On the number of semi-primitive roots modulo n

Pinkimani Goswami¹ and Madan Mohan Singh²

¹ Department of Mathematics, North-Eastren Hill University Permanent Campus, Shillong–793022, Maghalaya, India e-mail: pinkimanigoswami@yahoo.com

² Department of Basic Sciences and Social Sciences, North-Eastern Hill University Permanent Campus, Shillong-793022, Maghalaya, India e-mail: mmsingh2004@gmail.com

Abstract: Consider the multiplicative group of integers modulo n, denoted by \mathbb{Z}_n^* . An element $a \in \mathbb{Z}_n^*$ is said to be a semi-primitive root modulo n if the order of a is $\phi(n)/2$, where $\phi(n)$ is the Euler's phi-function. In this paper, we'll discuss on the number of semi-primitive roots of non-cyclic group \mathbb{Z}_n^* and study the relation between S(n) and K(n), where S(n) is the set of all semi-primitive roots of non-cyclic group \mathbb{Z}_n^* and K(n) is the set of all quadratic non-residues modulo n.

Keywords: Multiplicative group of integers modulo n, Primitive roots, Semi-primitive roots, Quadratic non-residues, Fermat primes.

AMS Classification: 11A07.

1 Introduction

Given a positive integer n, the integers between 1 and n that are coprime to n form a group with multiplication modulo n as the operation. It is denoted by \mathbb{Z}_n^* and is called the multiplicative group of integers modulo n. The order of this group is $\phi(n)$, where $\phi(n)$ is the Euler's phi-function.

For any $a \in \mathbb{Z}_n^*$, the order of a is the smallest positive integer k such that $a^k \equiv 1 \pmod{n}$. Now, a is said to be a primitive root modulo n (in short primitive root) if the order of a is equal to $\phi(n)$. It is well known that \mathbb{Z}_n^* has a primitive root, equivalently, \mathbb{Z}_n^* is cyclic if and only if n is equal to $1, 2, 4, p^k$ or $2p^k$ where p is an odd prime number and $k \ge 1$. In this connection, it is interesting to study \mathbb{Z}_n^* that does not possess any primitive roots.

As a first step the authors in [1] showed that if \mathbb{Z}_n^* does not possess primitive roots, then $a^{\frac{\phi(n)}{2}} \equiv 1 \pmod{n}$ for any integer $a \in \mathbb{Z}_n^*$. This motivate the following definition:

Definition 1.1. An element $a \in \mathbb{Z}_n^*$ is said to be a semi-primitive root modulo n (in short semiprimitive root) if the order of a is equal to $\phi(n)/2$.

Clearly, if $a \in \mathbb{Z}_n^*$ is a primitive root, then $a^2 \in \mathbb{Z}_n^*$ is a semi-primitive root. In the same paper they classified the non-cyclic groups of the form \mathbb{Z}_n^* possessing semi-primitive roots as follows:

Theorem 1.1. Let \mathbb{Z}_n^* be the multiplicative group of integer modulo n that does not possess any primitive roots. Then \mathbb{Z}_n^* has a semi-primitive root if and only if n is equal to $2^k(k > 2)$, $4p_1^{k_1}, p_1^{k_1}p_2^{k_2}$, or $2p_1^{k_1}p_2^{k_2}$, where p_1 and p_2 are odd primes satisfying $(\phi(p_1^{k_1}), \phi(p_2^{k_2})) = 2$ and $k_1, k_2 \ge 1$.

In [2], the authors introduced the notion of good semi-primitive (GSP) root modulo n. A semi-primitive root h in \mathbb{Z}_n^* is said to be a GSP root if \mathbb{Z}_n^* can be expressed as $\mathbb{Z}_n^* = \langle h \rangle \times \langle -1 \rangle$.

They showed that if \mathbb{Z}_n^* is a non-cyclic group possessing semi-primitive roots then \mathbb{Z}_n^* has exactly $2\phi(\frac{\phi(n)}{2})$ (i.e. $\phi(\phi(n))$) incongruent GSP roots. From paper [2] it is clear that the number of semi-primitive root is either $\phi(\phi(n))$ or $\phi(\phi(n)) + \phi(\frac{\phi(n)}{4})$ according as $\frac{\phi(n)}{4}$ is even or odd.

In the rest of this paper \mathbb{Z}_n^* is considered as a non-cyclic group possessing semi-primitive root i.e., n is equal to $2^k(k > 2)$, $4p_1^{k_1}, p_1^{k_1}p_2^{k_2}$, or $2p_1^{k_1}p_2^{k_2}$, where p_1 and p_2 are odd primes satisfying $(\phi(p_1^{k_1}), \phi(p_2^{k_2})) = 2$ and $k_1, k_2 \ge 1$.

This paper is organized as follows. Section 2 is devoted to the number of semi-primitive roots of \mathbb{Z}_n^* and in section 3 we discuss the relation between set of all semi-primitive roots of \mathbb{Z}_n^* and set of all quadratic non-residues modulo n. Throughout the paper all notations are usual. For example the greatest common divisor of two integers m and n is denoted by (m, n), the order of a modulo n is denoted by $ord_n(a)$ etc.

2 New results on number of semi-primitive roots

In this section we dealing with number of semi-primitive roots for different values of n. For positive values of n, we define

$$S(n) = \{g \in \mathbb{Z}_n^* | g \text{ is a semi-primitive root modulo } n\}$$

So

$$|S(n)| = \begin{cases} \phi(\phi(n)) + \phi(\frac{\phi(n)}{4}), & \text{if } \frac{\phi(n)}{4} \text{ is odd} \\ \phi(\phi(n)), & \text{if } \frac{\phi(n)}{4} \text{ is even} \end{cases}$$

Where cardinality of S(n) is denoted by |S(n)|.

We begin with the following proposition which shows that the number of semi-primitive roots is always greater than 2.

Proposition 2.1. Let \mathbb{Z}_n^* be a non-cyclic group possessing a semi-primitive root. Then the number of semi-primitive roots is at least 3.

Proof. The number of semi-primitive roots is given by $\phi(\phi(n)) + \phi(\frac{\phi(n)}{4})$ or $\phi(\phi(n))$ according as $\frac{\phi(n)}{4}$ is odd or even. As $\phi(n) > 2$, so $\phi(\phi(n))$ is even. Therefore number of semi-primitive roots is greater than 1.

Consider the smallest possible case $\phi(\phi(n)) = 2$. Then $\phi(n) = 3, 4$ or 6. The only possibility is $\phi(n) = 4$, which implies that $\frac{\phi(n)}{4}$ is odd. So the number of semi-primitive roots is greater than 2.

The following proposition gives the necessary and sufficient condition for which |S(n)| = 3.

Proposition 2.2. Let \mathbb{Z}_n^* be a non-cyclic group possessing a semi-primitive root. Then \mathbb{Z}_n^* has exactly 3 semi-primitive roots iff $n = 2^3$ or 12.

Proof. The number of semi-primitive roots is given by $\phi(\phi(n)) + \phi(\frac{\phi(n)}{4})$ or $\phi(\phi(n))$ according as $\frac{\phi(n)}{4}$ is odd or even. As $\phi(n) > 2$, so $\phi(\phi(n))$ is even. Therefore $\phi(\phi(n)) + \phi(\frac{\phi(n)}{4}) = 3$, which implies $\frac{\phi(n)}{4}$ is odd. The only possibility of $\phi(\frac{\phi(n)}{4})$ is 1, which implies $\phi(n) = 4$. So n = 5, 8, 10 or 12. But $n \neq 5, 10$ as they are not any of the above form. So n = 8 or 12.

In the following proposition we showed that number of semi-primitive roots is always an even number for $n \neq 2^3, 12$.

Proposition 2.3. Let \mathbb{Z}_n^* be a non-cyclic group possessing a semi-primitive root. Then the number of semi-primitive roots is always an even number except for $n = 2^3$, 12.

Proof. Suppose there exist an integer $n(n \neq 2^3, 12)$, for which number of semi-primitive roots is an odd number (say m). Since number of semi-primitive roots is odd, so $\frac{\phi(n)}{4}$ is odd. Now $\phi(\phi(n)) + \phi(\frac{\phi(n)}{4}) = m$, so the only possibility is $\phi(\frac{\phi(n)}{4}) = 1$, which implies $\phi(n) = 4$. Therefore $n = 2^3$ or 12, which is a contradiction.

The following proposition is dealing with the number of semi-primitive roots of the form 2p, where p is odd prime.

Proposition 2.4. Let \mathbb{Z}_n^* be a non-cyclic group possessing a semi-primitive root. Let 2p, where p is an odd prime be the number of semi-primitive roots. Then p = 3 and n = 21, 28, or 42.

Proof. Suppose $\frac{\phi(n)}{4}$ is even. For p = 3, $\phi(n) = 7, 9, 14$, or 18, which is not possible. For $p \ge 5$, $\phi(n) = 2p + 1$, or 4p + 2 (where 2p + 1 is prime). Both are not possible. Therefore if |S(n)| = 2p then $\frac{\phi(n)}{4}$ must be odd.

Obviously $n \neq 2^k (k \ge 3)$ as in this case number of semi-primitive roots is 3.

Case (i) Suppose $n = 4p_1^{k_1}$, where p_1 is an odd prime and $k_1 \ge 1$. As p_1 is odd prime so $\phi(p_1) = 2^{l_1}q_1$, where $l_1 \ge 1$ and $q_1 \ge 1$ is an odd number. If $k_1 = 1$ then $\phi(n) = 2^{l_1+1}q_1$ and so $l_1 = 1$. Therefore $|S(n)| = 3\phi(q_1)$, which implies p = 3 and $q_1 = 3$. So n = 28.

If $k_1 > 1$ then $\phi(n) = 2^{l_1+1}q_1p_1^{k_1-1}$ and $l_1 = 1$. Then $|S(n)| = 6q_1\phi(q_1)p_1^{k_1-2}$ and therefore $p = 3q_1\phi(q_1)p_1^{k_1-2}$, which is not possible.

Case (ii) When $n = p_1^{k_1} p_2^{k_2}$, where p_1 and p_2 are odd prime such that $(\phi(p_1^{k_1}), \phi(p_2^{k_2})) = 2$ and $k_1, k_2 \ge 1$. As p_1 and p_2 are odd prime so $\phi(p_1) = 2^{l_1}q_1$ and $\phi(p_2) = 2^{l_2}q_2$ where $l_1, l_2 \ge 1$ and

 $q_1 \ge 1, q_2 \ge 1$ are odd numbers such that $(\phi(q_1), \phi(q_2)) = 1$. As $(\phi(p_1^{k_1}), \phi(p_2^{k_2})) = 2$ so at least l_1 or l_2 is equal to 1. Without loss of generality we can assume that $l_1 = 1$.

If $k_1 = 1 = k_2$ then $\phi(n) = 2^{l_2+1}q_1q_2$ and $l_2 = 1$. Therefore $|S(n)| = 3\phi(q_1)\phi(q_2) \Rightarrow 3\phi(q_1)\phi(q_2) = 2p \Rightarrow p = 3$ an either $\phi(q_1) = 1, \phi(q_2) = 2$, or $\phi(q_1) = 2, \phi(q_2) = 1$. So, p = 3 and either $q_1 = 1$ and $q_2 = 3$ or $q_1 = 3$ and $q_2 = 1$. And hence p = 3 and n = 21.

If $k_1 = 1, k_2 > 1$ then $\phi(n) = 2^{l_2+1}q_1q_2p_2^{k_2-1}$ and $l_2 = 1$. Then $|S(n)| = 6q_2\phi(q_1)\phi(q_2)p_2^{k_2-2}$ = 2p and therefore $3q_2\phi(q_1)\phi(q_2)p_2^{k_2-2} = p$, which is not possible. Similarly for $k_1 > 1, k_2 = 1$. If $k_1 > 1$ and $k_2 > 1$ then p_1 and p_2 are factors of |S(n)|, so $|S(n)| \neq 2p$.

If $k_1 \ge 1$ and $k_2 \ge 1$ then p_1 and p_2 are factors of |S(n)|, so $|S(n)| \ne 1$

As $\phi(p_1^{k_1}p_2^{k_2}) = \phi(2p_1^{k_1}p_2^{k_2})$ so |S(n)| = 2p if p = 3 and n = 42.

Hence from the above cases we can say that if the number of semi-primitive roots is 2p then p = 3 and n = 21, 28, or 42.

Note: It is easy to see that if \mathbb{Z}_n^* is a non-cyclic group possessing semi-primitive root and if number of semi-primitive roots is of the form $2^k p$, where p is an odd prime then for $\frac{\phi(n)}{4}$ is even, $0 \le k \le 31$ and p = 3.

It is clear that the number of semi-primitive roots for $n = 2^k (k > 3)$ is in power of 2. So it is interesting to find the other form of n for which number of semi-primitive roots is in power of 2. In this direction we have the following propositions.

Proposition 2.5. Let \mathbb{Z}_n^* be a non-cyclic group possessing a semi-primitive root. Then for $n = 4p_1^{k_1}$, where p_1 is an odd prime and $k_1 \ge 1$ has number of semi-primitive roots is in power of 2 (say 2^m , $m \ge 2$) iff $k_1 = 1$ and either $p_1 \ne 3$ is a Fermat prime or p_1 is a prime of the form $2^lq + 1$ where l > 1 and q is the product of Fermat primes.

Proof. It is easy to see that if $k_1 = 1$ and if p_1 satisfied any of the above conditions then the number of semi-primitive roots is always in power of 2.

Conversely, let the number of semi-primitive roots be $2^m (m \ge 2)$. There will be two cases to be consider for $n = 4p_1^{k_1}$. If $k_1 > 1$ then p_1 is a factor of number of semi-primitive roots, which is not possible. So $k_1 = 1$. Also, as p_1 is odd prime so $\phi(p_1) = 2^l q$, where $q \ge 1$ is odd number and $l \ge 1$. Therefore $\phi(n) = 2^{l+1}q$ for $n = 4p_1$ and

$$\frac{\phi(n)}{4} = 2^{l-1}q = \begin{cases} odd, & if \ l = 1\\ even, & otherwise \end{cases}$$

When $\frac{\phi(n)}{4}$ is odd then $|S(n)| = 3\phi(q)$, which is not power of 2. When $\frac{\phi(n)}{4}$ is even, then $|S(n)| = 2^l \phi(q)$ which implies that $2^l \phi(q) = 2^m$, so either $\phi(q) = 1$ or $\phi(q)$ is power of 2 (say $2^a, a \ge 1$). If $\phi(q) = 1$ then q = 1 and so $p_1 = 2^l + 1(l > 1)$. Since p_1 is prime so $2^l + 1$ is also prime, which is possible only when l is power of 2 i.e. $2^l + 1(l > 1)$ is Fermat prime. So $p_1(\neq 3)$ is Fermat prime. Suppose $\phi(q) = 2^a, a \ge 1$. The equation $\phi(q) = 2^a$ have one odd solution q iff $a \le 31$. The solution q is the product of the Fermat primes. So $p_1 = 2^l q + 1, l > 1$, where q is the product of Fermat primes. Hence complete the proved.

Proposition 2.6. Let \mathbb{Z}_n^* be a non-cyclic group possessing a semi-primitive root. Then for $n = p_1^{k_1} p_2^{k_2}$, where $k_1, k_2 \ge 1$ and p_1, p_2 are odd primes such that $(\phi(p_1^{k_1}), \phi(p_2^{k_2})) = 2$ has number of semi-primitive roots is in power of 2 (say $2^m, m \ge 2$) iff $k_1 = 1 = k_2$ and either any one of p_1 and p_2 is equal to 3 or $2q_1 + 1$ where q_1 is the product of Fermat primes and other is of the form $2^lq + 1$ where l > 1 and either q = 1 or q is the product of Fermat primes.

Proof. It is easy to see that if p_1 and p_2 satisfied all the above condition then the number of semi-primitive roots is always power of 2.

Conversely, suppose $n = p_1^{k_1} p_2^{k_2}$, where p_1, p_2 are prime such that $(\phi(p_1^{k_1}), \phi(p_2^{k_2})) = 2$ and $k_1, k_2 \ge 1$ and let $|S(n)| = 2^m (m \ge 2)$. Since p_1 and p_2 are odd prime so $\phi(p_1) = 2^{l_1}q_1$ and $\phi(p_2) = 2^{l_2}q_2$ where $q_1, q_2 \ge 1$ are odd numbers and $l_1, l_2 \ge 1$. As $(\phi(p_1^{k_1}), \phi(p_2^{k_2})) = 2$, so at least l_1 or l_2 is equal to 1 (say $l_1 = 1$) and $(\phi(q_1), \phi(q_2)) = 1$. If k_1 or k_2 or both greater than 1 then p_1 or p_2 or both are the factor(s) of |S(n)|, which is not possible. So the only possibility is that $k_1 = 1 = k_2$. Then $\phi(n) = 2^{l_2+1}q_1q_2$ and

$$\frac{\phi(n)}{4} = 2^{l_2 - 1} q_1 q_2 = \begin{cases} odd, & if \ l_2 = 1\\ even, & otherwise \end{cases}$$

When $\frac{\phi(n)}{4}$ is odd, then $|S(n)| = 3\phi(q_1)\phi(q_2)$, which is not power of 2. When $\frac{\phi(n)}{4}$ is even, then $|S(n)| = 2^{l_2}\phi(q_1)\phi(q_2)$, so either $\phi(q_1)\phi(q_2) = 1$ or $\phi(q_1)\phi(q_2) = 2^a$, $a \ge 1$. If $\phi(q_1)\phi(q_2) = 1$ then $q_1 = 1 = q_2$ and therefore $p_1 = 3$ and $p_2 = 2^{l_2} + 1(l_2 > 1)$ i.e. $p_2 \ne 3$ is Fermat prime. If $\phi(q_1)\phi(q_2) = 2^a$ then one of $\phi(q_1)$ or $\phi(q_2)$ is equal to 1 and other is equal to 2^a . Let $\phi(q_1) = 1$ and $\phi(q_2) = 2^a$ then $q_1 = 1$ so $p_1 = 3$ and q_2 is the product of Fermat prime for $a \le 31$ so $p_2 = 2^{l_2}q_2 + 1, l_2 > 1$. If $\phi(q_1) = 2^a$ and $\phi(q_2) = 1$ then $p_1 = 2q_1 + 1$, where q_1 is the product of Fermat prime for $a \le 31$ and $p_2 = 2^{l_2} + 1$ is Fermat prime. Hence considering all the cases we can say that either any one of p_1 and p_2 is equal to 3 or $2q_1 + 1$ where q_1 is the product of Fermat primes and other is of the form $2^l q + 1$ where l > 1 and either q = 1 and q is the product of Fermat primes.

Remark: The above result is true for $n = 2p_1^{k_1}p_2^{k_2}$ where p_1, p_2 are odd primes such that $(\phi(p_1^{k_1}), \phi(p_2^{k_2})) = 2$ and $k_1, k_2 \ge 1$ as $\phi(n) = \phi(p_1^{k_1}p_2^{k_2})$.

3 Relation between S(n) and K(n)

For a positive integer n, set

$$K(n) = \{a \in \mathbb{Z}_n^* | a \text{ is quadratic non-residue modulo } n\}$$

Whenever \mathbb{Z}_n^* is non-cyclic and g is a semi-primitive root modulo n, then g^{2l} for $l = 0, 1, \ldots, \frac{\phi(n)}{4} - 1$ are all the quadratic residue modulo n i.e., number of quadratic residues is $\frac{\phi(n)}{4}$, which gives $|K(n)| = \frac{3}{4}\phi(n)$, where cardinality of K(n) is denoted by |K(n)|.

In this section we study the relation between S(n) and K(n). We begin with the following proposition.

Proposition 3.1. Let \mathbb{Z}_n^* be the non-cyclic group possessing semi-primitive root. If g is a semiprimitive root modulo n then g is quadratic non-residue (qnr) modulo n.

Proof. Suppose g is a semi-primitive root modulo n then $g^{\frac{\phi(n)}{2}} \equiv 1 \pmod{n}$ and $ord_n(g) = \frac{\phi(n)}{2}$. To show that g is qnr modulo n that is $\exists x \in \mathbb{Z}_n^*$ such that $x^2 \equiv g \pmod{n}$.

If possible let $\exists x \in \mathbb{Z}_n^*$ such that $x^2 \equiv g \pmod{n}$. Now

$$x^2 \equiv g \pmod{n} \Rightarrow x^{\phi(n)} \equiv 1 \pmod{n}.$$

Again

$$x^{\frac{\phi(n)}{2}} = (x^2)^{\frac{\phi(n)}{4}} = g^{\frac{\phi(n)}{4}} \not\equiv 1 \pmod{n}.$$

So $ord_n(x) = \phi(n)$ i.e. x is a primitive root, which is a contradiction. Therefore g is quadratic non-residue modulo n.

But converse is not always true. For example 7 is quadratic non-residue modulo 2^5 , but 7 is not semi-primitive root modulo 2^5 . For above proposition it is clear that $S(n) \subset K(n)$. The following proposition gives the necessary and sufficient for S(n) = K(n).

Proposition 3.2. Let \mathbb{Z}_n^* be the non-cyclic group possessing semi-primitive root. Then S(n) = K(n) iff $n = 2^3$ or 12.

Proof. We consider the following cases:

 $\label{eq:Case} \begin{array}{l} \mbox{Case (i)} n = 2^k (k>2). \\ \mbox{In this case, we have, } \phi(n) = 2^{k-1} \mbox{, and} \end{array}$

$$\frac{\phi(n)}{4} = 2^{k-3} = \begin{cases} 1, & \text{if } k = 3\\ even, & \text{otherwise} \end{cases}$$

When $\frac{\phi(n)}{4}$ is odd, then |S(n)| = 3 and $|K(n)| = \frac{3}{4}\phi(n) = 3$. So S(n) = K(n) for $n = 2^3$. For $\frac{\phi(n)}{4}$ is even, $|S(n)| = 2^{k-2}$ and $|K(n)| = 3 \cdot 2^{k-3}$. So $S(n) \neq K(n)$. Case (ii) $n = 4p_1^{k_1}$, where p_1 is an odd prime and $k \ge 1$. As p_1 is odd prime so $\phi(p_1) = p_1 - 1 = 2^{l_1}q_1$, where $l_1 \ge 1$ and $q_1 \ge 1$ is an odd integer.

(a) When $k_1 = 1$, we have, $\phi(n) = 2^{l_1+1}q_1$ and

$$\frac{\phi(n)}{4} = 2^{l_1 - 1} q_1 = \begin{cases} odd, & if \ l_1 = 1\\ even, & otherwise \end{cases}$$

When $\frac{\phi(n)}{4}$ is odd, then $|S(n)| = 3\phi(q_1)$ and $|K(n)| = 3q_1$. If |S(n)| = |K(n)| then $q_1 = 1$, which implies $p_1 = 3$. So S(n) = K(n) if n = 4.3 = 12. When $\frac{\phi(n)}{4}$ is even, then $|S(n)| = 2^{l_1}\phi(q_1)$ and $|K(n)| = 3.2^{l_1-1}q_1$. If S(n) = K(n) then $2\phi(q_1) = 3q_1$, which is not possible.

(b) When $k_1 > 1$, we have $\phi(n) = 2^{l_1+1}q_1p_1^{k_1-1}$ and

$$\frac{\phi(n)}{4} = 2^{l_1 - 1} q_1 p_1^{k_1 - 1} = \begin{cases} odd, & if \ l_1 = 1\\ even, & otherwise \end{cases}$$

When $\frac{\phi(n)}{4}$ is odd, then $|S(n)| = 6q_1\phi(q_1)p_1^{k_1-2}$ and $|K(n)| = 3q_1p_1^{k_1-1}$. If S(n) = K(n) then $2\phi(q_1) = p_1$, which is not possible. When $\frac{\phi(n)}{4}$ is even, then $|S(n)| = 2^{2l_1}q_1\phi(q_1)p_1^{k_1-2}$ and $|K(n)| = 2^{l_1-1}3q_1p_1^{k_1-1}$. If S(n) = K(n) then $2^{l_1+1}\phi(q_1) = 3p_1$, which is not possible.

Case (iii) $n = p_1^{k_1} p_2^{k_2}$, where p_1, p_2 are odd primes satisfying $(\phi(p_1^{k_1}), \phi(p_2^{k_2})) = 2$ and $k_1, k_2 \ge 1$.

As p_1, p_2 are odd primes so $\phi(p_1) = 2^{l_1}q_1$ and $\phi(p_2) = 2^{l_2}q_2$, where $l_1, l_2 \ge 1$ and $q_1, q_2 \ge 1$ are odd integers. Since $(\phi(p_1^{k_1}), \phi(p_2^{k_2})) = 2$, so $(\phi(q_1), \phi(q_2)) = 1$ and at least l_1 or l_2 is equal to 1. Suppose $l_1 = 1$.

(a) When $k_1 = 1 = k_2$, we have $\phi(n) = 2^{l_2+1}q_1q_2$ and

$$\frac{\phi(n)}{4} = 2^{l_2 - 1} q_1 q_2 = \begin{cases} odd, & if \ l_2 = 1\\ even, & otherwise \end{cases}$$

When $\frac{\phi(n)}{4}$ is odd, $|S(n)| = 3\phi(q_1)\phi(q_2)$ and $|K(n)| = 3q_1q_2$, so $S(n) \neq K(n)$. When $\frac{\phi(n)}{4}$ is even, then $|S(n)| = 2^{l_2}\phi(q_1)\phi(q_2)$ and $|K(n)| = 3 \cdot 2^{l_2 - 1}q_1q_2$, so $S(n) \neq K(n)$.

(b) When $k_1 = 1, k_2 > 1$, we have $\phi(n) = 2^{l_2+1}q_1q_2p_2^{k_2-1}$ and

$$\frac{\phi(n)}{4} = 2^{l_2 - 1} q_1 q_2 p_2^{k_2 - 1} = \begin{cases} odd, & if \ l_2 = 1\\ even, & otherwise \end{cases}$$

If $\frac{\phi(n)}{4}$ is odd, $|S(n)| = 6q_2\phi(q_1)\phi(q_2)p_2^{k_2-2}$ and $|K(n)| = 3q_1q_2p_2^{k_2-1}$, so $S(n) \neq K(n)$. If $\frac{\phi(n)}{4}$ is even, then $|S(n)| = 2^{l_2}q_2\phi(q_1)\phi(q_2)p_2^{k_2-2}$ and $|K(n)| = 3 \cdot 2^{l_2-1}q_1q_2p_2^{k_2-1}$, so $S(n) \neq K(n)$.

(c) When $k_1 > 1$ and $k_2 = 1$ then in similar way we get $S(n) \neq K(n)$.

(d) When
$$k_1, k_2 > 1$$
, we have $\phi(n) = 2^{l_2+1}q_1q_2p_1^{k_1-1}p_2^{k_2-1}$ and

$$\frac{\phi(n)}{4} = 2^{l_2 - 1} q_1 q_2 p_1^{k_1 - 1} p_2^{k_2 - 1} = \begin{cases} odd, & if \ l_2 = 1\\ even, & otherwise \end{cases}$$

If $\frac{\phi(n)}{4}$ is odd, $|S(n)| = 12q_1q_2\phi(q_1)\phi(q_2)p_1^{k_1-2}p_2^{k_2-2}$ and $|K(n)| = 3q_1q_2p_1^{k_1-1}p_2^{k_2-1}$, so $S(n) \neq K(n)$. I $\frac{\phi(n)}{4}$ is even, then $|S(n)| = 2^{2l_2+1}q_1q_2\phi(q_1)\phi(q_2)p_1^{k_1-2}p_2^{k_2-2}$ and $|K(n)| = 3.2^{l_2-1}q_1q_2p_1^{k_1-1}p_2^{k_2-1}$, so $S(n) \neq K(n)$.

Case (iv) When $n = 2p_1^{k_1}p_2^{k_2}$, where p_1, p_2 are odd primes satisfying $(\phi(p_1^{k_1}), \phi(p_2^{k_2})) = 2$ and $k_1, k_2 \ge 1$.

As
$$\phi(p_1^{k_1}p_2^{k_2}) = \phi(2p_1^{k_1}p_2^{k_2})$$
, so in this case also $S(n) \neq K(n)$.
Hence combining all the cases we get $S(n) = K(n)$ iff $n = 2^3$ or 12.

4 Conclusion and Future work

In this paper, we have dealt with the number of semi-primitive modulo n, which is an application of inverse Euler's φ -function. We also get a connection between set of semi-primitive roots modulo n and set of quadratic non-residue modulo n.

Semi-primitive roots in non-cyclic groups play almost the same role as primitive roots in cyclic groups, so it may be useful to construct a secure cryptosystem. We will consider this issue in our future work.

References

- Lee, K., M. Kwon, M. K. Kang, & G. Shin (2011) Semi-primitive root modulo n, Honam Math. J., 33(2), 181–186.
- [2] Lee, K., M. Kwon, & G. Shin (2013) Multiplicative groups of integers with semi-primitive roots modulo *n*, *Commum. Korean Math. Soc.*, 28(1), 71–77.