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Abstract: Let n > 3 be an arbitrary integer. In the present paper, it is shown that if K is an
arbitrary circle and Mi, i = 1, . . . , n, are points on K, dividing K into n equal arcs, then for
each point M on K, different from the mentioned above, at least bn

3
c of the distances |MMi| are

irrational numbers.
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1 Preliminaries

Lemma. Let n > 3 be an integer. Then the number cos π
n

is irrational.

Proof. According to a well-known formula of de Moivre, [2], for 0 < ϕ < π
2
:

(cosϕ+ i sinϕ)n = cos(nϕ) + i sin(nϕ)

(cosϕ− i sinϕ)n = cos(nϕ)− i sin(nϕ)

By pairwise addition of the above we get:

cos(nϕ) =
(cosϕ+ i sinϕ)n + (cosϕ− i sinϕ)n

2
(1)

Putting
cosϕ = x (2)
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we have: 0 < x < 1, sinϕ =
√
1− x2, ϕ = arccosx and (1) gives

cos(n arccosx) =
(x+ i

√
1− x2)n + (x− i

√
1− x2)n

2
(3)

The right hand-side of (3) is polynomial of x of power n, known as the n-th Tchebychev polyno-
mial of the first kind [3] and usually denoted by Tn(x). Obviously

Tn(x) = cos(n arccosx) =
(x+ i

√
1− x2)n + (x− i

√
1− x2)n

2
. (4)

From (4) we obtain the representation

Tn(x) = cos(n arccosx) =

[n
2
]∑

k=0

(−1)k
(
n

2k

)
xn−2k(1− x2)k (5)

Comparing (1) and (5) we have:

cos(nϕ) =

[n
2
]∑

k=0

(−1)k
(
n

2k

)
xn−2k(1− x2)k, (6)

where ϕ and x are related through (2).
Let n > 3 and let us put in (6)

ϕ =
π

n
, (7)

assuming that the number x = cos π
n

is rational.
Let

x =
p

q
, (8)

where p and q are integers such that:

0 < p < q; gcd(p, q) = 1.

From (6), (7) and (8) we find:

−1 =

bn
2
c∑

k=0

(−1)k
(
n

2k

)(
p

q

)n−2k (
1− p2

q2

)k
or in other form:

bn
2
c∑

k=0

(−1)k
(
n

2k

)
pn−2k

(
q2 − p2

)k
= −qn. (9)

Expanding (q2 − p2)k by the Newton binomial we obtain:

(q2 − p2)k =

(−1)kp2k + αq2, for k ≥ 1

1, for k = 0
, (10)

where α is an integer constant.
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Equation (10) substituted in (9) gives:

pn
bn
2
c∑

k=0

(
n

2k

)
+ βq2 = −qn, (11)

where β is integer constant.
From the equations:

2n = (1 + 1)n =
n∑
t=0

(
n

t

)

0 = (1− 1)n =
n∑
t=0

(−1)t
(
n

t

)
,

it follows
bn
2
c∑

k=0

(
n

2k

)
= 2n−1, (12)

Substituting (12) in (11) we find

2n−1pn + βq2 = −qn. (13)

Since gcd(p, q) = 1, from (13) it follows that q divides 2n−1. Hence,

q = 2s, (14)

where 1 ≤ s ≤ n− 1.

Let us first look at the case

I. n is odd.

Then we have
n− 2k ≥ 1.

Therefore, for p > 1 the left hand side of (9) is divisible by p, while the right hand side is not.
Hence, for p > 1 (9) is impossible.

Let p = 1. Then

cos
π

n
=
p

q
=

1

2s
, (15)

according to (14). Since n > 3, then we should have

cos
π

n
> cos

π

3
=

1

2
. (16)

From (15) and (16) it follows:
1

2s
>

1

2
.

But the last is obviously false. Hence we proved that if n is odd and n > 3, then cos π
n

is an
irrational number.
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II. n is even.

Then n = 2T and T ≥ 2, because n ≥ 4. Substituting in (9) we have

T∑
k=0

(−1)k
(
2T

2k

)
(p2)T−k

(
q2 − p2

)k
= −q2T . (17)

Now we rewrite (17) in the form

T−1∑
k=0

(−1)k
(
2T

2k

)
(p2)T−k

(
q2 − p2

)k
= −q2T − (−1)T (q2 − p2)T . (18)

Let T be even. Then if we denote by L, the left hand side of (18), we have

L ≡ 0 (mod p)

If we denote by R, the right hand side of (18), we have

R ≡ −2q2T (mod p)

But q = 2s and gcd(p, q) = 1, which makes the last congruence impossible. Therefore, we have
p = 1 and as in I., we conclude that cos π

n
is an irrational number.

Let T be odd. Then (18) may be rewritten as

T−1∑
k=0

(−1)k
(
2T

2k

)
(p2)T−k

(
q2 − p2

)k
= (q2 − p2)T − (q2)T . (19)

Let R∗ be the right hand side of (19), we have:

R∗ = (q2 − p2)T − (q2)T =
(
(q2 − p2)− q2

)
R∗∗

where

R∗∗ =
T−1∑
k=0

(q2 − p2)T−k−1(q2)k.

Thus, finally we find:

R∗ = −p2
T−1∑
k=0

(q2 − p2)T−k−1(q2)k.

Then, dividing by p2 both sides of (19), we obtain:

T−1∑
k=0

(−1)k
(
2T

2k

)
(p2)T−k−1

(
q2 − p2

)k
= −

T−1∑
k=0

(q2 − p2)T−k−1(q2)k. (20)

On the left hand side of (20) we single out the term corresponding to k = 0, and on the right
hand side the one corresponding to k = T − 1, which allows us to rewrite (20) in the form.

(p2)T−1 + (q2)T−1 = γ.
(
q2 − p2

)
, (21)
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where γ is an integer constant.
From (21) it follows that

2(q2)T−1 = γ.
(
q2 − p2

)
+ (q2)T−1 − (p2)T−1.

The last equality means, that there exists an integer constant δ (since (q2)T−1 − (p2)T−1 ≡ 0

(mod (q2 − p2)) for T odd), for which

2(q2)T−1 = δ.
(
q2 − p2

)
, (22)

We rewrite (22) in the form:
22sT−2s+1 = δ.

(
q2 − p2

)
. (23)

Equality (23) is however impossible, since q = 2s, p is odd number and therefore q2 − p2 is an
odd number greater than 1. Therefore, there exist no p and q, for which cos π

n
= p

q
. Therefore,

cos π
n

is an irrational number.
Hence the Lemma is proved.

2 Main results

Theorem 1. Let n > 3 be an integer andK is an arbitrary circle. Let the pointsMi, i = 1, . . . , n,

(taken clockwise by ascending magnitude of the indices) lie on K splitting it to n equal arcs. Let
M be a point onK different from the mentioned above. Then at least bn

3
c of the distances |MMi|,

i = 1, . . . , n, are irrational numbers.

Proof. Without loss of generality we will assume that M ∈ Ṁ1Mn where this arc does not
contain any of the points Mj, j = 2, . . . , n− 1. We consider the following triples of distances, as
long as it is possible:

(|MM1|, |MM2|, |MM3|), (|MM4|, |MM5|, |MM6|), (|MM7|, |MM8|, |MM9|), . . .

Obviously, there are exactly bn
3
c such triples. And this triples share no common distance.

Let the triple (|MMi|, |MMi+1|, |MMi+2|) be one of the mentioned above. Consider the
convex quadrilateral MMiMi+1Mi+2. It is inscribed in K. By Ptolemy theorem ([1]) we have:

|MMi||Mi+1Mi+2|+ |MMi+2||MiMi+1| = |MiMi+2||MMi+1|

Since the consecutive arcs are equal (from the conditions of the Theorem) we have

a
def
= |MiMi+1| = |Mi+1Mi+2|

From the above we obtain
|MMi|+ |MMi+2|

|MMi+1|
=
|MiMi+2|

a
(24)

But the angles in the base of the isosceles triangleMiMi+1Mi+2 equal π
n
. Then a trivial calculation

shows
|MiMi+2|

a
= 2 cos

π

n
. (25)
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From (24) and (25) follows

|MMi|+ |MMi+2|
|MMi+1|

= 2 cos
π

n
. (26)

Now the assumption that all three distances: |MMi|, |MMi+1|, |MMi+2|, are rational numbers
leads to the conclusion that cos π

n
is also rational. But according to the Lemma this is not true.

Therefore, at least one of the the distances |MMi|, |MMi+1|, |MMi+2| is an irrational number.
Hence, in all of the considered triples, there is at least one distance which is an irrational

number. The number of all triples is bn
3
c. Therefore, at least bn

3
c of the distances |MMi|, i =

1, . . . , n, are irrational numbers.
The Theorem is proved.

Remark. The condition n > 3 is necessary for the validity of the Theorem. Indeed, if n = 3, and
M ∈ Ṁ1M3 is the arc such that M2 does not lie on it, then (from Ptolemy theorem)

|MM2| = |MM1|+ |MM3|

and from this equality it may be easily seen, that there are infinitely many in number points M on
K such that the distances: |MM1|, |MM2|, |MM3| are simultaneously rational.
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