frac{a}{k} \right\rceil, \quad \sum_{i=1}^{k} i x_i' - \sum_{i=1}^{k} i x_i = a.$$

It follows that $(x'_0, x'_1, \ldots, x'_k)$ is a solution to (3) for n + ma distinct from $(x_0 + m, x_1, \ldots, x_k)$. Thus $\mathbb{N}_A(n + ma) > \mathbb{N}_A(n)$ whenever $\mathbb{N}_A(n) \ge 1$.

Proposition 4. For positive integers a, d, h, k, gcd(a, d) = 1, let $A = \{a, ha + d, ..., ha + kd\}$. If $\mathbb{N}_A(n) \ge 1$ for some $n \equiv dy \pmod{a}$ with 1 < y < a, then

$$\mathbb{N}_A(n+ha) > \mathbb{N}_A(n).$$

Proof: Suppose (x_0, x_1, \ldots, x_k) is a solution to (3) for n. Then $(x_0 + h, x_1, \ldots, x_k)$ is a solution to (3) for n + ha. To find a distinct solution, write y = qk + r. If q = 0, there is a solution with $x_r = 1$; then $(x_0, x_1 + 1, \ldots, x_{r-1} + 1, x_r - 1, \ldots, x_k)$ (merge $x_1 + 1$ and $x_{r-1} + 1$ into $x_{r-1} + 2$ when r = 2) is a solution to (3) for n + ha. If q > 0, there is a solution with $x_k = q$; then $(x_0, x_1 + 1, \ldots, x_{k-1} + 1, x_k - 1)$ is a solution to (3) for n + ha. Since we obtain solutions distinct from $(x_0 + h, x_1, \ldots, x_k)$ in both cases, we have $N_A(n + ha) > N_A(n)$ in all cases where $y \in \{2, 3, \ldots, a - 1\}$.

Proposition 5. For positive integers a, d, h, k, gcd(a, d) = 1, let $A = \{a, ha + d, ..., ha + kd\}$. If ℓ is the least positive integer such that $\mathbb{N}_A(\mathbf{m}_{dy} + \ell a) > \mathbb{N}_A(\mathbf{m}_{dy})$, then

$$\ell = \begin{cases} h \lceil \frac{a}{k} \rceil + d, & \text{if } y = 0; \\ h \lfloor \frac{a}{k} \rfloor + d, & \text{if } y = 1; \\ h, & \text{if } 1 < y < a, h \le d; \\ h, & \text{if } 1 < y < a, h > d, k \le a + 1; \\ d, & \text{if } 1 < y \le k - a, h > d, a + 1 < k < 2a - 1; \\ h, & \text{if } k - a < y < a, h > d, a + 1 < k < 2a - 1; \\ d, & \text{if } 1 < y < a, h > d, a + 1 < k < 2a - 1; \end{cases}$$

Proof: We use $m = h \lfloor \frac{a}{k} \rfloor + d$ in the first two cases of this proof.

CASE 1. (y = 0)

In view of Propositions 2 and 3, it is enough to show that $\mathbb{N}_A(\mathbf{m}_{dy} + (m-1)a) = \mathbb{N}_A(\mathbf{m}_{dy})$, which reduces to showing $\mathbb{N}_A((m-1)a) = 1$.

Suppose (x_0, \ldots, x_k) is a solution to (3) with n = (m-1)a. Then $\sum_{i=1}^k ix_i = ta$, with $t \ge 0$. If $\sum_{i=1}^k ix_i \ge a$, then $\sum_{i=1}^k x_i \ge \lfloor \frac{a}{k} \rfloor$ by (4). But then the LHS in (3) is at least as much as ma. So $\sum_{i=1}^k ix_i = 0$, which implies $x_i = 0$ for i > 0. This forces $x_0 = m - 1$. Hence $\mathbb{N}_A((m-1)a) = 1$, as desired.

CASE 2. (y = 1)

Note that $\lceil \frac{a}{k} \rceil$ equals $\lfloor \frac{a}{k} \rfloor$ when $k \mid a$, and $1 + \lfloor \frac{a}{k} \rfloor$ when $k \nmid a$. We therefore consider two subcases.

Subcase (i). $(k \mid a)$

In view of Propositions 2 and 3, it is enough to show that $\mathbb{N}_A(\mathbf{m}_{dy} + (m-1)a) = \mathbb{N}_A(\mathbf{m}_{dy})$, which reduces to showing $\mathbb{N}_A((h+m-1)a+d) = 1$.

Suppose (x_0, \ldots, x_k) is a solution to (3) with n = (h+m-1)a+d. Then $\sum_{i=1}^k ix_i = ta+1$, with $t \ge 0$. If $\sum_{i=1}^k ix_i \ge a+1$, then $\sum_{i=1}^k x_i \ge \lceil \frac{a+1}{k} \rceil = \lceil \frac{a}{k} \rceil + 1$ by (4). But then the LHS in

(3) is at least as much as (h+m)a + d. So $\sum_{i=1}^{k} ix_i = 1$, which implies $x_1 = 1$, $x_i = 0$ for i > 1. This forces $x_0 = m - 1$. Hence $\mathbb{N}_A((m-1)a) = 1$, as desired.

Subcase (ii). $(k \nmid a)$

In view of Propositions 2 and 3, it is enough to show that $\mathbb{N}_A(\mathbf{m}_{dy} + (m-h)a) > \mathbb{N}_A(\mathbf{m}_{dy} + (m-h-1)a) = \mathbb{N}_A(\mathbf{m}_{dy})$. This amounts to showing $\mathbb{N}_A(ma+d) > \mathbb{N}_A((m-1)a+d) = 1$.

Suppose (x_0, \ldots, x_k) is a solution to (3) with n = (m-1)a + d. As in subcase (i), if $\sum_{i=1}^k ix_i \ge a+1$, then $\sum_{i=1}^k x_i \ge \lceil \frac{a+1}{k} \rceil = \lceil \frac{a}{k} \rceil$ by (4). Thus the LHS in (3) is at least as much as $ha\lceil \frac{a}{k} \rceil + d(a+1) > ma$. Hence $\sum_{i=1}^k ix_i = 1$, so that $\sum_{i=1}^k x_i = 1$, which forces $x_0 = m-h-1$. This shows that $\mathbb{N}_A((m-1)a+d) = 1$, as desired.

We now exhibit two solutions to (3) with n = ma + d. If $\sum_{i=1}^{k} ix_i = 1$, we get $x_1 = 1$ and $x_i = 0$ for i > 1. Thus $\sum_{i=1}^{k} x_i = 1$, and setting $x_0 = m - h$ provides a solution. For a second solution, suppose $\sum_{i=1}^{k} ix_i = a + 1$. By (4), we may choose x_1, \ldots, x_k such that $\sum_{i=1}^{k} x_i = \lceil \frac{a+1}{k} \rceil = \lceil \frac{a}{k} \rceil$. Setting $x_0 = 0$ provides a solution. Hence $\mathbb{N}_A(ma+d) > 1$, as desired. CASE 3. $(1 < y < a, h \le d, \text{ or } 1 < y < a, h > d, k \le a + 1, \text{ or } k - a < y < a, h > d, a + 1 < k < 2a - 1)$

In view of Proposition 4, it is enough to show that $\mathbb{N}_A(\mathbf{m}_{dy} + (h-1)a) = \mathbb{N}_A(\mathbf{m}_{dy})$.

We claim that (x_0, x_1, \ldots, x_k) is a solution to (3) with $n = \mathbf{m}_{dy}$ if and only if $(x_0 + h - 1, x_1, \ldots, x_k)$ is a solution to (3) with $n = \mathbf{m}_{dy} + (h - 1)a$.

If (x_0, x_1, \ldots, x_k) is a solution to (3) with $n = \mathbf{m}_{dy}$, it is easily verified that $(x_0 + h - 1, x_1, \ldots, x_k)$ is a solution to (3) with $n = \mathbf{m}_{dy} + (h - 1)a$. Conversely, suppose $(x'_0, x'_1, \ldots, x'_k)$ is a solution to (3) with $n = \mathbf{m}_{dy} + (h - 1)a$. Thus $\sum_{i=1}^k ix'_i \equiv y \pmod{a}$.

If $\sum_{i=1}^{k} ix'_i \ge y + a$, then $\sum_{i=1}^{k} x'_i \ge \lceil \frac{y+a}{k} \rceil$ by (4). Hence the LHS in (3) is at least as much as $ha \lceil \frac{y+a}{k} \rceil + d(y+a)$.

If $h \leq d$, then for 1 < y < a, $ha \left\lceil \frac{y+a}{k} \right\rceil + d(y+a) \geq ha \left\lceil \frac{y}{k} \right\rceil + dy + ha = \mathbf{m}_{dy} + ha$.

If h > d and $k \le a$, then for 1 < y < a, $ha \left\lceil \frac{y+a}{k} \right\rceil + d(y+a) > ha \left(1 + \left\lceil \frac{y}{k} \right\rceil\right) + dy = \mathbf{m}_{dy} + ha$. If h > d and k = a + 1, then for 1 < y < a, $\frac{y}{k} < 1 < \frac{y+a}{k} < 2$. Hence $ha \left\lceil \frac{y+a}{k} \right\rceil + d(y+a) > ha \left(1 + \left\lceil \frac{y}{k} \right\rceil\right) + dy = \mathbf{m}_{dy} + ha$.

If h > d and a + 1 < k < 2a - 1, then for k - a < y < a, $\lceil \frac{y+a}{k} \rceil > \lceil \frac{y}{k} \rceil$ since $\frac{y+a}{k} > 1 > \frac{y}{k}$. Therefore $ha \lceil \frac{y+a}{k} \rceil + d(y+a) \ge ha \left(1 + \lceil \frac{y}{k} \rceil\right) + dy = \mathbf{m}_{dy} + ha$.

Hence $\sum_{i=1}^{k} ix'_i = y$. Therefore $(x'_0, x'_1, \dots, x'_k)$ must satisfy $x'_0 + h \sum_{i=1}^{k} x'_i = h(1 + \lceil \frac{y}{k} \rceil) - 1$. Hence $x'_0 \equiv -1 \pmod{h}$, and since x'_0 must be nonnegative, $x'_0 \geq h - 1$. It now follows that $(x'_0 - (h - 1), x'_1, \dots, x'_k)$ is a solution to (3) with $n = \mathbf{m}_{dy}$.

CASE 4. $(1 < y \le k - a, h > d, a + 1 < k < 2a - 1, \text{ or } 1 < y < a, h > d, k \ge 2a - 1)$

Since y < a < k, we have $\mathbf{m}_{dy} = ha + dy$ by (5) and $\mathbb{N}_A(\mathbf{m}_{dy}) = 1$ by Proposition 2. Therefore we must show that $\mathbb{N}_A(ha + dy + da) > \mathbb{N}_A(ha + dy + (d-1)a) = 1$.

Suppose (x_0, \ldots, x_k) is a solution to (3) with n = (h + d - 1)a + dy. Thus $\sum_{i=1}^k ix_i \equiv y \pmod{a}$. If $\sum_{i=1}^k ix_i \geq y + a$, then $\sum_{i=1}^k x_i \geq 1$ by (4). But then the LHS of (3) is at least as much as ha + d(y + a), which is greater than (h + d - 1)a + dy. Therefore $\sum_{i=1}^k ix_i = y$. If $\sum_{i=1}^k x_i \geq 2$, we must have $(h + d - 1)a + dy \geq a(x_0 + 2h) + dy$. But then $x_0 \leq d - 1 - h < 0$. Thus $\sum_{i=1}^k x_i = 1$. Hence $a(x_0 + h) + dy = (h + d - 1)a + dy$, so that $x_0 = d - 1$. Therefore $\mathbb{N}_A(ha + dy + (d - 1)a) = 1$.

We now exhibit two solutions to (3) with n = (h + d)a + dy. For the first solution, we choose x_1, \ldots, x_k such $\sum_{i=1}^k ix_i = y$ and $\sum_{i=1}^k x_i = 1$. Thus we must have $a(x_0 + h) + dy = ha + d(y + a)$, so that $x_0 = d$. For the second solution, choose x_1, \ldots, x_k such $\sum_{i=1}^k ix_i = y + a$ and $\sum_{i=1}^k x_i = \lceil \frac{y+a}{k} \rceil = 1$. Thus we must have $a(x_0 + h) + d(y + a) = ha + d(y + a)$, so $x_0 = 0$. Therefore $\mathbb{N}_A(ha + dy + da) \ge 2$.

This completes the proof.

Propositions 2, 3, 4, and 5 are each vital in providing a complete description of $S_1(A)$, on lines similar to Theorem 2.

Theorem 3. For positive integers a, d, k, h, gcd(a, d) = 1, let $A = \{a, ha + d, ha + 2d, \dots, ha + kd\}$. Let

$$T_{1} = \left\{ ta: 0 \le t \le h \left\lceil \frac{a}{k} \right\rceil + d - 1 \right\}, \\T_{2} = \left\{ ha + d + ta: 0 \le t \le h \left\lfloor \frac{a}{k} \right\rfloor + d - 1 \right\}, \\T_{3} = \left\{ ha + dy + ta: 1 < y < k - 1, 0 \le t \le h - 1 \right\}, \\T_{4} = \left\{ ha + dy + ta: 1 < y < a, 0 \le t \le d - 1 \right\}, \\T_{5} = \left\{ ha + dy + ta: 1 < y < a, 0 \le t \le h - 1 \right\}, \\T_{6} = \left\{ ha + dy + ta: 1 < y \le k - a, 0 \le t \le d - 1 \right\}, \\T_{7} = \left\{ ha + dy + ta: 1 < y \le k - a, 0 \le t \le d - 1 \right\}, \\T_{8} = \left\{ q(ha + dk) + ta: 1 \le q \le \lfloor \frac{a - 1}{k} \rfloor, 0 \le t \le h - 1 \right\}, \\T_{9} = \left\{ q(ha + dk) - d + ta: 1 \le q \le \lfloor \frac{a}{k} \rfloor, 0 \le t \le h - 1 \right\}.$$

- (i) If $k \le a + 1$, then $S_1(A) = T_1 \cup T_2 \cup T_3 \cup T_8 \cup T_9$.
- (ii) If $h \le d$ and k > a + 1, then $S_1(A) = T_1 \cup T_2 \cup T_5$.
- (iii) If h > d and a + 1 < k < 2a 1, then $S_1(A) = T_1 \cup T_2 \cup T_6 \cup T_7$.
- (iv) If h > d and $k \ge 2a 1$, then $S_1(A) = T_1 \cup T_2 \cup T_4$.

In particular,

$$\max \mathbf{S}_{1}(A) = \begin{cases} h\left(1 + \lfloor \frac{a}{k} \rfloor\right) + d - 1\right)a + d, & \text{if } k \leq a; \\ \max\left\{(h + d - 1)a + d, (2h - 1)a + d(a - 1)\right\}, & \text{if } k = a + 1; \\ \max\left\{(h + d - 1)a + d, (2h - 1)a + d(a - 1)\right\}, & \text{if } h \leq d, k > a + 1; \\ (2h - 1)a + d(a - 1), & \text{if } h > d, a + 1 < k < 2a - 1; \\ (h + d - 1)a + d(a - 1), & \text{if } h > d, k \geq 2a - 1. \end{cases}$$

$$|\mathbf{S}_{1}(A)| = \begin{cases} h\left(2\left\lceil \frac{a}{k}\right\rceil + 2\left\lfloor \frac{a}{k}\right\rfloor + k - 4\right) + 2d, & \text{if } k \le a + 1; \\ h(a - 1) + 2d, & \text{if } h \le d, \, k > a + 1; \\ h(2a - k) + d(k - a + 1), & \text{if } h > d, \, a + 1 < k < 2a - 1; \\ h + ad, & \text{if } h > d, \, k \ge 2a - 1. \end{cases}$$

Proof: For each $y \in \{0, 1, ..., a-1\}$, \mathbf{m}_{dy} denotes the least nonnegative integer $n \equiv dy \pmod{a}$ for which $\mathbb{N}_A(n) > 0$. By Proposition 2, $\mathbf{m}_{dy} \in S_1(A)$ if and only if $y \leq k$ or $k \mid y$ or $k \mid (y+1)$. Proposition 5 determines the least positive integer ℓ for which $\mathbb{N}_A(\mathbf{m}_{dy} + \ell a) > \mathbb{N}_A(\mathbf{m}_{dy})$. Since $\mathbb{N}_A(n+a) \geq \mathbb{N}_A(n)$ for each $n \geq 0$,

$$\mathbf{S}_{1}(A) = \{\mathbf{m}_{dy}, \mathbf{m}_{dy} + a, \dots, \mathbf{m}_{dy} + (\ell - 1)a : y \le k, \text{ or } k \mid y, \text{ or } k \mid (y + 1)\}$$

We consider the two cases (I) $h \leq d$, and (II) h > d. Case (I) further has two subcases: (i) $k \leq a+1$, and (ii) k > a+1. Case (II) has three subcases: (i) $k \leq a+1$, (ii) a+1 < k < 2a-1, and (iii) $k \geq 2a-1$. Listing the elements in the set $S_1(A)$ follows from a careful examination of the value of ℓ from Proposition 5. Computation of the largest element and the size of the set $S_1(A)$ follows routinely from the characterization of $S_1(A)$.

References

- [1] Beck, M., & Kifer, C. (2011) An extreme family of generalized Frobenius numbers, *Integers*, Vol. 11, Article A24, 6 pages.
- [2] Beck, M., & Robins, S., A formula related to the Frobenius problem in two dimensions, *Number Theory New York Seminar 2003*, D. Chudnovsky, G. Chudnovsky, M. Nathanson (eds.), 17–23.
- Brown, A., Dannenberg, E., Fox, J., Hanna, J., Keck, K., Moore, A., Robbins, Z., Samples, B.,& Stankewicz, J. (2010) On a generalization of the Frobenius number, *J. Integer Seq.*, Vol. 13, Article 10.1.4, 1–6.
- [4] Popoviciu, T. (1953) Asupra unei probleme de patitie a numerelor, *Acad. Republicii Populare Romane, Filiala Cluj*, Studii si cercetari stiintifice, 4, 7–58 (Romanian).
- [5] Tripathi, A. (2000) The number of solutions to ax + by = n, Fibonacci Quart., 38(4), 290–294.
- [6] Tripathi, A. (2013) The Frobenius problem for modified arithmetic progressions, *J. Integer Seq.*, 16, 1–6.