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Abstract: A necessary and sufficient condition is provided for the solvability of a binomial
congruence with a composite modulus, circumventing its prime factorization. This is a gener-
alization of Euler’s Criterion through that of Euler’s Theorem, and the concepts of order and
primitive roots. Idempotent numbers play a central role in this effort.
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1 Introduction

1.1 Overview

The solvability of binomial congruences of the form xk ≡ a (modm), k ∈ N, a ∈ Zm where the
modulusm is any integer, is generally reduced using the Chinese Remainder Theorem to a system
of congruences with prime power moduli, for which solvability can be decided with well-known
techniques. Since the algorithmic complexity of prime factorization is high, it may be worthwhile
to explore an alternative path.

This path will be set by idempotent numbers e2 ≡ e (mod m) which are projections to
divisors ofm sharing the same prime power factors, enabling us to bypass the Chinese Remainder
Theorem. Their relevance will emerge with our generalization of Euler’s Theorem, which is the
basis for the concepts of order, orbit, and index generalized to composite moduli as well. A useful
generalization of primitive roots is subsequently suggested. The mentioned alternative path must
somehow avoid the fact that genuine primitive roots which generate all coprime residues do not
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exist for a general modulus. Indeed this is accomplished with a critical theorem, leading to
a theoretical equivalence condition for the solvability of such a congruence, similar to Euler’s
Criterion. Such criteria for power residues may lead to practical reciprocity laws.

For an overview of congruences see Andrews [2], and of reciprocity see Lemmermeyer [10].
For a more complete discussion of composite moduli via idempotent numbers, see Vass [21].

1.2 Preliminaries

Notation 1.1. Let N denote the set of integers greater than or equal to 1. Let the prime numbers
be denoted as pi, i ∈ N in ascending order. Denote the prime factorization of m ∈ N as
m = pα1

1 . . . pαi
i . . . (αi ≥ 0). Denote Zm := {1, . . . ,m} and let amodm be the number b ∈ Zm

for which a ≡ b (mod m). For A ⊂ Zm, a ∈ Z write a ∈m A iff (a mod m) ∈ A. Let (a, b)
denote the greatest common divisor of the numbers a, b ∈ N. For A ⊂ N let gcd(a : a ∈ A)

denote the greatest common divisor of all the elements in A. Let [a, b] denote the least common
multiple. Let ϕ(m) denote Euler’s totient function.

Theorem 1.1. (Euler’s Theorem [5]) ∀m ∈ N, a ∈ Zm, (a,m) = 1 : aϕ(m) ≡ 1 (modm).

Theorem 1.2. (Euler’s Criterion [3, 4]) Take a modulus m of the form 2, 4, pα or 2pα with an
odd prime number p and α ∈ N (i.e. a primitive root exists). Then a ∈ Zm, (a,m) = 1 is a k-th
power residue (k ∈ N), meaning xk ≡ a (modm) is solvable for x ∈ Zm if and only if

a
ϕ(m)

(k,ϕ(m)) ≡ 1 (modm).

The proof of the above criterion relies heavily on the existence of a primitive root for moduli
of the above form. So to find a similar criterion for composite moduli, the challenge becomes to
avoid the need for a primitive root.

2 Idempotent and regular numbers

2.1 Order

Definition 2.1. A residue e ∈ Zm is an idempotent number modulo m if e2 ≡ e (mod m), and
let Em denote their set.

It is easy to show that their cardinality is |Em| = 2N where N is the number of distinct prime
power factors of m (so if m is a prime power, then Em = {1,m}). The notation e comes from
the first letter of the Hungarian word for “unit”, since as stated in Theorem 2.2 certain subsets of
Zm form abelian groups with an idempotent number as their unit element.

Theorem 2.1. (Generalization of Euler’s Theorem) ∀m ∈ N, a ∈ Zm : aϕ(m) ∈m Em.

Proof. Take any i ∈ N index for which αi > 0 in the prime factorization of m. Let us consider
two cases, depending on whether pi divides a or not. Supposing first that pi | a

αi = 1 + (αi − 1) ≤ 2αi−1 ≤ pαi−1
i ≤ pαi−1

i (pi − 1) ≤ ϕ(m)
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we may conclude that aϕ(m) ≡ 0 (mod pαi
i ). On the other hand, if pi - a then by Euler’s Theorem

1.1 and ϕ(pαi
i ) | ϕ(m) we get that aϕ(m) ≡ 1 (mod pαi

i ). Thus in both cases, for any i index
aϕ(m)(aϕ(m) − 1) ≡ 0 (mod pαi

i ) implying that aϕ(m) modm is idempotent.

Various other generalizations exist, such as the one by László Rédei [18]: ∀m ∈ N, a ∈ Zm :

am ≡ am−ϕ(m) (modm), by José Morgado [13, 14, 15], and others [23, 16, 9, 11, 7, 17].

Definition 2.2. For a ∈ Z let its order modulo m be the smallest n ∈ N power for which
an ∈m Em. Let |a|m denote this power, which exists due to the above theorem.

2.2 Regularity

Definition 2.3. [22, 12, 13, 21, 1, 19, 20] The residue a ∈ Zm is said to be regular modulo m
if a|a|m+1 ≡ a (mod m). Let Rm denote the set of all regular residues modulo m. For e ∈ Em
denote Re

m := {a ∈ Rm : a|a|m ≡ e (modm)}.

Among many interesting facts, it is true that all residues are regular modulom iffm is square-
free. Several equivalent definitions may be given for regularity. Perhaps the most straightforward
one is that a is regular iff there exists some power n > 1 for which an is congruent to a. In
essence, a ∈ Rm iff pi | a implies pαi

i | a. Note that R1
m is a reduced residue system modulo m.∗

Proposition 2.1. For any a ∈ Rm, k, l ∈ N the following hold:

1. ak ∈m Em ⇒ |a|m | k,

2. |a|m | ϕ(m),

3. ak ≡ al (modm) ⇔ k ≡ l (mod |a|m),

4. |ak|m = |a|m/(k, |a|m).

Proof. 1. Let q, r ∈ N ∪ {0} be such that k = q|a|m + r, 0 ≤ r < |a|m. Then

ak ≡ (a|a|m)q · ar ≡ a|a|m · ar ≡ ar (modm)

so ar ∈m Em, which can only be if r = 0, by the definition of order.
2. Follows from 1.
3. Clearly we have

ak ≡ al (modm) ⇒ akalϕ(m)−l ≡ alϕ(m) (modm).

Since alϕ(m) ∈m Em then by 1. and 2. we have

0 ≡ k + lϕ(m)− l ≡ k − l (mod |a|m) ⇒ k ≡ l (mod |a|m).
∗See the author’s master’s thesis [21] for the proofs, in which regular numbers were named and investigated

independently of the works of von Neumann [22] and José Morgado [12], of which the author used to be unaware.
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Now if l ≥ k and k ≡ l (mod |a|m), then for some q ≥ 0, we have l = k + q|a|m, so

al ≡ ak+q|a|m ≡ aka|a|m ≡ ak (modm)

where the last congruence holds, because a is regular.
4. Considering the congruence

(ak)
|a|m

(k,|a|m) = (a|a|m)
k

(k,|a|m) ∈m Em

we have |ak|m ≤ |a|m/(k, |a|m) by the definition of order. Also by 1. we have

akl ∈m Em ⇒ |a|m | kl ⇔
|a|m

(k, |a|m)
| l

so we have |ak|m ≥ |a|m/(k, |a|m).

Proposition 2.2. A number a ∈ Zm is regular if and only if the following equivalence holds

ak ≡ al (modm) ⇔ k ≡ l (mod |a|m) (k, l ∈ N).

Proof. By Proposition 2.1, we have that if a is regular, then the equivalence holds. On the other
hand, if the equivalence holds, then with k := |a|m + 1, l := 1 we have that a is regular.

Definition 2.4. Denote a0 := a|a|m mod m. Let the inverse of a ∈ Rm be the residue a−1 :=

a|a|m−1 modm, and for any n ∈ N denote a−n := (a−1)n modm.

Theorem 2.2. For all e ∈ Em the structure 〈Re
m; {e,−1 , ·}〉 is an abelian group.

Proof. The properties to be shown are mostly trivial, except for maybe one. We need to show
that for all a ∈ Re

m there exists a unique b ∈ Re
m such that ab ≡ e (modm).

Let b := a|a|m−1 modm. It is obvious that ab ≡ e (modm). Now, let us suppose that there exists
some other b′ ∈ Re

m such that ab′ ≡ e (modm). Then we have

a(b− b′) ≡ 0 (modm) ⇒ 0 ≡ a|a|m−1 · a(b− b′) ≡

≡ e(b− b′) ≡ b|b|m+1 − (b′)|b
′|m+1 ≡ b− b′ (modm).

Proposition 2.3. For any a ∈ Rm, n ∈ N, i, j ∈ Z we have

(an)−1 ≡ a−n (modm) and ai+j ≡ ai · aj (modm).

Proof. The first statement is equivalent to saying that

(an)|a
n|m−1 ≡ an|a|m−n (modm)

which by Proposition 2.2 is equivalent to (when n |a|m
(n,|a|m)

− n 6= 0)

n

(n, |a|m)
|a|m − n ≡ n|a|m − n (mod |a|m)
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and this congruence clearly holds. In the omitted case

n
|a|m

(n, |a|m)
− n = 0 ⇔ |a|m | n

so for some k ∈ N, we have

a−n ≡ an|a|m−n = a(n−k)|a|m ≡ a0 ≡ (an)−1 (mod |a|m).

For the second property, we can distinguish four different cases (for nonzero exponents):
The case of i, j > 0 is trivial. The case of i, j < 0:

ai+j = a−|i+j| ≡ (a−1)|i+j| = (a−1)|i| · (a−1)|j| ≡ a−|i| · a−|j| ≡ ai · aj (modm).

The case of j ≥ |i|:

ai+j = aj−|i| ⇒ aj = ai+j · a|i| ⇒ ai+j ≡ aj · (a|i|)−1 ≡ aj · a−|i| = ai · aj (modm).

The case of j < |i|:

ai+j ≡ aj−|i| ≡ a−(|i|−j) ≡ (a|i|−j)−1 ≡ (a|i| · a−j)−1 (modm)

where the last congruence is true with the application of the previous case. Lastly

(a|i| · a−j) · (a−|i| · aj) ≡ (a|i|)(a|i|)−1(aj)−1(aj) ≡ (a|a|m)|i|+j ≡ a|a|m (modm)

so by the unicity of the inverse (previous theorem), we have

(a|i| · a−j)−1 ≡ a−|i| · aj ≡ ai · aj (modm).

The case of i > 0, j < 0 is similar to the previous two.

2.3 Orbit

Definition 2.5. Let the orbit of a ∈ Zm be the set 〈a〉m := {an modm : 1 ≤ n ≤ |a|m}.

Proposition 2.4. For any b, c ∈ Rm, n, k ∈ N we have

bn, bk ∈m 〈c〉m ⇔ b(n,k) ∈m 〈c〉m.

Proof. First suppose that bn ≡ ci, bk ≡ cj (modm). Without hurting generality, we may suppose
that there exist x, y ≥ 0 such that (n, k) = nx− ky. So we have

b(n,k) = bnx−ky = bnx+(−ky) ≡ bnx · b−ky ≡ bnx · (bky)−1 ≡ (cix) · (cjy)ϕ(m)−1 ∈m 〈c〉m

with the application of Proposition 2.3.
Now, let us suppose that b(n,k) ≡ cl (modm). Then we have

bn ≡ b(n,k)
n

(n,k) ≡ (cl)
n

(n,k) ∈m 〈c〉m

and also bk ∈m 〈c〉m similarly.
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Definition 2.6. For e ∈ Em, b, c ∈ Re
m, denote

Dm(b, c) := gcd(n ∈ N : 1 ≤ n ≤ |b|m, bn ∈m 〈c〉m).

Proposition 2.5. If e ∈ Em, b, c ∈ Re
m, then Dm(b, c) | |b|m and

bk ∈m 〈c〉m ⇔ Dm(b, c) | k.

Furthermore bDm(b,c) ∈m 〈c〉m and

〈b〉m ∩ 〈c〉m = 〈bDm(b,c)〉m and |〈b〉m ∩ 〈c〉m| =
|b|m

Dm(b, c)
.

Proof. Applying Proposition 2.4 inductively bDm(b,c) ∈m 〈c〉m must hold. Now supposing that
Dm(b, c) | k we have

bk ≡ (bDm(b,c))
k

Dm(b,c) ∈m 〈c〉m.

If bk ∈m 〈c〉m then with k′ := k mod |b|m we have bk′ ∈m 〈c〉m so Dm(b, c) | k′ by definition,
and from this it follows that Dm(b, c) | k.
By the first property now proven, we get the second one

〈b〉m ∩ 〈c〉m = 〈bDm(b,c)〉m.

It is also true that Dm(b, c) | |b|m since

b|b|m ≡ e ≡ c|c|m ∈m 〈c〉m

so lastly, we have that

|〈b〉m ∩ 〈c〉m| = |〈bDm(b,c)〉m| = |bDm(b,c)|m =
|b|m

(Dm(b, c), |b|m)
=

|b|m
Dm(b, c)

.

2.4 Index

Definition 2.7. [6, 24] If it exists for a, b ∈ Zm, let the index indmb a denote the smallest n ∈ N,
for which bn ≡ a (modm). Let this existence be denoted as ∃indmb a. For a ∈ Rm let its primitive
order be the number ωm(a) := max{|b|m : b ∈ Rm, ∃indmb a}.

If (a,m) = 1 and a primitive root exists modulo m, then clearly ωm(a) = ϕ(m) = |g|m for
any primitive root g ∈ R1

m. Thus a number g ∈ Rm may be considered a “generalized primitive
root” if ωm(g) = |g|m (see [21] for further discussion).

Proposition 2.6. For any k ∈ N, e ∈ Em, a, b ∈ Re
m, ∃indmb a we have the equivalence

(k, |b|m) | indmb a ⇔ a
|b|m

(k,|b|m) ∈m Em.

Proof. The equivalence can be deduced as follows.

e ≡ a
|b|m

(k,|b|m) ≡ bind
m
b a

|b|m
(k,|b|m) ≡ b|b|m

indmb a

(k,|b|m) (modm)

⇔ |b|m | |b|m
indmb a

(k, |b|m)
⇔ indmb a

(k, |b|m)
∈ N ⇔ (k, |b|m) | indmb a.
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Proposition 2.7. If e ∈ Em, a, b ∈ Re
m, (|a|m, |b|m) = 1 then |ab|m = |a|m · |b|m.

Proof. We readily see that (ab)|a|m·|b|m ≡ e (mod m) implying |ab|m | |a|m · |b|m. For the other
direction of division, we first deduce

e ≡ (ab)|a|m·|ab|m ≡ e · b|a|m·|ab|m ≡ b|a|m·|ab|m (modm) ⇒ |b|m | |a|m · |ab|m ⇒ |b|m | |ab|m

and similarly |a|m | |ab|m also holds, implying that |a|m · |b|m | |ab|m.

Lemma 2.1. Given u, v, w ∈ N, w | (u, v) there exist u1,2, v1,2, w1,2 ∈ N such that u = u1u2, v =

v1v2, w = w1w2 and (u, v) = u2v1 and w1 | v1 | u1, w2 | u2 | v2 and 1 = (u1, u2) = (v1, v2) =

(w1, w2) = (u1, v2) = (u2, v1).

Proof. LettingC := (u, v), U := u/C, V := v/C we have (U, V ) = 1. PartitioningC according
to the prime factors of U and V , there must exist A,B ∈ N (C = AB) such that (A,B) = 1 =

(A, V ) = (B,U). Clearly u = AUB, v = AV B so defining u1 := AU, u2 := B, v1 :=

A, v2 := V B then due to w | C = AB = u2v1 there must exist w1,2 ∈ N (w = w1w2) such
that w1 | v1, w2 | u2 and clearly v1 | u1, u2 | v2. Lastly, observe that 1 = (u1, u2) = (v1, v2) =

(w1, w2) = (u1, v2) = (u2, v1) as required.

This lemma resembles Kalmár’s Four-Number Theorem [8] which can be employed to show
the Fundamental Theorem of Arithmetic, while bypassing the need for the concepts of the “great-
est common divisor” or the “least common multiple”, which are two typical approaches. Simi-
larly, our quest to show a generalization of Euler’s Criterion hinges on this lemma and the theorem
below to be shown with it, bypassing this time the lack of a cyclical generator (a “genuine” prim-
itive root) for most composite moduli.

Theorem 2.3. Suppose that e ∈ Em, a, b, c ∈ Re
m and a ∈ 〈b〉m ∩ 〈c〉m. Then there exists some

d ∈ Re
m for which a ∈ 〈d〉m and |d|m = [|b|m, |c|m].

Proof.† By Proposition 2.5 we have

〈b〉m ∩ 〈c〉m = 〈bDm(b,c)〉m = 〈cDm(c,b)〉m

so there exists some K ∈ N such that

(bDm(b,c))K ≡ cDm(c,b) (modm).

Therefore from

|bDm(b,c)|m = |〈b〉m ∩ 〈c〉m| = |cDm(c,b)|m =
|bDm(b,c)|m

(K, |bDm(b,c)|m)

we get that (K, |bDm(b,c)|m) = 1. Furthermore

|b|m
Dm(b, c)

= |〈b〉m ∩ 〈c〉m| =
|c|m

Dm(c, b)
⇒ Dm(c, b)

|b|m
(|b|m, |c|m)

= Dm(b, c)
|c|m

(|b|m, |c|m)
†The theorem was conjectured by the author, and the presented proof is a modified version of the first draft

provided by Prof. Mihály Szalay, which appeared in the author’s master’s thesis [21].
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⇒ |b|m
(|b|m, |c|m)

| Dm(b, c)
|c|m

(|b|m, |c|m)
and since

(
|b|m

(|b|m, |c|m)
,

|c|m
(|b|m, |c|m)

)
= 1 ⇒

|b|m
(|b|m, |c|m)

| Dm(b, c) and w | (|b|m, |c|m) with w :=
Dm(b, c)(|b|m, |c|m)

|b|m
∈ N.

According to Lemma 2.1, for u := |b|m, v := |c|m the following factorization is possible

|b|m = u1u2, |c|m = v1v2, w = w1w2 | (|b|m, |c|m) = u2v1

w1 | v1 | u1, w2 | u2 | v2, 1 = (u1, u2) = (v1, v2) = (u1, v2) = (u2, v1).

Then these properties hold

|bu2|m =
|b|m

(u2, |b|m)
= u1, |cv1|m =

|c|m
(v1, |c|m)

= v2, (|bu2|m, |cv1 |m) = 1

Dm(b, c) =
w|b|m

(|b|m, |c|m)
= w

u1u2
u2v1

= w
u1
v1
, Dm(c, b) = Dm(b, c)

|c|m
|b|m

= w
u1
v1

v1v2
u1u2

= w
v2
u2

|bDm(b,c)|m =
|b|m

(Dm(b, c), |b|m)
=

u1u2
Dm(b, c)

=
u1u2
w u1
v1

=
u2v1
w
∈ N.

Defining d := bu2cv1 modm we have by Proposition 2.7 the required order

|d|m = u1v2 =
u1u2v1v2
u2v1

=
|b|m|c|m

(|b|m, |c|m)
= [|b|m, |c|m].

Lastly, we need an exponent E ∈ N such that dE ≡ a (modm). First define

M := w
u1v2
v1u2

⇒ dM ≡ (bDm(b,c))v2(cDm(c,b))u1 ≡ (bDm(b,c))v2+Ku1 (modm).

Now observe that (v2 + Ku1, |bDm(b,c)|m) = 1 where |bDm(b,c)|m = u2v1/w from above, since
v1
w1
| v1 | u1 | Ku1 but (v1/w1, v2) = 1 and u2

w2
| u2 | v2 but (u2/w2, Ku1) = 1 since as we

saw above 1 = (K, |bDm(b,c)|m) = (K, u2v1/w). So there must exist an inverse N ∈ N such that
(v2+Ku1)N ≡ 1 (mod |bDm(b,c)|m). Furthermore, by the assumption of the theorem, there exists
an I ∈ N such that (bDm(b,c))I ≡ a (modm).
Multiplying the above exponents E :=MNI , we may now conclude that a ∈ 〈d〉m since

dE = dMNI ≡ (bDm(b,c))(v2+Ku1)NI ≡ (bDm(b,c))I ≡ a (modm).

3 Solvability

Proposition 3.1. For any m ∈ N, a ∈ Rm, k ∈ N, if the equation xk ≡ a (mod m) is solvable
for x ∈ Zm then necessarily

a
ϕ(m)

(k,ϕ(m)) ∈m Em.

Proof. Letting one of the solutions be denoted as x0 we have

a
ϕ(m)

(k,ϕ(m)) ≡ (xk0)
ϕ(m)

(k,ϕ(m)) ≡ (x
ϕ(m)
0 )

k
(k,ϕ(m)) ∈m Em.

16



Theorem 3.1. (Generalization of Euler’s Criterion) For any m ∈ N, a ∈ Rm, k ∈ N the
equation xk ≡ a (modm) is solvable for x ∈ Zm if and only if

a
ωm(a)

(k,ωm(a)) ∈m Em.

Proof. Let b ∈ Rm be such that ∃indmb a and |b|m = ωm(a). Then by Proposition 2.6

a
ωm(a)

(k,ωm(a)) ∈m Em ⇔ (k, |b|m) | indmb a.

If (k, |b|m) | indmb a holds, then there exists some 1 ≤ l ≤ |b|m for which kl ≡ indmb a (mod |b|m).
Therefore

bkl ≡ bind
m
b a (modm) ⇒ (bl)k ≡ a (modm)

implying that bl is a solution of the equation. Conversely, suppose that x0 is a solution, and denote
e := a|a|m modm, c := x0e modm. Then c must be a regular solution, since

ck ≡ (x0)
ke ≡ a · a|a|m ≡ a (modm)

c · c|c|m ≡ c · cϕ(m) ≡ x0e(x0e)
ϕ(m) ≡ x0e(x

ϕ(m)
0 )k ≡ x0e(x

k
0)
ϕ(m) ≡ x0e ≡ c (modm).

We now show that |c|m | |b|m. Supposing indirectly that |c|m - |b|m we have |c|m < |b|m by the
definition of ωm(a) = |b|m. We also know by Theorem 2.3 that there exists some d ∈ Rm such
that ∃indmd a and |d|m = [|b|m, |c|m]. Then |c|m - |b|m implies that |d|m > |b|m which contradicts
our original selection of b. So we must have that |c|m | |b|m implying

a
ωm(a)

(k,ωm(a)) ≡ a
|b|m

(k,|b|m) ≡ (ck)
|b|m

(k,|b|m) ≡ (c|c|m)
|b|m
|c|m
· k
(k,|b|m) ≡ e (modm).

4 Concluding remarks

A generalization of Euler’s Criterion was presented in Theorem 3.1, while the lack of a cyclical
generator (primitive root) in general, was circumvented via Theorem 2.3. The criterion

a
ωm(a)

(k,ωm(a)) ∈m Em

in its current form is theoretical. For its practical verification, the calculation of ωm(a) must be
made efficient. Likely the examination of the mapping m 7→ ωm(a) is a worthwhile direction for
future investigations, since ωm(a) = ϕ(m) when (a,m) = 1 and a primitive root is known to
exist modulo m.

This paper was inspired by the following solution devised by the author as a freshman, upon
accidentally employing Euler’s Theorem when (a,m) 6= 1 and seeing that aϕ(m) modm is idem-
potent (Theorem 2.1). This problem can nevertheless be solved in a more elementary way also.

Problem 4.1. Define a sequence of numbers (an) recursively as

a0 := 1, an := 42an−1 (n ∈ N).

What are the last two digits of a100?
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Solution. Let us first calculate the order and idempotent number for the last few terms, where
each modulus is implied by the previous order. We descend in modulus until reaching the term
a97 congruent to zero – this must necessarily occur since |a|m ≤ ϕ(m) < m.

a100 = 42a99 , |42|100 = 20, 4220 ≡ 76 (mod 100)

a99 = 42a98 , |42|20 = 4, 424 ≡ 16 (mod 20)

a98 = 42a97 , |42|4 = 2, 422 ≡ 0 (mod 4).

We reach zero with a97 ≡ 0 (mod 2) since 2 | 42 | a97, implying a97 = 2i, i ∈ N. Now working
backwards

a98 = 422i ≡ 0 (mod 4) ⇒ a98 = 4j, j ∈ N

a99 = 424j ≡ 16 (mod 20) ⇒ a99 = 20k + 16, k ∈ N

we finally arrive at the answer

a100 = 4220k+16 ≡ 76 · 4216 ≡ 76 · 56 ≡ 56 (mod 100).
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