On the number of semi-primitive roots modulo n

Pinkimani Goswami ${ }^{1}$ and Madan Mohan Singh ${ }^{2}$

${ }^{1}$ Department of Mathematics, North-Eastren Hill University Permanent Campus, Shillong-793022, Maghalaya, India
e-mail: pinkimanigoswami@yahoo.com
${ }^{2}$ Department of Basic Sciences and Social Sciences, North-Eastern Hill University Permanent Campus, Shillong-793022, Maghalaya, India
e-mail: mmsingh2004@gmail.com

Abstract

Consider the multiplicative group of integers modulo n, denoted by \mathbb{Z}_{n}^{*}. An element $a \in \mathbb{Z}_{n}^{*}$ is said to be a semi-primitive root modulo n if the order of a is $\phi(n) / 2$, where $\phi(n)$ is the Euler's phi-function. In this paper, we'll discuss on the number of semi-primitive roots of non-cyclic group \mathbb{Z}_{n}^{*} and study the relation between $S(n)$ and $K(n)$, where $S(n)$ is the set of all semi-primitive roots of non-cyclic group \mathbb{Z}_{n}^{*} and $K(n)$ is the set of all quadratic non-residues modulo n.

Keywords: Multiplicative group of integers modulo n, Primitive roots, Semi-primitive roots, Quadratic non-residues, Fermat primes.
AMS Classification: 11A07.

1 Introduction

Given a positive integer n, the integers between 1 and n that are coprime to n form a group with multiplication modulo n as the operation. It is denoted by \mathbb{Z}_{n}^{*} and is called the multiplicative group of integers modulo n. The order of this group is $\phi(n)$, where $\phi(n)$ is the Euler's phi-function.

For any $a \in \mathbb{Z}_{n}^{*}$, the order of a is the smallest positive integer k such that $a^{k} \equiv 1(\bmod n)$. Now, a is said to be a primitive root modulo n (in short primitive root) if the order of a is equal to $\phi(n)$. It is well known that \mathbb{Z}_{n}^{*} has a primitive root, equivalently, \mathbb{Z}_{n}^{*} is cyclic if and only if n is equal to $1,2,4, p^{k}$ or $2 p^{k}$ where p is an odd prime number and $k \geq 1$. In this connection, it is interesting to study \mathbb{Z}_{n}^{*} that does not possess any primitive roots.

As a first step the authors in [1] showed that if \mathbb{Z}_{n}^{*} does not possess primitive roots, then $a^{\frac{\phi(n)}{2}} \equiv 1(\bmod n)$ for any integer $a \in \mathbb{Z}_{n}^{*}$. This motivate the following definition:

Definition 1.1. An element $a \in \mathbb{Z}_{n}^{*}$ is said to be a semi-primitive root modulo n (in short semiprimitive root) if the order of a is equal to $\phi(n) / 2$.

Clearly, if $a \in \mathbb{Z}_{n}^{*}$ is a primitive root, then $a^{2} \in \mathbb{Z}_{n}^{*}$ is a semi-primitive root. In the same paper they classified the non-cyclic groups of the form \mathbb{Z}_{n}^{*} possessing semi-primitive roots as follows:

Theorem 1.1. Let \mathbb{Z}_{n}^{*} be the multiplicative group of integer modulo n that does not possess any primitive roots. Then \mathbb{Z}_{n}^{*} has a semi-primitive root if and only if n is equal to $2^{k}(k>$ 2), $4 p_{1}^{k_{1}}, p_{1}^{k_{1}} p_{2}^{k_{2}}$, or $2 p_{1}^{k_{1}} p_{2}^{k_{2}}$, where p_{1} and p_{2} are odd primes satisfying $\left(\phi\left(p_{1}^{k_{1}}\right), \phi\left(p_{2}^{k_{2}}\right)\right)=2$ and $k_{1}, k_{2} \geq 1$.

In [2], the authors introduced the notion of good semi-primitive (GSP) root modulo n. A semi-primitive root h in \mathbb{Z}_{n}^{*} is said to be a GSP root if \mathbb{Z}_{n}^{*} can be expressed as $\mathbb{Z}_{n}^{*}=\langle h\rangle \times\langle-1\rangle$.

They showed that if \mathbb{Z}_{n}^{*} is a non-cyclic group possessing semi-primitive roots then \mathbb{Z}_{n}^{*} has exactly $2 \phi\left(\frac{\phi(n)}{2}\right)$ (i.e. $\left.\phi(\phi(n))\right)$ incongruent GSP roots. From paper [2] it is clear that the number of semi-primitive root is either $\phi(\phi(n))$ or $\phi(\phi(n))+\phi\left(\frac{\phi(n)}{4}\right)$ according as $\frac{\phi(n)}{4}$ is even or odd.

In the rest of this paper \mathbb{Z}_{n}^{*} is considered as a non-cyclic group possessing semi-primitive root i.e., n is equal to $2^{k}(k>2), 4 p_{1}^{k_{1}}, p_{1}^{k_{1}} p_{2}^{k_{2}}$, or $2 p_{1}^{k_{1}} p_{2}^{k_{2}}$, where p_{1} and p_{2} are odd primes satisfying $\left(\phi\left(p_{1}^{k_{1}}\right), \phi\left(p_{2}^{k_{2}}\right)\right)=2$ and $k_{1}, k_{2} \geq 1$.

This paper is organized as follows. Section 2 is devoted to the number of semi-primitive roots of \mathbb{Z}_{n}^{*} and in section 3 we discuss the relation between set of all semi-primitive roots of \mathbb{Z}_{n}^{*} and set of all quadratic non-residues modulo n. Throughout the paper all notations are usual. For example the greatest common divisor of two integers m and n is denoted by (m, n), the order of a modulo n is denoted by $\operatorname{ord}_{n}(a)$ etc.

2 New results on number of semi-primitive roots

In this section we dealing with number of semi-primitive roots for different values of n. For positive values of n, we define

$$
S(n)=\left\{g \in \mathbb{Z}_{n}^{*} \mid g \text { is a semi-primitive root modulo } n\right\}
$$

So

$$
|S(n)|=\left\{\begin{array}{l}
\phi(\phi(n))+\phi\left(\frac{\phi(n)}{4}\right), \quad \text { if } \frac{\phi(n)}{4} \text { is odd } \\
\phi(\phi(n)), \quad \text { if } \frac{\phi(n)}{4} \text { is even }
\end{array}\right.
$$

Where cardinality of $S(n)$ is denoted by $|S(n)|$.
We begin with the following proposition which shows that the number of semi-primitive roots is always greater than 2 .

Proposition 2.1. Let \mathbb{Z}_{n}^{*} be a non-cyclic group possessing a semi-primitive root. Then the number of semi-primitive roots is at least 3 .

Proof. The number of semi-primitive roots is given by $\phi(\phi(n))+\phi\left(\frac{\phi(n)}{4}\right)$ or $\phi(\phi(n))$ according as $\frac{\phi(n)}{4}$ is odd or even. As $\phi(n)>2$, so $\phi(\phi(n))$ is even. Therefore number of semi-primitive roots is greater than 1 .

Consider the smallest possible case $\phi(\phi(n))=2$. Then $\phi(n)=3,4$ or 6 . The only possibility is $\phi(n)=4$, which implies that $\frac{\phi(n)}{4}$ is odd. So the number of semi-primitive roots is greater than 2.

The following proposition gives the necessary and sufficient condition for which $|S(n)|=3$.
Proposition 2.2. Let \mathbb{Z}_{n}^{*} be a non-cyclic group possessing a semi-primitive root. Then \mathbb{Z}_{n}^{*} has exactly 3 semi-primitive roots iff $n=2^{3}$ or 12 .

Proof. The number of semi-primitive roots is given by $\phi(\phi(n))+\phi\left(\frac{\phi(n)}{4}\right)$ or $\phi(\phi(n))$ according as $\frac{\phi(n)}{4}$ is odd or even. As $\phi(n)>2$, so $\phi(\phi(n))$ is even. Therefore $\phi(\phi(n))+\phi\left(\frac{\phi(n)}{4}\right)=3$, which implies $\frac{\phi(n)}{4}$ is odd. The only possibility of $\phi\left(\frac{\phi(n)}{4}\right)$ is 1 , which implies $\phi(n)=4$. So $n=5,8,10$ or 12 . But $n \neq 5,10$ as they are not any of the above form. So $n=8$ or 12 .

In the following proposition we showed that number of semi-primitive roots is always an even number for $n \neq 2^{3}, 12$.

Proposition 2.3. Let \mathbb{Z}_{n}^{*} be a non-cyclic group possessing a semi-primitive root. Then the number of semi-primitive roots is always an even number except for $n=2^{3}, 12$.

Proof. Suppose there exist an integer $n\left(n \neq 2^{3}, 12\right)$, for which number of semi-primitive roots is an odd number (say m). Since number of semi-primitive roots is odd, so $\frac{\phi(n)}{4}$ is odd. Now $\phi(\phi(n))+\phi\left(\frac{\phi(n)}{4}\right)=m$, so the only possibility is $\phi\left(\frac{\phi(n)}{4}\right)=1$, which implies $\phi(n)=4$. Therefore $n=2^{3}$ or 12 , which is a contradiction.

The following proposition is dealing with the number of semi-primitive roots of the form $2 p$, where p is odd prime.

Proposition 2.4. Let \mathbb{Z}_{n}^{*} be a non-cyclic group possessing a semi-primitive root. Let $2 p$, where p is an odd prime be the number of semi-primitive roots. Then $p=3$ and $n=21,28$, or 42 .

Proof. Suppose $\frac{\phi(n)}{4}$ is even. For $p=3, \phi(n)=7,9,14$, or 18 , which is not possible. For $p \geq 5$, $\phi(n)=2 p+1$, or $4 p+2$ (where $2 p+1$ is prime). Both are not possible. Therefore if $|S(n)|=2 p$ then $\frac{\phi(n)}{4}$ must be odd.

Obviously $n \neq 2^{k}(k \geq 3)$ as in this case number of semi-primitive roots is 3 .
Case (i) Suppose $n=4 p_{1}^{k_{1}}$, where p_{1} is an odd prime and $k_{1} \geq 1$. As p_{1} is odd prime so $\phi\left(p_{1}\right)=2^{l_{1}} q_{1}$, where $l_{1} \geq 1$ and $q_{1} \geq 1$ is an odd number. If $k_{1}=1$ then $\phi(n)=2^{l_{1}+1} q_{1}$ and so $l_{1}=1$. Therefore $|S(n)|=3 \phi\left(q_{1}\right)$, which implies $p=3$ and $q_{1}=3$. So $n=28$.

If $k_{1}>1$ then $\phi(n)=2^{l_{1}+1} q_{1} p_{1}^{k_{1}-1}$ and $l_{1}=1$. Then $|S(n)|=6 q_{1} \phi\left(q_{1}\right) p_{1}^{k_{1}-2}$ and therefore $p=3 q_{1} \phi\left(q_{1}\right) p_{1}^{k_{1}-2}$, which is not possible.

Case (ii) When $n=p_{1}^{k_{1}} p_{2}^{k_{2}}$, where p_{1} and p_{2} are odd prime such that $\left(\phi\left(p_{1}^{k_{1}}\right), \phi\left(p_{2}^{k_{2}}\right)\right)=2$ and $k_{1}, k_{2} \geq 1$. As p_{1} and p_{2} are odd prime so $\phi\left(p_{1}\right)=2^{l_{1}} q_{1}$ and $\phi\left(p_{2}\right)=2^{l_{2}} q_{2}$ where $l_{1}, l_{2} \geq 1$ and
$q_{1} \geq 1, q_{2} \geq 1$ are odd numbers such that $\left(\phi\left(q_{1}\right), \phi\left(q_{2}\right)\right)=1$. As $\left(\phi\left(p_{1}^{k_{1}}\right), \phi\left(p_{2}^{k_{2}}\right)\right)=2$ so at least l_{1} or l_{2} is equal to 1 . Without loss of generality we can assume that $l_{1}=1$.

If $k_{1}=1=k_{2}$ then $\phi(n)=2^{l_{2}+1} q_{1} q_{2}$ and $l_{2}=1$. Therefore $|S(n)|=3 \phi\left(q_{1}\right) \phi\left(q_{2}\right) \Rightarrow$ $3 \phi\left(q_{1}\right) \phi\left(q_{2}\right)=2 p \Rightarrow p=3$ an either $\phi\left(q_{1}\right)=1, \phi\left(q_{2}\right)=2$, or $\phi\left(q_{1}\right)=2, \phi\left(q_{2}\right)=1$. So, $p=3$ and either $q_{1}=1$ and $q_{2}=3$ or $q_{1}=3$ and $q_{2}=1$. And hence $p=3$ and $n=21$.

If $k_{1}=1, k_{2}>1$ then $\phi(n)=2^{l_{2}+1} q_{1} q_{2} p_{2}^{k_{2}-1}$ and $l_{2}=1$. Then $|S(n)|=6 q_{2} \phi\left(q_{1}\right) \phi\left(q_{2}\right) p_{2}^{k_{2}-2}$ $=2 p$ and therefore $3 q_{2} \phi\left(q_{1}\right) \phi\left(q_{2}\right) p_{2}^{k_{2}-2}=p$, which is not possible. Similarly for $k_{1}>1, k_{2}=1$.

If $k_{1}>1$ and $k_{2}>1$ then p_{1} and p_{2} are factors of $|S(n)|$, so $|S(n)| \neq 2 p$.
As $\phi\left(p_{1}^{k_{1}} p_{2}^{k_{2}}\right)=\phi\left(2 p_{1}^{k_{1}} p_{2}^{k_{2}}\right)$ so $|S(n)|=2 p$ if $p=3$ and $n=42$.
Hence from the above cases we can say that if the number of semi-primitive roots is $2 p$ then $p=3$ and $n=21,28$, or 42 .

Note: It is easy to see that if \mathbb{Z}_{n}^{*} is a non-cyclic group possessing semi-primitive root and if number of semi-primitive roots is of the form $2^{k} p$, where p is an odd prime then for $\frac{\phi(n)}{4}$ is even, $0 \leq k \leq 31$ and $p=3$.

It is clear that the number of semi-primitive roots for $n=2^{k}(k>3)$ is in power of 2 . So it is interesting to find the other form of n for which number of semi-primitive roots is in power of 2 . In this direction we have the following propositions.

Proposition 2.5. Let \mathbb{Z}_{n}^{*} be a non-cyclic group possessing a semi-primitive root. Then for $n=$ $4 p_{1}^{k_{1}}$, where p_{1} is an odd prime and $k_{1} \geq 1$ has number of semi-primitive roots is in power of 2 (say $2^{m}, m \geq 2$) iff $k_{1}=1$ and either $p_{1} \neq 3$ is a Fermat prime or p_{1} is a prime of the form $2^{l} q+1$ where $l>1$ and q is the product of Fermat primes.

Proof. It is easy to see that if $k_{1}=1$ and if p_{1} satisfied any of the above conditions then the number of semi-primitive roots is always in power of 2 .

Conversely, let the number of semi-primitive roots be $2^{m}(m \geq 2)$. There will be two cases to be consider for $n=4 p_{1}^{k_{1}}$. If $k_{1}>1$ then p_{1} is a factor of number of semi-primitive roots, which is not possible. So $k_{1}=1$. Also, as p_{1} is odd prime so $\phi\left(p_{1}\right)=2^{l} q$, where $q \geq 1$ is odd number and $l \geq 1$. Therefore $\phi(n)=2^{l+1} q$ for $n=4 p_{1}$ and

$$
\frac{\phi(n)}{4}=2^{l-1} q= \begin{cases}\text { odd, } & \text { if } l=1 \\ \text { even, }, & \text { otherwise }\end{cases}
$$

When $\frac{\phi(n)}{4}$ is odd then $|S(n)|=3 \phi(q)$, which is not power of 2 . When $\frac{\phi(n)}{4}$ is even, then $|S(n)|=2^{l} \phi(q)$ which implies that $2^{l} \phi(q)=2^{m}$, so either $\phi(q)=1$ or $\phi(q)$ is power of 2 (say $2^{a}, a \geq 1$). If $\phi(q)=1$ then $q=1$ and so $p_{1}=2^{l}+1(l>1)$. Since p_{1} is prime so $2^{l}+1$ is also prime, which is possible only when l is power of 2 i.e. $2^{l}+1(l>1)$ is Fermat prime. So $p_{1}(\neq 3)$ is Fermat prime. Suppose $\phi(q)=2^{a}, a \geq 1$. The equation $\phi(q)=2^{a}$ have one odd solution q iff $a \leq 31$. The solution q is the product of the Fermat primes. So $p_{1}=2^{l} q+1, l>1$, where q is the product of Fermat primes. Hence complete the proved.

Proposition 2.6. Let \mathbb{Z}_{n}^{*} be a non-cyclic group possessing a semi-primitive root. Then for $n=$ $p_{1}^{k_{1}} p_{2}^{k_{2}}$, where $k_{1}, k_{2} \geq 1$ and p_{1}, p_{2} are odd primes such that $\left(\phi\left(p_{1}^{k_{1}}\right), \phi\left(p_{2}^{k_{2}}\right)\right)=2$ has number of semi-primitive roots is in power of 2 (say $2^{m}, m \geq 2$) iff $k_{1}=1=k_{2}$ and either any one of p_{1} and p_{2} is equal to 3 or $2 q_{1}+1$ where q_{1} is the product of Fermat primes and other is of the form $2^{l} q+1$ where $l>1$ and either $q=1$ or q is the product of Fermat primes.

Proof. It is easy to see that if p_{1} and p_{2} satisfied all the above condition then the number of semi-primitive roots is always power of 2 .

Conversely, suppose $n=p_{1}^{k_{1}} p_{2}^{k_{2}}$, where p_{1}, p_{2} are prime such that $\left(\phi\left(p_{1}^{k_{1}}\right), \phi\left(p_{2}^{k_{2}}\right)\right)=2$ and $k_{1}, k_{2} \geq 1$ and let $|S(n)|=2^{m}(m \geq 2)$. Since p_{1} and p_{2} are odd prime so $\phi\left(p_{1}\right)=2^{l_{1}} q_{1}$ and $\phi\left(p_{2}\right)=2^{l_{2}} q_{2}$ where $q_{1}, q_{2} \geq 1$ are odd numbers and $l_{1}, l_{2} \geq 1$. As $\left(\phi\left(p_{1}^{k_{1}}\right), \phi\left(p_{2}^{k_{2}}\right)\right)=2$, so at least l_{1} or l_{2} is equal to $1\left(\right.$ say $\left.l_{1}=1\right)$ and $\left(\phi\left(q_{1}\right), \phi\left(q_{2}\right)\right)=1$. If k_{1} or k_{2} or both greater than 1 then p_{1} or p_{2} or both are the factor(s) of $|S(n)|$, which is not possible. So the only possibility is that $k_{1}=1=k_{2}$. Then $\phi(n)=2^{l_{2}+1} q_{1} q_{2}$ and

$$
\frac{\phi(n)}{4}=2^{l_{2}-1} q_{1} q_{2}=\left\{\begin{array}{l}
\text { odd, } \quad \text { if } l_{2}=1 \\
\text { even, } \quad \text { otherwise }
\end{array}\right.
$$

When $\frac{\phi(n)}{4}$ is odd, then $|S(n)|=3 \phi\left(q_{1}\right) \phi\left(q_{2}\right)$, which is not power of 2 . When $\frac{\phi(n)}{4}$ is even, then $|S(n)|=2^{l_{2}} \phi\left(q_{1}\right) \phi\left(q_{2}\right)$, so either $\phi\left(q_{1}\right) \phi\left(q_{2}\right)=1$ or $\phi\left(q_{1}\right) \phi\left(q_{2}\right)=2^{a}, a \geq 1$. If $\phi\left(q_{1}\right) \phi\left(q_{2}\right)=1$ then $q_{1}=1=q_{2}$ and therefore $p_{1}=3$ and $p_{2}=2^{l_{2}}+1\left(l_{2}>1\right)$ i.e. $p_{2} \neq 3$ is Fermat prime. If $\phi\left(q_{1}\right) \phi\left(q_{2}\right)=2^{a}$ then one of $\phi\left(q_{1}\right)$ or $\phi\left(q_{2}\right)$ is equal to 1 and other is equal to 2^{a}. Let $\phi\left(q_{1}\right)=1$ and $\phi\left(q_{2}\right)=2^{a}$ then $q_{1}=1$ so $p_{1}=3$ and q_{2} is the product of Fermat prime for $a \leq 31$ so $p_{2}=2^{l_{2}} q_{2}+1, l_{2}>1$. If $\phi\left(q_{1}\right)=2^{a}$ and $\phi\left(q_{2}\right)=1$ then $p_{1}=2 q_{1}+1$, where q_{1} is the product of Fermat prime for $a \leq 31$ and $p_{2}=2^{l_{2}}+1$ is Fermat prime. Hence considering all the cases we can say that either any one of p_{1} and p_{2} is equal to 3 or $2 q_{1}+1$ where q_{1} is the product of Fermat primes and other is of the form $2^{l} q+1$ where $l>1$ and either $q=1$ and q is the product of Fermat primes.

Remark: The above result is true for $n=2 p_{1}^{k_{1}} p_{2}^{k_{2}}$ where p_{1}, p_{2} are odd primes such that $\left(\phi\left(p_{1}^{k_{1}}\right), \phi\left(p_{2}^{k_{2}}\right)\right)=2$ and $k_{1}, k_{2} \geq 1$ as $\phi(n)=\phi\left(p_{1}^{k_{1}} p_{2}^{k_{2}}\right)$.

3 Relation between $S(n)$ and $K(n)$

For a positive integer n, set

$$
K(n)=\left\{a \in \mathbb{Z}_{n}^{*} \mid a \text { is quadratic non-residue modulo } n\right\}
$$

Whenever \mathbb{Z}_{n}^{*} is non-cyclic and g is a semi-primitive root modulo n, then $g^{2 l}$ for $l=0,1, \ldots, \frac{\phi(n)}{4}-1$ are all the quadratic residue modulo n i.e., number of quadratic residues is $\frac{\phi(n)}{4}$, which gives $|K(n)|=\frac{3}{4} \phi(n)$, where cardinality of $K(n)$ is denoted by $|K(n)|$.

In this section we study the relation between $S(n)$ and $K(n)$. We begin with the following proposition.

Proposition 3.1. Let \mathbb{Z}_{n}^{*} be the non-cyclic group possessing semi-primitive root. If g is a semiprimitive root modulo n then g is quadratic non-residue ($q n r$) modulo n.

Proof. Suppose g is a semi-primitive root modulo n then $g^{\frac{\phi(n)}{2}} \equiv 1(\bmod n)$ and $\operatorname{ord}_{n}(g)=\frac{\phi(n)}{2}$. To show that g is qnr modulo n that is $\nexists x \in \mathbb{Z}_{n}^{*}$ such that $x^{2} \equiv g(\bmod n)$.

If possible let $\exists x \in \mathbb{Z}_{n}^{*}$ such that $x^{2} \equiv g(\bmod n)$. Now

$$
x^{2} \equiv g(\bmod n) \Rightarrow x^{\phi(n)} \equiv 1(\bmod n) .
$$

Again

$$
x^{\frac{\phi(n)}{2}}=\left(x^{2}\right)^{\frac{\phi(n)}{4}}=g^{\frac{\phi(n)}{4}} \not \equiv 1(\bmod n) .
$$

So ord $d_{n}(x)=\phi(n)$ i.e. x is a primitive root, which is a contradiction. Therefore g is quadratic non-residue modulo n.

But converse is not always true. For example 7 is quadratic non-residue modulo 2^{5}, but 7 is not semi-primitive root modulo 2^{5}. For above proposition it is clear that $S(n) \subset K(n)$. The following proposition gives the necessary and sufficient for $S(n)=K(n)$.

Proposition 3.2. Let \mathbb{Z}_{n}^{*} be the non-cyclic group possessing semi-primitive root. Then $S(n)=$ $K(n)$ iff $n=2^{3}$ or 12 .

Proof. We consider the following cases:
Case (i) $n=2^{k}(k>2)$.
In this case, we have, $\phi(n)=2^{k-1}$, and

$$
\frac{\phi(n)}{4}=2^{k-3}= \begin{cases}1, & \text { if } k=3 \\ \text { even, } & \text { otherwise }\end{cases}
$$

When $\frac{\phi(n)}{4}$ is odd, then $|S(n)|=3$ and $|K(n)|=\frac{3}{4} \phi(n)=3$. So $S(n)=K(n)$ for $n=2^{3}$.
For $\frac{\phi(n)}{4}$ is even, $|S(n)|=2^{k-2}$ and $|K(n)|=3.2^{k-3}$. So $S(n) \neq K(n)$.
Case (ii) $n=4 p_{1}^{k_{1}}$, where p_{1} is an odd prime and $k \geq 1$.
As p_{1} is odd prime so $\phi\left(p_{1}\right)=p_{1}-1=2^{l_{1}} q_{1}$, where $l_{1} \geq 1$ and $q_{1} \geq 1$ is an odd integer.
(a) When $k_{1}=1$, we have, $\phi(n)=2^{l_{1}+1} q_{1}$ and

$$
\frac{\phi(n)}{4}=2^{l_{1}-1} q_{1}= \begin{cases}\text { odd, } & \text { if } l_{1}=1 \\ \text { even, } & \text { otherwise }\end{cases}
$$

When $\frac{\phi(n)}{4}$ is odd, then $|S(n)|=3 \phi\left(q_{1}\right)$ and $|K(n)|=3 q_{1}$. If $|S(n)|=|K(n)|$ then $q_{1}=1$, which implies $p_{1}=3$. So $S(n)=K(n)$ if $n=4.3=12$. When $\frac{\phi(n)}{4}$ is even, then $|S(n)|=2^{l_{1}} \phi\left(q_{1}\right)$ and $|K(n)|=3.2^{l_{1}-1} q_{1}$.If $S(n)=K(n)$ then $2 \phi\left(q_{1}\right)=3 q_{1}$, which is not possible.
(b) When $k_{1}>1$, we have $\phi(n)=2^{l_{1}+1} q_{1} p_{1}^{k_{1}-1}$ and

$$
\frac{\phi(n)}{4}=2^{l_{1}-1} q_{1} p_{1}^{k_{1}-1}=\left\{\begin{array}{l}
\text { odd, } \quad \text { if } l_{1}=1 \\
\text { even, } \quad \text { otherwise }
\end{array}\right.
$$

When $\frac{\phi(n)}{4}$ is odd, then $|S(n)|=6 q_{1} \phi\left(q_{1}\right) p_{1}^{k_{1}-2}$ and $|K(n)|=3 q_{1} p_{1}^{k_{1}-1}$. If $S(n)=K(n)$ then $2 \phi\left(q_{1}\right)=p_{1}$, which is not possible. When $\frac{\phi(n)}{4}$ is even, then $|S(n)|=2^{2 l_{1}} q_{1} \phi\left(q_{1}\right) p_{1}^{k_{1}-2}$ and $|K(n)|=2^{l_{1}-1} 3 q_{1} p_{1}^{k_{1}-1}$. If $S(n)=K(n)$ then $2^{l_{1}+1} \phi\left(q_{1}\right)=3 p_{1}$, which is not possible. Case (iii) $n=p_{1}^{k_{1}} p_{2}^{k_{2}}$, where p_{1}, p_{2} are odd primes satisfying $\left(\phi\left(p_{1}^{k_{1}}\right), \phi\left(p_{2}^{k_{2}}\right)\right)=2$ and $k_{1}, k_{2} \geq 1$.

As p_{1}, p_{2} are odd primes so $\phi\left(p_{1}\right)=2^{l_{1}} q_{1}$ and $\phi\left(p_{2}\right)=2^{l_{2}} q_{2}$, where $l_{1}, l_{2} \geq 1$ and $q_{1}, q_{2} \geq 1$ are odd integers. Since $\left(\phi\left(p_{1}^{k_{1}}\right), \phi\left(p_{2}^{k_{2}}\right)\right)=2$, so $\left(\phi\left(q_{1}\right), \phi\left(q_{2}\right)\right)=1$ and at least l_{1} or l_{2} is equal to 1 . Suppose $l_{1}=1$.
(a) When $k_{1}=1=k_{2}$, we have $\phi(n)=2^{l_{2}+1} q_{1} q_{2}$ and

$$
\frac{\phi(n)}{4}=2^{l_{2}-1} q_{1} q_{2}=\left\{\begin{array}{l}
\text { odd, } \quad \text { if } l_{2}=1 \\
\text { even, } \quad \text { otherwise }
\end{array}\right.
$$

When $\frac{\phi(n)}{4}$ is odd, $|S(n)|=3 \phi\left(q_{1}\right) \phi\left(q_{2}\right)$ and $|K(n)|=3 q_{1} q_{2}$, so $S(n) \neq K(n)$. When $\frac{\phi(n)}{4}$ is even, then $|S(n)|=2^{l_{2}} \phi\left(q_{1}\right) \phi\left(q_{2}\right)$ and $|K(n)|=3.2^{l_{2}-1} q_{1} q_{2}$, so $S(n) \neq K(n)$.
(b) When $k_{1}=1, k_{2}>1$, we have $\phi(n)=2^{l_{2}+1} q_{1} q_{2} p_{2}^{k_{2}-1}$ and

$$
\frac{\phi(n)}{4}=2^{l_{2}-1} q_{1} q_{2} p_{2}^{k_{2}-1}= \begin{cases}\text { odd, } & \text { if } l_{2}=1 \\ \text { even, } & \text { otherwise }\end{cases}
$$

If $\frac{\phi(n)}{4}$ is odd, $|S(n)|=6 q_{2} \phi\left(q_{1}\right) \phi\left(q_{2}\right) p_{2}^{k_{2}-2}$ and $|K(n)|=3 q_{1} q_{2} p_{2}^{k_{2}-1}$, so $S(n) \neq K(n)$. If $\frac{\phi(n)}{4}$ is even, then $|S(n)|=2^{l_{2}} q_{2} \phi\left(q_{1}\right) \phi\left(q_{2}\right) p_{2}^{k_{2}-2}$ and $|K(n)|=3.2^{l_{2}-1} q_{1} q_{2} p_{2}^{k_{2}-1}$, so $S(n) \neq K(n)$.
(c) When $k_{1}>1$ and $k_{2}=1$ then in similar way we get $S(n) \neq K(n)$.
(d) When $k_{1}, k_{2}>1$, we have $\phi(n)=2^{l_{2}+1} q_{1} q_{2} p_{1}^{k_{1}-1} p_{2}^{k_{2}-1}$ and

$$
\frac{\phi(n)}{4}=2^{l_{2}-1} q_{1} q_{2} p_{1}^{k_{1}-1} p_{2}^{k_{2}-1}= \begin{cases}\text { odd, } & \text { if } l_{2}=1 \\ \text { even, } & \text { otherwise }\end{cases}
$$

If $\frac{\phi(n)}{4}$ is odd, $|S(n)|=12 q_{1} q_{2} \phi\left(q_{1}\right) \phi\left(q_{2}\right) p_{1}^{k_{1}-2} p_{2}^{k_{2}-2}$ and $|K(n)|=3 q_{1} q_{2} p_{1}^{k_{1}-1} p_{2}^{k_{2}-1}$, so $S(n) \neq K(n)$. I $\frac{\phi(n)}{4}$ is even, then $|S(n)|=2^{2 l_{2}+1} q_{1} q_{2} \phi\left(q_{1}\right) \phi\left(q_{2}\right) p_{1}^{k_{1}-2} p_{2}^{k_{2}-2}$ and $|K(n)|=$ $3.2^{l_{2}-1} q_{1} q_{2} p_{1}^{k_{1}-1} p_{2}^{k_{2}-1}$, so $S(n) \neq K(n)$.
Case (iv) When $n=2 p_{1}^{k_{1}} p_{2}^{k_{2}}$, where p_{1}, p_{2} are odd primes satisfying $\left(\phi\left(p_{1}^{k_{1}}\right), \phi\left(p_{2}^{k_{2}}\right)\right)=2$ and $k_{1}, k_{2} \geq 1$.

As $\phi\left(p_{1}^{k_{1}} p_{2}^{k_{2}}\right)=\phi\left(2 p_{1}^{k_{1}} p_{2}^{k_{2}}\right)$, so in this case also $S(n) \neq K(n)$.
Hence combining all the cases we get $S(n)=K(n)$ iff $n=2^{3}$ or 12 .

4 Conclusion and Future work

In this paper, we have dealt with the number of semi-primitive modulo n, which is an application of inverse Euler's φ-function. We also get a connection between set of semi-primitive roots modulo n and set of quadratic non-residue modulo n.

Semi-primitive roots in non-cyclic groups play almost the same role as primitive roots in cyclic groups, so it may be useful to construct a secure cryptosystem. We will consider this issue in our future work.

References

[1] Lee, K., M. Kwon, M. K. Kang, \& G. Shin (2011) Semi-primitive root modulo n, Honam Math. J., 33(2), 181-186.
[2] Lee, K., M. Kwon, \& G. Shin (2013) Multiplicative groups of integers with semi-primitive roots modulo n, Commum. Korean Math. Soc., 28(1), 71-77.

