On the number of semi-primitive roots modulo \(n \)

Pinkimani Goswami\(^1\) and Madan Mohan Singh\(^2\)

\(^1\) Department of Mathematics, North-Eastern Hill University
Permanent Campus, Shillong–793022, Meghalaya, India
e-mail: pinkimanigoswami@yahoo.com

\(^2\) Department of Basic Sciences and Social Sciences, North-Eastern Hill University
Permanent Campus, Shillong–793022, Meghalaya, India
e-mail: mmsingh2004@gmail.com

Abstract: Consider the multiplicative group of integers modulo \(n \), denoted by \(\mathbb{Z}^*_n \). An element \(a \in \mathbb{Z}^*_n \) is said to be a semi-primitive root modulo \(n \) if the order of \(a \) is \(\phi(n)/2 \), where \(\phi(n) \) is the Euler’s phi-function. In this paper, we’ll discuss on the number of semi-primitive roots of non-cyclic group \(\mathbb{Z}^*_n \) and study the relation between \(S(n) \) and \(K(n) \), where \(S(n) \) is the set of all semi-primitive roots of non-cyclic group \(\mathbb{Z}^*_n \) and \(K(n) \) is the set of all quadratic non-residues modulo \(n \).

Keywords: Multiplicative group of integers modulo \(n \), Primitive roots, Semi-primitive roots, Quadratic non-residues, Fermat primes.

AMS Classification: 11A07.

1 Introduction

Given a positive integer \(n \), the integers between 1 and \(n \) that are coprime to \(n \) form a group with multiplication modulo \(n \) as the operation. It is denoted by \(\mathbb{Z}^*_n \) and is called the multiplicative group of integers modulo \(n \). The order of this group is \(\phi(n) \), where \(\phi(n) \) is the Euler’s phi-function.

For any \(a \in \mathbb{Z}^*_n \), the order of \(a \) is the smallest positive integer \(k \) such that \(a^k \equiv 1 \pmod{n} \). Now, \(a \) is said to be a primitive root modulo \(n \) (in short primitive root) if the order of \(a \) is equal to \(\phi(n) \). It is well known that \(\mathbb{Z}^*_n \) has a primitive root, equivalently, \(\mathbb{Z}^*_n \) is cyclic if and only if \(n \) is equal to 1, 2, 4, \(p^k \) or \(2p^k \) where \(p \) is an odd prime number and \(k \geq 1 \). In this connection, it is interesting to study \(\mathbb{Z}^*_n \) that does not possess any primitive roots.

As a first step the authors in [1] showed that if \(\mathbb{Z}^*_n \) does not possess primitive roots, then \(a^{\frac{\phi(n)}{2}} \equiv 1 \pmod{n} \) for any integer \(a \in \mathbb{Z}^*_n \). This motivate the following definition:
Definition 1.1. An element $a \in \mathbb{Z}_n^*$ is said to be a semi-primitive root modulo n (in short semi-primitive root) if the order of a is equal to $\phi(n)/2$.

Clearly, if $a \in \mathbb{Z}_n^*$ is a primitive root, then $a^2 \in \mathbb{Z}_n^*$ is a semi-primitive root. In the same paper they classified the non-cyclic groups of the form \mathbb{Z}_n^* possessing semi-primitive roots as follows:

Theorem 1.1. Let \mathbb{Z}_n^* be the multiplicative group of integer modulo n that does not possess any primitive roots. Then \mathbb{Z}_n^* has a semi-primitive root if and only if n is equal to $2^k(k > 2)$, $4p_1^{k_1}p_2^{k_2}$, or $2p_1^{k_1}p_2^{k_2}$, where p_1 and p_2 are odd primes satisfying $(\phi(p_1^{k_1}), \phi(p_2^{k_2})) = 2$ and $k_1, k_2 \geq 1$.

In [2], the authors introduced the notion of good semi-primitive (GSP) root modulo n. A semi-primitive root h in \mathbb{Z}_n^* is said to be a GSP root if \mathbb{Z}_n^* can be expressed as $\mathbb{Z}_n^* = \langle h \rangle \times \langle -1 \rangle$.

They showed that if \mathbb{Z}_n^* is a non-cyclic group possessing semi-primitive roots then \mathbb{Z}_n^* has exactly $2\phi\left(\frac{\phi(n)}{2}\right)$ (i.e., $\phi(\phi(n))$) incongruent GSP roots. From paper [2] it is clear that the number of semi-primitive root is either $\phi(\phi(n))$ or $\phi(\phi(n)) + \phi\left(\frac{\phi(n)}{4}\right)$ according as $\frac{\phi(n)}{4}$ is even or odd.

In the rest of this paper \mathbb{Z}_n^* is considered as a non-cyclic group possessing semi-primitive root i.e., n is equal to $2^k(k > 2)$, $4p_1^{k_1}p_2^{k_2}$, or $2p_1^{k_1}p_2^{k_2}$, where p_1 and p_2 are odd primes satisfying $(\phi(p_1^{k_1}), \phi(p_2^{k_2})) = 2$ and $k_1, k_2 \geq 1$.

This paper is organized as follows. Section 2 is devoted to the number of semi-primitive roots of \mathbb{Z}_n^* and in section 3 we discuss the relation between set of all semi-primitive roots of \mathbb{Z}_n^* and set of all quadratic non-residues modulo n. Throughout the paper all notations are usual. For example the greatest common divisor of two integers m and n is denoted by (m, n), the order of a modulo n is denoted by $\text{ord}_n(a)$ etc.

2 New results on number of semi-primitive roots

In this section we dealing with number of semi-primitive roots for different values of n. For positive values of n, we define

$$S(n) = \{ g \in \mathbb{Z}_n^* | g \text{ is a semi primitive root modulo } n \}$$

So

$$|S(n)| = \begin{cases} \phi(\phi(n)) + \phi\left(\frac{2\phi(n)}{4}\right), & \text{if } \frac{\phi(n)}{4} \text{ is odd} \\ \phi(\phi(n)), & \text{if } \frac{2\phi(n)}{4} \text{ is even} \end{cases}$$

Where cardinality of $S(n)$ is denoted by $|S(n)|$.

We begin with the following proposition which shows that the number of semi-primitive roots is always greater than 2.

Proposition 2.1. Let \mathbb{Z}_n^* be a non-cyclic group possessing a semi-primitive root. Then the number of semi-primitive roots is at least 3.
Proposition 2.4. Let \(p \) be an odd prime be the number of semi-primitive roots. Then the number of semi-primitive roots is always an even number except for \(12 \) or \(3 \) or \(6 \) or \(8 \) or \(10 \). The number of semi-primitive roots is given by \(\frac{\phi(n)}{4} \).

Proof. The number of semi-primitive roots is given by \(\phi(\phi(n)) + \phi(\frac{\phi(n)}{4}) \) or \(\phi(\phi(n)) \) according as \(\frac{\phi(n)}{4} \) is odd or even. As \(\phi(n) > 2 \), so \(\phi(\phi(n)) \) is even. Therefore number of semi-primitive roots is greater than 1.

Consider the smallest possible case \(\phi(\phi(n)) = 2 \). Then \(\phi(n) = 3, 4 \) or 6. The only possibility is \(\phi(n) = 4 \), which implies that \(\frac{\phi(n)}{4} \) is odd. So the number of semi-primitive roots is greater than 2. \(\square \)

The following proposition gives the necessary and sufficient condition for which \(|S(n)| = 3 \).

Proposition 2.2. Let \(\mathbb{Z}_n^* \) be a non-cyclic group possessing a semi-primitive root. Then \(\mathbb{Z}_n^* \) has exactly 3 semi-primitive roots iff \(n = 2^3 \text{ or } 12 \).

Proof. The number of semi-primitive roots is given by \(\phi(\phi(n)) + \phi\left(\frac{\phi(n)}{4}\right) \) or \(\phi(\phi(n)) \) according as \(\frac{\phi(n)}{4} \) is odd or even. As \(\phi(n) > 2 \), so \(\phi(\phi(n)) \) is even. Therefore \(\phi(\phi(n)) + \phi\left(\frac{\phi(n)}{4}\right) = 3 \), which implies \(\frac{\phi(n)}{4} \) is odd. The only possibility of \(\phi\left(\frac{\phi(n)}{4}\right) \) is 1, which implies \(\phi(n) = 4 \). So \(n = 5, 8, 10 \) or 12. But \(n \neq 5, 10 \) as they are not any of the above form. So \(n = 8 \) or 12. \(\square \)

In the following proposition we showed that number of semi-primitive roots is always an even number for \(n = 2^4, 12 \).

Proposition 2.3. Let \(\mathbb{Z}_n^* \) be a non-cyclic group possessing a semi-primitive root. Then the number of semi-primitive roots is always an even number except for \(n = 2^3, 12 \).

Proof. Suppose there exist an integer \(n(n \neq 2^3, 12) \), for which number of semi-primitive roots is an odd number (say \(m \)). Since number of semi-primitive roots is odd, so \(\frac{\phi(n)}{4} \) is odd. Now \(\phi(\phi(n)) + \phi\left(\frac{\phi(n)}{4}\right) = m \), so the only possibility is \(\phi\left(\frac{\phi(n)}{4}\right) = 1 \), which implies \(\phi(n) = 4 \). Therefore \(n = 2^3 \text{ or } 12 \), which is a contradiction. \(\square \)

The following proposition is dealing with the number of semi-primitive roots of the form \(2p \), where \(p \) is odd prime.

Proposition 2.4. Let \(\mathbb{Z}_n^* \) be a non-cyclic group possessing a semi-primitive root. Let \(2p \), where \(p \) is an odd prime be the number of semi-primitive roots. Then \(p = 3 \text{ and } n = 21, 28 \text{ or } 42 \).

Proof. Suppose \(\frac{\phi(n)}{4} \) is even. For \(p = 3 \), \(\phi(n) = 7, 9, 14 \), or 18, which is not possible. For \(p \geq 5 \), \(\phi(n) = 2p + 1 \), or \(4p + 2 \) (where \(2p + 1 \) is prime). Both are not possible. Therefore if \(|S(n)| = 2p \) then \(\frac{\phi(n)}{4} \) must be odd.

Obviously \(n \neq 2^k(k \geq 3) \) as in this case number of semi-primitive roots is 3.

Case (i) Suppose \(n = 4p_1^{k_1} \), where \(p_1 \) is an odd prime and \(k_1 \geq 1 \). As \(p_1 \) is odd prime so \(\phi(p_1) = 2^{k_1-1}q_1 \), where \(l_1 \geq 1 \) and \(q_1 \geq 1 \) is an odd number. If \(k_1 = 1 \) then \(\phi(n) = 2^{l_1+1}q_1 \) and so \(l_1 = 1 \). Therefore \(|S(n)| = 3q_1 \), which implies \(p = 3 \) and \(q_1 = 3 \). So \(n = 28 \).

If \(k_1 > 1 \) then \(\phi(n) = 2^{l_1+1}q_1p_1^{k_1-1} \) and \(l_1 = 1 \). Then \(|S(n)| = 6q_1\phi(q_1)p_1^{k_1-2} \) and therefore \(p = 3q_1\phi(q_1)p_1^{k_1-2} \), which is not possible.

Case (ii) When \(n = p_1^{k_1}p_2^{k_2} \), where \(p_1 \) and \(p_2 \) are odd prime such that \(\phi(p_1^{k_1}), \phi(p_2^{k_2}) = 2 \) and \(k_1, k_2 \geq 1 \). As \(p_1 \) and \(p_2 \) are odd prime so \(\phi(p_1) = 2^{k_1}q_1 \) and \(\phi(p_2) = 2^{k_2}q_2 \) where \(l_1, l_2 \geq 1 \) and
\[q_1 \geq 1, q_2 \geq 1 \text{ are odd numbers such that } (\phi(q_1), \phi(q_2)) = 1. \text{ As } (\phi(p_1^{k_1}), \phi(p_2^{k_2})) = 2 \text{ so at least } l_1 \text{ or } l_2 \text{ is equal to } 1. \text{ Without loss of generality we can assume that } l_1 = 1. \]

If \(k_1 = 1 = k_2 \) then \(\phi(n) = 2^{2l+1}q_1q_2 \) and \(l_2 = 1. \) Therefore \(|S(n)| = 3\phi(q_1)\phi(q_2) \Rightarrow 3\phi(q_1)\phi(q_2) = 2p \Rightarrow p = 3 \text{ an either } \phi(q_1) = 1, \phi(q_2) = 2, \text{ or } \phi(q_1) = 2, \phi(q_2) = 1. \text{ So, } p = 3 \text{ and either } q_1 = 1 \text{ and } q_2 = 3 \text{ or } q_1 = 3 \text{ and } q_2 = 1. \text{ And hence } p = 3 \text{ and } n = 21. \]

If \(k_1 = 1, k_2 > 1 \) then \(\phi(n) = 2^{2l+1}q_1q_2p_2^{k_2-1} \) and \(l_2 = 1. \) Then \(|S(n)| = 6q_2\phi(q_1)\phi(q_2)p_2^{k_2-2} = 2p \) and therefore \(3q_2\phi(q_1)\phi(q_2)p_2^{k_2-2} = p, \) which is not possible. Similarly for \(k_1 > 1, k_2 = 1. \)

If \(k_1 > 1 \text{ and } k_2 > 1 \) then \(p_1 \) and \(p_2 \) are factors of \(|S(n)|, \) so \(|S(n)| \neq 2p. \)

As \(\phi(p_1^{k_1}p_2^{k_2}) = \phi(2p_1^{k_1}p_2^{k_2}) \) so \(|S(n)| = 2p \) if \(p = 3 \) and \(n = 42. \)

Hence from the above cases we can say that if the number of semi-primitive roots is \(2p \) then \(p = 3 \) and \(n = 21, 28, \text{ or } 42. \)

\[\square \]

Note: It is easy to see that if \(\mathbb{Z}_n^* \) is a non-cyclic group possessing semi-primitive root and if number of semi-primitive roots is of the form \(2^k p, \) where \(p \) is an odd prime then for \(\frac{\phi(n)}{4} \) is even, \(0 \leq k \leq 31 \) and \(p = 3. \) It is clear that the number of semi-primitive roots for \(n = 2^k (k > 3) \) is in power of 2. So it is interesting to find the other form of \(n \) for which number of semi-primitive roots is in power of 2.

In this direction we have the following propositions.

Proposition 2.5. Let \(\mathbb{Z}_n^* \) be a non-cyclic group possessing a semi-primitive root. Then for \(n = 4p_1^{k_1}, \) where \(p_1 \) is an odd prime and \(k_1 \geq 1 \) has number of semi-primitive roots is in power of 2 (say \(2^m, \ m \geq 2 \)) iff \(k_1 = 1 \) and either \(p_1 \neq 3 \) is a Fermat prime or \(p_1 \) is a prime of the form \(2^k q + 1 \) where \(l > 1 \) and \(q \) is the product of Fermat primes.

Proof. It is easy to see that if \(k_1 = 1 \) and if \(p_1 \) satisfied any of the above conditions then the number of semi-primitive roots is always in power of 2.

Conversely, let the number of semi-primitive roots be \(2^m \) \((m \geq 2) \). There will be two cases to be consider for \(n = 4p_1^{k_1}. \) If \(k_1 > 1 \) then \(p_1 \) is a factor of number of semi-primitive roots, which is not possible. So \(k_1 = 1. \) Also, as \(p_1 \) is odd prime so \(\phi(p_1) = 2^l q, \) where \(q \geq 1 \) is odd number and \(l \geq 1. \) Therefore \(\phi(n) = 2^{l+1}q \) for \(n = 4p_1 \) and

\[
\frac{\phi(n)}{4} = 2^{l-1}q = \begin{cases}
\text{odd, if } l = 1 \\
\text{even, otherwise}
\end{cases}
\]

When \(\frac{\phi(n)}{4} \) is odd then \(|S(n)| = 3\phi(q), \) which is not power of 2. When \(\frac{\phi(n)}{4} \) is even, then \(|S(n)| = 2^l \phi(q) \) which implies that \(2^l \phi(q) = 2^m, \) so either \(\phi(q) = 1 \) or \(\phi(q) \) is power of 2 (say \(2^a, \ a \geq 1 \)). If \(\phi(q) = 1 \) then \(q = 1 \) and so \(p_1 = 2^l + 1(l > 1). \) Since \(p_1 \) is prime so \(2^l + 1 \) is also prime, which is possible only when \(l \) is power of 2 i.e. \(2^l + 1(l > 1) \) is Fermat prime. So \(p_1 (\neq 3) \) is Fermat prime. Suppose \(\phi(q) = 2^a, \ a \geq 1. \) The equation \(\phi(q) = 2^a \) have one odd solution \(q \) iff \(a \leq 31. \) The solution \(q \) is the product of the Fermat primes. So \(p_1 = 2^l q + 1, l > 1, \) where \(q \) is the product of Fermat primes. Hence complete the proved. \[\square \]
Proposition 2.6. Let Z_n^* be a non-cyclic group possessing a semi-primitive root. Then for $n = p_1^{k_1}p_2^{k_2}$, where $k_1, k_2 \geq 1$ and p_1, p_2 are odd primes such that $(\phi(p_1^{k_1}), \phi(p_2^{k_2})) = 2$ has number of semi-primitive roots is in power of 2 (say 2^m, $m \geq 2$) iff $k_1 = 1 = k_2$ and either any one of p_1 and p_2 is equal to 3 or $2q + 1$ where q is the product of Fermat primes and other is of the form $2^lq + 1$ where $l > 1$ and either $q = 1$ or q is the product of Fermat primes.

Proof. It is easy to see that if p_1 and p_2 satisfied all the above condition then the number of semi-primitive roots is always power of 2.

Conversely, suppose $n = p_1^{k_1}p_2^{k_2}$, where p_1, p_2 are prime such that $(\phi(p_1^{k_1}), \phi(p_2^{k_2})) = 2$ and $k_1, k_2 \geq 1$ and let $|S(n)| = 2^m(m \geq 2)$. Since p_1 and p_2 are odd prime so $\phi(p_1) = 2^{l_1}q_1$ and $\phi(p_2) = 2^{l_2}q_2$ where $q_1, q_2 \geq 1$ are odd numbers and $l_1, l_2 \geq 1$. As $(\phi(p_1^{k_1}), \phi(p_2^{k_2})) = 2$, so at least l_1 or l_2 is equal to 1 (say $l_1 = 1$) and $(\phi(q_1), \phi(q_2)) = 1$. If k_1 or k_2 or both greater than 1 then p_1 or p_2 or both are the factor(s) of $|S(n)|$, which is not possible. So the only possibility is that $k_1 = 1 = k_2$. Then $\phi(n) = 2^{l_2 - 1}q_1q_2$ and

$$\frac{\phi(n)}{4} = 2^{l_2 - 1}q_1q_2 = \begin{cases} \text{odd, if } l_2 = 1 \\
\text{even, otherwise} \end{cases}$$

When $\frac{\phi(n)}{4}$ is odd, then $|S(n)| = 3\phi(q_1)\phi(q_2)$, which is not power of 2. When $\frac{\phi(n)}{4}$ is even, then $|S(n)| = 2^{l_2}\phi(q_1)\phi(q_2)$, so either $\phi(q_1)\phi(q_2) = 1$ or $\phi(q_1)\phi(q_2) = 2^a, a \geq 1$. If $\phi(q_1)\phi(q_2) = 1$ then $q_1 = 1 = q_2$ and therefore $p_1 = 3$ and $p_2 = 2^{l_2} + 1(l_2 > 1)$ i.e. $p_2 \neq 3$ is Fermat prime. If $\phi(q_1)\phi(q_2) = 2^a$ then one of $\phi(q_1)$ or $\phi(q_2)$ is equal to 1 and other is equal to 2^a. Let $\phi(q_1) = 1$ and $\phi(q_2) = 2^a$ then $q_1 = 1$ so $p_1 = 3$ and q_2 is the product of Fermat prime for $a \leq 31$ so $p_2 = 2^{l_2}q_2 + 1, l_2 > 1$. If $\phi(q_1) = 2^a$ and $\phi(q_2) = 1$ then $p_1 = 2q_1 + 1,$ where q_1 is the product of Fermat prime for $a \leq 31$ and $p_2 = 2^{l_2} + 1$ is Fermat prime. Hence considering all the cases we can say that either any one of p_1 and p_2 is equal to 3 or $2q + 1$ where q_1 is the product of Fermat primes and other is of the form $2^lq + 1$ where $l > 1$ and either $q = 1$ and q is the product of Fermat primes.

Remark: The above result is true for $n = p_1^{k_1}p_2^{k_2}$ where p_1, p_2 are odd primes such that $(\phi(p_1^{k_1}), \phi(p_2^{k_2})) = 2$ and $k_1, k_2 \geq 1$ as $\phi(n) = \phi(p_1^{k_1}p_2^{k_2})$.

3 Relation between $S(n)$ and $K(n)$

For a positive integer n, set

$$K(n) = \{a \in Z_n^*|a \text{ is quadratic non-residue modulo } n\}$$

Whenever Z_n^* is non-cyclic and g is a semi-primitive root modulo n, then g^{2l} for $l = 0, 1, \ldots, \frac{\phi(n)}{4} - 1$ are all the quadratic residue modulo n i.e., number of quadratic residues is $\frac{\phi(n)}{4}$, which gives $|K(n)| = \frac{3}{4}\phi(n)$, where cardinality of $K(n)$ is denoted by $|K(n)|$.

In this section we study the relation between $S(n)$ and $K(n)$. We begin with the following proposition.
Proposition 3.1. Let \(Z_n^* \) be the non-cyclic group possessing semi-primitive root. If \(g \) is a semi-primitive root modulo \(n \) then \(g \) is quadratic non-residue (qnr) modulo \(n \).

Proof. Suppose \(g \) is a semi-primitive root modulo \(n \) then \(g^\frac{\phi(n)}{2} \equiv 1 \pmod{n} \) and \(\text{ord}_n(g) = \frac{\phi(n)}{2} \). To show that \(g \) is qnr modulo \(n \) that is \(\not\exists x \in Z_n^* \) such that \(x^2 \equiv g \pmod{n} \).

If possible let \(\exists x \in Z_n^* \) such that \(x^2 \equiv g \pmod{n} \). Now

\[
x^2 \equiv g \pmod{n} \Rightarrow x^{\phi(n)} \equiv 1 \pmod{n}.
\]

Again

\[
x^{-\frac{\phi(n)}{2}} = (x^2)^{\frac{\phi(n)}{4}} = g^{\frac{\phi(n)}{4}} \not\equiv 1 \pmod{n}.
\]

So \(\text{ord}_n(x) = \phi(n) \) i.e. \(x \) is a primitive root, which is a contradiction. Therefore \(g \) is quadratic non-residue modulo \(n \).

But converse is not always true. For example 7 is quadratic non-residue modulo \(2^5 \), but 7 is not semi-primitive root modulo \(2^5 \). For above proposition it is clear that \(S(n) \subseteq K(n) \). The following proposition gives the necessary and sufficient for \(S(n) = K(n) \).

Proposition 3.2. Let \(Z_n^* \) be the non-cyclic group possessing semi-primitive root. Then \(S(n) = K(n) \) iff \(n = 2^3 \) or 12.

Proof. We consider the following cases:

Case (i) \(n = 2^k \) \((k > 2)\).

In this case, we have, \(\phi(n) = 2^{k-1} \), and

\[
\phi(n) = 2^{k-1} = \begin{cases}
1, & \text{if } k = 3 \\
\text{even}, & \text{otherwise}
\end{cases}
\]

When \(\frac{\phi(n)}{4} \) is odd, then \(|S(n)| = 3 \) and \(|K(n)| = 3^k \phi(n) = 3 \). So \(S(n) = K(n) \) for \(n = 2^3 \).

For \(\frac{\phi(n)}{4} \) is even, \(|S(n)| = 2^{k-2} \) and \(|K(n)| = 3.2^{k-3} \). So \(S(n) \neq K(n) \).

Case (ii) \(n = 4^k p_1^l \), where \(p_1 \) is an odd prime and \(k \geq 1 \).

As \(p_1 \) is odd prime so \(\phi(p_1) = p_1 - 1 = 2^{l_1} q_1 \), where \(l_1 \geq 1 \) and \(q_1 \geq 1 \) is an odd integer.

(a) When \(k_1 = 1 \), we have, \(\phi(n) = 2^{l_1+1} q_1 \) and

\[
\frac{\phi(n)}{4} = 2^{l_1-1} q_1 = \begin{cases}
\text{odd}, & \text{if } l_1 = 1 \\
\text{even}, & \text{otherwise}
\end{cases}
\]

When \(\frac{\phi(n)}{4} \) is odd, then \(|S(n)| = 3 \phi(q_1) \) and \(|K(n)| = 3 q_1 \). If \(|S(n)| = |K(n)| \) then \(q_1 = 1 \), which implies \(p_1 = 3 \). So \(S(n) = K(n) \) if \(n = 4.3 = 12 \). When \(\frac{\phi(n)}{4} \) is even, then \(|S(n)| = 2^{l_1} \phi(q_1) \) and \(|K(n)| = 3.2^{l_1-1} q_1 \). If \(S(n) = K(n) \) then \(2 \phi(q_1) = 3 q_1 \), which is not possible.

53
(b) When \(k_1 > 1 \), we have \(\phi(n) = 2^{l_1+1}q_1p_1^{k_1-1} \) and

\[
\frac{\phi(n)}{4} = 2^{l_1-1}q_1p_1^{k_1-1} = \begin{cases}
\text{odd, if } l_1 = 1 \\
\text{even, otherwise}
\end{cases}
\]

When \(\frac{\phi(n)}{4} \) is odd, then \(|S(n)| = 6q_1\phi(q_1)p_1^{k_1-2} \) and \(|K(n)| = 3q_1p_1^{k_1-1} \). If \(S(n) = K(n) \) then \(2\phi(q_1) = p_1 \), which is not possible. When \(\frac{\phi(n)}{4} \) is even, then \(|S(n)| = 2^{l_1}q_1\phi(q_1)p_1^{k_1-2} \) and \(|K(n)| = 2^{l_1-1}3q_1p_1^{k_1-1} \). If \(S(n) = K(n) \) then \(2^{l_1+1}\phi(q_1) = 3p_1 \), which is not possible.

Case (iii) \(n = p_1^{k_1}p_2^{k_2} \), where \(p_1, p_2 \) are odd primes satisfying \((\phi(p_1^{k_1}), \phi(p_2^{k_2})) = 2 \) and \(k_1, k_2 \geq 1 \).

As \(p_1, p_2 \) are odd primes so \(\phi(p_1) = 2^{l_1}q_1 \) and \(\phi(p_2) = 2^{l_2}q_2 \), where \(l_1, l_2 \geq 1 \) and \(q_1, q_2 \geq 1 \) are odd integers. Since \((\phi(p_1^{k_1}), \phi(p_2^{k_2})) = 2 \), so \((\phi(q_1), \phi(q_2)) = 1 \) and at least \(l_1 \) or \(l_2 \) is equal to 1. Suppose \(l_1 = 1 \).

(a) When \(k_1 = 1 = k_2 \), we have \(\phi(n) = 2^{l_2+1}q_1q_2 \) and

\[
\frac{\phi(n)}{4} = 2^{l_2-1}q_1q_2 = \begin{cases}
\text{odd, if } l_2 = 1 \\
\text{even, otherwise}
\end{cases}
\]

When \(\frac{\phi(n)}{4} \) is odd, \(|S(n)| = 3\phi(q_1)\phi(q_2) \) and \(|K(n)| = 3q_1q_2 \), so \(S(n) \neq K(n) \). When \(\frac{\phi(n)}{4} \) is even, then \(|S(n)| = 2^{l_2}\phi(q_1)\phi(q_2) \) and \(|K(n)| = 3.2^{l_2-1}q_1q_2 \), so \(S(n) \neq K(n) \).

(b) When \(k_1 = 1, k_2 > 1 \), we have \(\phi(n) = 2^{l_2+1}q_1q_2p_2^{k_2-1} \) and

\[
\frac{\phi(n)}{4} = 2^{l_2-1}q_1q_2p_2^{k_2-1} = \begin{cases}
\text{odd, if } l_2 = 1 \\
\text{even, otherwise}
\end{cases}
\]

If \(\frac{\phi(n)}{4} \) is odd, \(|S(n)| = 6q_2\phi(q_1)\phi(q_2)p_2^{k_2-2} \) and \(|K(n)| = 3q_1q_2p_2^{k_2-1} \), so \(S(n) \neq K(n) \). If \(\frac{\phi(n)}{4} \) is even, then \(|S(n)| = 2^{l_2}q_2\phi(q_1)\phi(q_2)p_2^{k_2-2} \) and \(|K(n)| = 3.2^{l_2-1}q_1q_2p_2^{k_2-1} \), so \(S(n) \neq K(n) \).

(c) When \(k_1 > 1 \) and \(k_2 = 1 \) then in similar way we get \(S(n) \neq K(n) \).

(d) When \(k_1, k_2 > 1 \), we have \(\phi(n) = 2^{l_2+1}q_1q_2p_1^{k_1-1}p_2^{k_2-1} \) and

\[
\frac{\phi(n)}{4} = 2^{l_2-1}q_1q_2p_1^{k_1-1}p_2^{k_2-1} = \begin{cases}
\text{odd, if } l_2 = 1 \\
\text{even, otherwise}
\end{cases}
\]

If \(\frac{\phi(n)}{4} \) is odd, \(|S(n)| = 12q_2q_1\phi(q_1)\phi(q_2)p_1^{k_1-2}p_2^{k_2-2} \) and \(|K(n)| = 3q_1q_2p_1^{k_1-1}p_2^{k_2-1} \), so \(S(n) \neq K(n) \). If \(\frac{\phi(n)}{4} \) is even, then \(|S(n)| = 2^{l_2+1}q_1q_2\phi(q_1)\phi(q_2)p_1^{k_1-2}p_2^{k_2-2} \) and \(|K(n)| = 3.2^{l_2-1}q_1q_2p_1^{k_1-1}p_2^{k_2-1} \), so \(S(n) \neq K(n) \).

Case (iv) When \(n = 2p_1^{k_1}p_2^{k_2} \), where \(p_1, p_2 \) are odd primes satisfying \((\phi(p_1^{k_1}), \phi(p_2^{k_2})) = 2 \) and \(k_1, k_2 \geq 1 \).

As \(\phi(p_1^{k_1}p_2^{k_2}) = \phi(2p_1^{k_1}p_2^{k_2}) \), so in this case also \(S(n) \neq K(n) \).

Hence combining all the cases we get \(S(n) = K(n) \) iff \(n = 2^3 \) or 12. \(\square \)
4 Conclusion and Future work

In this paper, we have dealt with the number of semi-primitive modulo \(n \), which is an application of inverse Euler's \(\varphi \)-function. We also get a connection between set of semi-primitive roots modulo \(n \) and set of quadratic non-residue modulo \(n \).

Semi-primitive roots in non-cyclic groups play almost the same role as primitive roots in cyclic groups, so it may be useful to construct a secure cryptosystem. We will consider this issue in our future work.

References
