On irrationality of some distances between points on a circle

Mladen Vassilev-Missana

5 Victor Hugo Str, Ap. 3
1124 Sofia, Bulgaria
e-mail: missana@abv.bg

Abstract

Let $n>3$ be an arbitrary integer. In the present paper, it is shown that if K is an arbitrary circle and $M_{i}, i=1, \ldots, n$, are points on K, dividing K into n equal arcs, then for each point M on K, different from the mentioned above, at least $\left\lfloor\frac{n}{3}\right\rfloor$ of the distances $\left|M M_{i}\right|$ are irrational numbers.

Keywords: Distance, Irrational number, Circle.
AMS Classification: 97G40, 11XX.

1 Preliminaries

Lemma. Let $n>3$ be an integer. Then the number $\cos \frac{\pi}{n}$ is irrational.
Proof. According to a well-known formula of de Moivre, [2], for $0<\varphi<\frac{\pi}{2}$:

$$
\begin{aligned}
& (\cos \varphi+i \sin \varphi)^{n}=\cos (n \varphi)+i \sin (n \varphi) \\
& (\cos \varphi-i \sin \varphi)^{n}=\cos (n \varphi)-i \sin (n \varphi)
\end{aligned}
$$

By pairwise addition of the above we get:

$$
\begin{equation*}
\cos (n \varphi)=\frac{(\cos \varphi+i \sin \varphi)^{n}+(\cos \varphi-i \sin \varphi)^{n}}{2} \tag{1}
\end{equation*}
$$

Putting

$$
\begin{equation*}
\cos \varphi=x \tag{2}
\end{equation*}
$$

we have: $0<x<1, \sin \varphi=\sqrt{1-x^{2}}, \varphi=\arccos x$ and (1) gives

$$
\begin{equation*}
\cos (n \arccos x)=\frac{\left(x+i \sqrt{1-x^{2}}\right)^{n}+\left(x-i \sqrt{1-x^{2}}\right)^{n}}{2} \tag{3}
\end{equation*}
$$

The right hand-side of (3) is polynomial of x of power n, known as the n-th Tchebychev polynomial of the first kind [3] and usually denoted by $T_{n}(x)$. Obviously

$$
\begin{equation*}
T_{n}(x)=\cos (n \arccos x)=\frac{\left(x+i \sqrt{1-x^{2}}\right)^{n}+\left(x-i \sqrt{1-x^{2}}\right)^{n}}{2} . \tag{4}
\end{equation*}
$$

From (4) we obtain the representation

$$
\begin{equation*}
T_{n}(x)=\cos (n \arccos x)=\sum_{k=0}^{\left[\frac{n}{2}\right]}(-1)^{k}\binom{n}{2 k} x^{n-2 k}\left(1-x^{2}\right)^{k} \tag{5}
\end{equation*}
$$

Comparing (1) and (5) we have:

$$
\begin{equation*}
\cos (n \varphi)=\sum_{k=0}^{\left[\frac{n}{2}\right]}(-1)^{k}\binom{n}{2 k} x^{n-2 k}\left(1-x^{2}\right)^{k}, \tag{6}
\end{equation*}
$$

where φ and x are related through (2).
Let $n>3$ and let us put in (6)

$$
\begin{equation*}
\varphi=\frac{\pi}{n}, \tag{7}
\end{equation*}
$$

assuming that the number $x=\cos \frac{\pi}{n}$ is rational.
Let

$$
\begin{equation*}
x=\frac{p}{q}, \tag{8}
\end{equation*}
$$

where p and q are integers such that:

$$
0<p<q ; \operatorname{gcd}(p, q)=1
$$

From (6), (7) and (8) we find:

$$
-1=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k}\binom{n}{2 k}\left(\frac{p}{q}\right)^{n-2 k}\left(1-\frac{p^{2}}{q^{2}}\right)^{k}
$$

or in other form:

$$
\begin{equation*}
\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k}\binom{n}{2 k} p^{n-2 k}\left(q^{2}-p^{2}\right)^{k}=-q^{n} \tag{9}
\end{equation*}
$$

Expanding $\left(q^{2}-p^{2}\right)^{k}$ by the Newton binomial we obtain:

$$
\left(q^{2}-p^{2}\right)^{k}=\left\{\begin{array}{l}
(-1)^{k} p^{2 k}+\alpha q^{2}, \text { for } k \geq 1 \tag{10}\\
1, \text { for } k=0
\end{array},\right.
$$

where α is an integer constant.

Equation (10) substituted in (9) gives:

$$
\begin{equation*}
p^{n} \sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 k}+\beta q^{2}=-q^{n} \tag{11}
\end{equation*}
$$

where β is integer constant.
From the equations:

$$
\begin{gathered}
2^{n}=(1+1)^{n}=\sum_{t=0}^{n}\binom{n}{t} \\
0=(1-1)^{n}=\sum_{t=0}^{n}(-1)^{t}\binom{n}{t},
\end{gathered}
$$

it follows

$$
\begin{equation*}
\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 k}=2^{n-1} \tag{12}
\end{equation*}
$$

Substituting (12) in (11) we find

$$
\begin{equation*}
2^{n-1} p^{n}+\beta q^{2}=-q^{n} . \tag{13}
\end{equation*}
$$

Since $\operatorname{gcd}(p, q)=1$, from (13) it follows that q divides 2^{n-1}. Hence,

$$
\begin{equation*}
q=2^{s}, \tag{14}
\end{equation*}
$$

where $1 \leq s \leq n-1$.
Let us first look at the case
I. n is odd.

Then we have

$$
n-2 k \geq 1
$$

Therefore, for $p>1$ the left hand side of (9) is divisible by p, while the right hand side is not. Hence, for $p>1$ (9) is impossible.

Let $p=1$. Then

$$
\begin{equation*}
\cos \frac{\pi}{n}=\frac{p}{q}=\frac{1}{2^{s}}, \tag{15}
\end{equation*}
$$

according to (14). Since $n>3$, then we should have

$$
\begin{equation*}
\cos \frac{\pi}{n}>\cos \frac{\pi}{3}=\frac{1}{2} . \tag{16}
\end{equation*}
$$

From (15) and (16) it follows:

$$
\frac{1}{2^{s}}>\frac{1}{2} .
$$

But the last is obviously false. Hence we proved that if n is odd and $n>3$, then $\cos \frac{\pi}{n}$ is an irrational number.
II. n is even.

Then $n=2 T$ and $T \geq 2$, because $n \geq 4$. Substituting in (9) we have

$$
\begin{equation*}
\sum_{k=0}^{T}(-1)^{k}\binom{2 T}{2 k}\left(p^{2}\right)^{T-k}\left(q^{2}-p^{2}\right)^{k}=-q^{2 T} \tag{17}
\end{equation*}
$$

Now we rewrite (17) in the form

$$
\begin{equation*}
\sum_{k=0}^{T-1}(-1)^{k}\binom{2 T}{2 k}\left(p^{2}\right)^{T-k}\left(q^{2}-p^{2}\right)^{k}=-q^{2 T}-(-1)^{T}\left(q^{2}-p^{2}\right)^{T} \tag{18}
\end{equation*}
$$

Let T be even. Then if we denote by L, the left hand side of (18), we have

$$
L \equiv 0 \quad(\bmod p)
$$

If we denote by R, the right hand side of (18), we have

$$
R \equiv-2 q^{2 T} \quad(\bmod p)
$$

But $q=2^{s}$ and $\operatorname{gcd}(p, q)=1$, which makes the last congruence impossible. Therefore, we have $p=1$ and as in \mathbf{I}., we conclude that $\cos \frac{\pi}{n}$ is an irrational number.

Let T be odd. Then (18) may be rewritten as

$$
\begin{equation*}
\sum_{k=0}^{T-1}(-1)^{k}\binom{2 T}{2 k}\left(p^{2}\right)^{T-k}\left(q^{2}-p^{2}\right)^{k}=\left(q^{2}-p^{2}\right)^{T}-\left(q^{2}\right)^{T} \tag{19}
\end{equation*}
$$

Let R^{*} be the right hand side of (19), we have:

$$
R^{*}=\left(q^{2}-p^{2}\right)^{T}-\left(q^{2}\right)^{T}=\left(\left(q^{2}-p^{2}\right)-q^{2}\right) R^{* *}
$$

where

$$
R^{* *}=\sum_{k=0}^{T-1}\left(q^{2}-p^{2}\right)^{T-k-1}\left(q^{2}\right)^{k}
$$

Thus, finally we find:

$$
R^{*}=-p^{2} \sum_{k=0}^{T-1}\left(q^{2}-p^{2}\right)^{T-k-1}\left(q^{2}\right)^{k}
$$

Then, dividing by p^{2} both sides of (19), we obtain:

$$
\begin{equation*}
\sum_{k=0}^{T-1}(-1)^{k}\binom{2 T}{2 k}\left(p^{2}\right)^{T-k-1}\left(q^{2}-p^{2}\right)^{k}=-\sum_{k=0}^{T-1}\left(q^{2}-p^{2}\right)^{T-k-1}\left(q^{2}\right)^{k} \tag{20}
\end{equation*}
$$

On the left hand side of (20) we single out the term corresponding to $k=0$, and on the right hand side the one corresponding to $k=T-1$, which allows us to rewrite (20) in the form.

$$
\begin{equation*}
\left(p^{2}\right)^{T-1}+\left(q^{2}\right)^{T-1}=\gamma \cdot\left(q^{2}-p^{2}\right), \tag{21}
\end{equation*}
$$

where γ is an integer constant.
From (21) it follows that

$$
2\left(q^{2}\right)^{T-1}=\gamma \cdot\left(q^{2}-p^{2}\right)+\left(q^{2}\right)^{T-1}-\left(p^{2}\right)^{T-1} .
$$

The last equality means, that there exists an integer constant δ (since $\left(q^{2}\right)^{T-1}-\left(p^{2}\right)^{T-1} \equiv 0$ $\left(\bmod \left(q^{2}-p^{2}\right)\right)$ for T odd $)$, for which

$$
\begin{equation*}
2\left(q^{2}\right)^{T-1}=\delta \cdot\left(q^{2}-p^{2}\right), \tag{22}
\end{equation*}
$$

We rewrite (22) in the form:

$$
\begin{equation*}
2^{2 s T-2 s+1}=\delta .\left(q^{2}-p^{2}\right) . \tag{23}
\end{equation*}
$$

Equality (23) is however impossible, since $q=2^{s}, p$ is odd number and therefore $q^{2}-p^{2}$ is an odd number greater than 1 . Therefore, there exist no p and q, for which $\cos \frac{\pi}{n}=\frac{p}{q}$. Therefore, $\cos \frac{\pi}{n}$ is an irrational number.

Hence the Lemma is proved.

2 Main results

Theorem 1. Let $n>3$ be an integer and K is an arbitrary circle. Let the points $M_{i}, i=1, \ldots, n$, (taken clockwise by ascending magnitude of the indices) lie on K splitting it to n equal arcs. Let M be a point on K different from the mentioned above. Then at least $\left\lfloor\frac{n}{3}\right\rfloor$ of the distances $\left|M M_{i}\right|$, $i=1, \ldots, n$, are irrational numbers.

Proof. Without loss of generality we will assume that $M \in \widehat{M_{1} M_{n}}$ where this arc does not contain any of the points $M_{j}, j=2, \ldots, n-1$. We consider the following triples of distances, as long as it is possible:

$$
\left(\left|M M_{1}\right|,\left|M M_{2}\right|,\left|M M_{3}\right|\right),\left(\left|M M_{4}\right|,\left|M M_{5}\right|,\left|M M_{6}\right|\right),\left(\left|M M_{7}\right|,\left|M M_{8}\right|,\left|M M_{9}\right|\right), \ldots
$$

Obviously, there are exactly $\left\lfloor\frac{n}{3}\right\rfloor$ such triples. And this triples share no common distance.
Let the triple $\left(\left|M M_{i}\right|,\left|M M_{i+1}\right|,\left|M M_{i+2}\right|\right)$ be one of the mentioned above. Consider the convex quadrilateral $M M_{i} M_{i+1} M_{i+2}$. It is inscribed in K. By Ptolemy theorem ([1]) we have:

$$
\left|M M_{i}\right|\left|M_{i+1} M_{i+2}\right|+\left|M M_{i+2}\right|\left|M_{i} M_{i+1}\right|=\left|M_{i} M_{i+2}\right|\left|M M_{i+1}\right|
$$

Since the consecutive arcs are equal (from the conditions of the Theorem) we have

$$
a \stackrel{\text { def }}{=}\left|M_{i} M_{i+1}\right|=\left|M_{i+1} M_{i+2}\right|
$$

From the above we obtain

$$
\begin{equation*}
\frac{\left|M M_{i}\right|+\left|M M_{i+2}\right|}{\left|M M_{i+1}\right|}=\frac{\left|M_{i} M_{i+2}\right|}{a} \tag{24}
\end{equation*}
$$

But the angles in the base of the isosceles triangle $M_{i} M_{i+1} M_{i+2}$ equal $\frac{\pi}{n}$. Then a trivial calculation shows

$$
\begin{equation*}
\frac{\left|M_{i} M_{i+2}\right|}{a}=2 \cos \frac{\pi}{n} . \tag{25}
\end{equation*}
$$

From (24) and (25) follows

$$
\begin{equation*}
\frac{\left|M M_{i}\right|+\left|M M_{i+2}\right|}{\left|M M_{i+1}\right|}=2 \cos \frac{\pi}{n} . \tag{26}
\end{equation*}
$$

Now the assumption that all three distances: $\left|M M_{i}\right|,\left|M M_{i+1}\right|,\left|M M_{i+2}\right|$, are rational numbers leads to the conclusion that $\cos \frac{\pi}{n}$ is also rational. But according to the Lemma this is not true. Therefore, at least one of the the distances $\left|M M_{i}\right|,\left|M M_{i+1}\right|,\left|M M_{i+2}\right|$ is an irrational number.

Hence, in all of the considered triples, there is at least one distance which is an irrational number. The number of all triples is $\left\lfloor\frac{n}{3}\right\rfloor$. Therefore, at least $\left\lfloor\frac{n}{3}\right\rfloor$ of the distances $\left|M M_{i}\right|, i=$ $1, \ldots, n$, are irrational numbers.

The Theorem is proved.
Remark. The condition $n>3$ is necessary for the validity of the Theorem. Indeed, if $n=3$, and $M \in \widehat{M_{1} M_{3}}$ is the arc such that M_{2} does not lie on it, then (from Ptolemy theorem)

$$
\left|M M_{2}\right|=\left|M M_{1}\right|+\left|M M_{3}\right|
$$

and from this equality it may be easily seen, that there are infinitely many in number points M on K such that the distances: $\left|M M_{1}\right|,\left|M M_{2}\right|,\left|M M_{3}\right|$ are simultaneously rational.

References

[1] Coolidge, J. L. (1939) A Historically Interesting Formula for the Area of a Quadrilateral. Amer. Math. Monthly, 46, 345-347.
[2] Nagell, T. (1951) Introduction to Number Theory. Wiley, New York.
[3] Mason, J. C., \& Handscomb, D. C. (2003) Chebyshev Polynomials. CRC Press, New York.

