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Abstract: Consider the multiplicative group of integers modulo n, denoted by Z∗
n. An element

a ∈ Z∗
n is said to be a semi-primitive root modulo n if the order of a is φ(n)/2, where φ(n) is

the Euler’s phi-function. In this paper, we’ll discuss on the number of semi-primitive roots of
non-cyclic group Z∗

n and study the relation between S(n) and K(n), where S(n) is the set of
all semi-primitive roots of non-cyclic group Z∗

n and K(n) is the set of all quadratic non-residues
modulo n.
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1 Introduction

Given a positive integer n, the integers between 1 and n that are coprime to n form a group with
multiplication modulo n as the operation. It is denoted by Z∗

n and is called the multiplicative group
of integers modulo n. The order of this group is φ(n), where φ(n) is the Euler’s phi-function.

For any a ∈ Z∗
n, the order of a is the smallest positive integer k such that ak ≡ 1 (mod n).

Now, a is said to be a primitive root modulo n (in short primitive root) if the order of a is equal
to φ(n). It is well known that Z∗

n has a primitive root, equivalently, Z∗
n is cyclic if and only if n

is equal to 1, 2, 4, pk or 2pk where p is an odd prime number and k ≥ 1. In this connection, it is
interesting to study Z∗

n that does not possess any primitive roots.
As a first step the authors in [1] showed that if Z∗

n does not possess primitive roots, then
a
φ(n)
2 ≡ 1 (mod n) for any integer a ∈ Z∗

n. This motivate the following definition:
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Definition 1.1. An element a ∈ Z∗
n is said to be a semi-primitive root modulo n (in short semi-

primitive root) if the order of a is equal to φ(n)/2.

Clearly, if a ∈ Z∗
n is a primitive root, then a2 ∈ Z∗

n is a semi-primitive root. In the same paper
they classified the non-cyclic groups of the form Z∗

n possessing semi-primitive roots as follows:

Theorem 1.1. Let Z∗
n be the multiplicative group of integer modulo n that does not possess

any primitive roots. Then Z∗
n has a semi-primitive root if and only if n is equal to 2k(k >

2), 4pk11 , p
k1
1 p

k2
2 , or 2pk11 p

k2
2 , where p1 and p2 are odd primes satisfying (φ(pk11 ), φ(pk22 )) = 2 and

k1, k2 ≥ 1.

In [2], the authors introduced the notion of good semi-primitive (GSP) root modulo n. A
semi-primitive root h in Z∗

n is said to be a GSP root if Z∗
n can be expressed as Z∗

n = 〈h〉 × 〈−1〉.
They showed that if Z∗

n is a non-cyclic group possessing semi-primitive roots then Z∗
n has

exactly 2φ(φ(n)
2
) (i.e. φ(φ(n))) incongruent GSP roots. From paper [2] it is clear that the number

of semi-primitive root is either φ(φ(n)) or φ(φ(n)) + φ(φ(n)
4
) according as φ(n)

4
is even or odd.

In the rest of this paper Z∗
n is considered as a non-cyclic group possessing semi-primitive root

i.e., n is equal to 2k(k > 2), 4pk11 , p
k1
1 p

k2
2 , or 2pk11 p

k2
2 , where p1 and p2 are odd primes satisfying

(φ(pk11 ), φ(pk22 )) = 2 and k1, k2 ≥ 1.
This paper is organized as follows. Section 2 is devoted to the number of semi-primitive roots

of Z∗
n and in section 3 we discuss the relation between set of all semi-primitive roots of Z∗

n and
set of all quadratic non-residues modulo n. Throughout the paper all notations are usual. For
example the greatest common divisor of two integers m and n is denoted by (m,n), the order of
a modulo n is denoted by ordn(a) etc.

2 New results on number of semi-primitive roots

In this section we dealing with number of semi-primitive roots for different values of n. For
positive values of n, we define

S(n) = {g ∈ Z∗
n|g is a semi− primitive root modulo n}

So

|S(n)| =

φ(φ(n)) + φ(φ(n)
4
), if φ(n)

4
is odd

φ(φ(n)), if φ(n)
4
is even

Where cardinality of S(n) is denoted by |S(n)|.
We begin with the following proposition which shows that the number of semi-primitive roots

is always greater than 2.

Proposition 2.1. Let Z∗
n be a non-cyclic group possessing a semi-primitive root. Then the number

of semi-primitive roots is at least 3.
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Proof. The number of semi-primitive roots is given by φ(φ(n)) + φ(φ(n)
4
) or φ(φ(n)) according

as φ(n)
4

is odd or even. As φ(n) > 2, so φ(φ(n)) is even. Therefore number of semi-primitive
roots is greater than 1.

Consider the smallest possible case φ(φ(n)) = 2. Then φ(n) = 3, 4 or 6. The only possibility
is φ(n) = 4, which implies that φ(n)

4
is odd. So the number of semi-primitive roots is greater than

2.

The following proposition gives the necessary and sufficient condition for which |S(n)| = 3.

Proposition 2.2. Let Z∗
n be a non-cyclic group possessing a semi-primitive root. Then Z∗

n has
exactly 3 semi-primitive roots iff n = 23 or 12.

Proof. The number of semi-primitive roots is given by φ(φ(n)) + φ(φ(n)
4
) or φ(φ(n)) according

as φ(n)
4

is odd or even. As φ(n) > 2, so φ(φ(n)) is even. Therefore φ(φ(n))+φ(φ(n)
4
) = 3, which

implies φ(n)
4

is odd. The only possibility of φ(φ(n)
4
) is 1, which implies φ(n) = 4. So n = 5, 8, 10

or 12. But n 6= 5, 10 as they are not any of the above form. So n = 8 or 12.

In the following proposition we showed that number of semi-primitive roots is always an even
number for n 6= 23, 12.

Proposition 2.3. Let Z∗
n be a non-cyclic group possessing a semi-primitive root. Then the number

of semi-primitive roots is always an even number except for n = 23, 12.

Proof. Suppose there exist an integer n(n 6= 23, 12), for which number of semi-primitive roots
is an odd number (say m). Since number of semi-primitive roots is odd, so φ(n)

4
is odd. Now

φ(φ(n))+φ(φ(n)
4
) = m, so the only possibility is φ(φ(n)

4
) = 1, which implies φ(n) = 4. Therefore

n = 23 or 12, which is a contradiction.

The following proposition is dealing with the number of semi-primitive roots of the form 2p,
where p is odd prime.

Proposition 2.4. Let Z∗
n be a non-cyclic group possessing a semi-primitive root. Let 2p, where p

is an odd prime be the number of semi-primitive roots. Then p = 3 and n = 21, 28, or 42.

Proof. Suppose φ(n)
4

is even. For p = 3, φ(n) = 7, 9, 14, or 18, which is not possible. For p ≥ 5,
φ(n) = 2p+1, or 4p+2 (where 2p+1 is prime). Both are not possible. Therefore if |S(n)| = 2p

then φ(n)
4

must be odd.
Obviously n 6= 2k(k ≥ 3) as in this case number of semi-primitive roots is 3.
Case (i) Suppose n = 4pk11 , where p1 is an odd prime and k1 ≥ 1. As p1 is odd prime so

φ(p1) = 2l1q1, where l1 ≥ 1 and q1 ≥ 1 is an odd number. If k1 = 1 then φ(n) = 2l1+1q1 and so
l1 = 1. Therefore |S(n)| = 3φ(q1), which implies p = 3 and q1 = 3. So n = 28.

If k1 > 1 then φ(n) = 2l1+1q1p
k1−1
1 and l1 = 1. Then |S(n)| = 6q1φ(q1)p

k1−2
1 and therefore

p = 3q1φ(q1)p
k1−2
1 , which is not possible.

Case (ii) When n = pk11 p
k2
2 , where p1 and p2 are odd prime such that (φ(pk11 ), φ(pk22 )) = 2 and

k1, k2 ≥ 1. As p1 and p2 are odd prime so φ(p1) = 2l1q1 and φ(p2) = 2l2q2 where l1, l2 ≥ 1 and
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q1 ≥ 1, q2 ≥ 1 are odd numbers such that (φ(q1), φ(q2)) = 1. As (φ(pk11 ), φ(pk22 )) = 2 so at least
l1 or l2 is equal to 1. Without loss of generality we can assume that l1 = 1.

If k1 = 1 = k2 then φ(n) = 2l2+1q1q2 and l2 = 1. Therefore |S(n)| = 3φ(q1)φ(q2) ⇒
3φ(q1)φ(q2) = 2p ⇒ p = 3 an either φ(q1) = 1, φ(q2) = 2, or φ(q1) = 2, φ(q2) = 1. So, p = 3

and either q1 = 1 and q2 = 3 or q1 = 3 and q2 = 1. And hence p = 3 and n = 21.
If k1 = 1, k2 > 1 then φ(n) = 2l2+1q1q2p

k2−1
2 and l2 = 1. Then |S(n)| = 6q2φ(q1)φ(q2)p

k2−2
2

= 2p and therefore 3q2φ(q1)φ(q2)p
k2−2
2 = p, which is not possible. Similarly for k1 > 1, k2 = 1.

If k1 > 1 and k2 > 1 then p1 and p2 are factors of |S(n)|, so |S(n)| 6= 2p.
As φ(pk11 p

k2
2 ) = φ(2pk11 p

k2
2 ) so |S(n)| = 2p if p = 3 and n = 42.

Hence from the above cases we can say that if the number of semi-primitive roots is 2p then
p = 3 and n = 21, 28, or 42.

Note: It is easy to see that if Z∗
n is a non-cyclic group possessing semi-primitive root and if

number of semi-primitive roots is of the form 2kp, where p is an odd prime then for φ(n)
4

is even,
0 ≤ k ≤ 31 and p = 3.

It is clear that the number of semi-primitive roots for n = 2k(k > 3) is in power of 2. So it is
interesting to find the other form of n for which number of semi-primitive roots is in power of 2.
In this direction we have the following propositions.

Proposition 2.5. Let Z∗
n be a non-cyclic group possessing a semi-primitive root. Then for n =

4pk11 , where p1 is an odd prime and k1 ≥ 1 has number of semi-primitive roots is in power of 2
(say 2m, m ≥ 2) iff k1 = 1 and either p1 6= 3 is a Fermat prime or p1 is a prime of the form
2lq + 1 where l > 1 and q is the product of Fermat primes.

Proof. It is easy to see that if k1 = 1 and if p1 satisfied any of the above conditions then the
number of semi-primitive roots is always in power of 2.

Conversely, let the number of semi-primitive roots be 2m(m ≥ 2). There will be two cases to
be consider for n = 4pk11 . If k1 > 1 then p1 is a factor of number of semi-primitive roots, which
is not possible. So k1 = 1. Also, as p1 is odd prime so φ(p1) = 2lq, where q ≥ 1 is odd number
and l ≥ 1. Therefore φ(n) = 2l+1q for n = 4p1 and

φ(n)

4
= 2l−1q =

odd, if l = 1

even, otherwise

When φ(n)
4

is odd then |S(n)| = 3φ(q), which is not power of 2. When φ(n)
4

is even, then
|S(n)| = 2lφ(q) which implies that 2lφ(q) = 2m, so either φ(q) = 1 or φ(q) is power of 2 (say
2a, a ≥ 1). If φ(q) = 1 then q = 1 and so p1 = 2l + 1(l > 1). Since p1 is prime so 2l + 1 is also
prime, which is possible only when l is power of 2 i.e. 2l+1(l > 1) is Fermat prime. So p1( 6= 3)

is Fermat prime. Suppose φ(q) = 2a, a ≥ 1. The equation φ(q) = 2a have one odd solution q iff
a ≤ 31. The solution q is the product of the Fermat primes. So p1 = 2lq + 1, l > 1, where q is
the product of Fermat primes. Hence complete the proved.
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Proposition 2.6. Let Z∗
n be a non-cyclic group possessing a semi-primitive root. Then for n =

pk11 p
k2
2 , where k1, k2 ≥ 1 and p1, p2 are odd primes such that (φ(pk11 ), φ(pk22 )) = 2 has number of

semi-primitive roots is in power of 2 (say 2m, m ≥ 2) iff k1 = 1 = k2 and either any one of p1
and p2 is equal to 3 or 2q1 + 1 where q1 is the product of Fermat primes and other is of the form
2lq + 1 where l > 1 and either q = 1 or q is the product of Fermat primes.

Proof. It is easy to see that if p1 and p2 satisfied all the above condition then the number of
semi-primitive roots is always power of 2.

Conversely, suppose n = pk11 p
k2
2 , where p1, p2 are prime such that (φ(pk11 ), φ(pk22 )) = 2 and

k1, k2 ≥ 1 and let |S(n)| = 2m(m ≥ 2). Since p1 and p2 are odd prime so φ(p1) = 2l1q1 and
φ(p2) = 2l2q2 where q1, q2 ≥ 1 are odd numbers and l1, l2 ≥ 1. As (φ(pk11 ), φ(pk22 )) = 2, so at
least l1 or l2 is equal to 1 (say l1 = 1) and (φ(q1), φ(q2)) = 1. If k1 or k2 or both greater than 1

then p1 or p2 or both are the factor(s) of |S(n)|, which is not possible. So the only possibility is
that k1 = 1 = k2. Then φ(n) = 2l2+1q1q2 and

φ(n)

4
= 2l2−1q1q2 =

odd, if l2 = 1

even, otherwise

When φ(n)
4

is odd, then |S(n)| = 3φ(q1)φ(q2), which is not power of 2. When φ(n)
4

is even, then
|S(n)| = 2l2φ(q1)φ(q2), so either φ(q1)φ(q2) = 1 or φ(q1)φ(q2) = 2a, a ≥ 1. If φ(q1)φ(q2) = 1

then q1 = 1 = q2 and therefore p1 = 3 and p2 = 2l2 + 1(l2 > 1) i.e. p2 6= 3 is Fermat prime. If
φ(q1)φ(q2) = 2a then one of φ(q1) or φ(q2) is equal to 1 and other is equal to 2a. Let φ(q1) = 1

and φ(q2) = 2a then q1 = 1 so p1 = 3 and q2 is the product of Fermat prime for a ≤ 31 so
p2 = 2l2q2 + 1, l2 > 1. If φ(q1) = 2a and φ(q2) = 1 then p1 = 2q1 + 1,where q1 is the product
of Fermat prime for a ≤ 31 and p2 = 2l2 + 1 is Fermat prime. Hence considering all the cases
we can say that either any one of p1 and p2 is equal to 3 or 2q1 + 1 where q1 is the product of
Fermat primes and other is of the form 2lq + 1 where l > 1 and either q = 1 and q is the product
of Fermat primes.

Remark: The above result is true for n = 2pk11 p
k2
2 where p1, p2 are odd primes such that

(φ(pk11 ), φ(pk22 )) = 2 and k1, k2 ≥ 1 as φ(n) = φ(pk11 p
k2
2 ).

3 Relation between S(n) and K(n)

For a positive integer n, set

K(n) = {a ∈ Z∗
n|a is quadratic non-residue modulo n}

Whenever Z∗
n is non-cyclic and g is a semi-primitive root modulo n, then g2l for

l = 0, 1, . . . , φ(n)
4
− 1 are all the quadratic residue modulo n i.e., number of quadratic residues is

φ(n)
4

, which gives |K(n)| = 3
4
φ(n), where cardinality of K(n) is denoted by |K(n)|.

In this section we study the relation between S(n) and K(n). We begin with the following
proposition.
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Proposition 3.1. Let Z∗
n be the non-cyclic group possessing semi-primitive root. If g is a semi-

primitive root modulo n then g is quadratic non-residue (qnr) modulo n.

Proof. Suppose g is a semi-primitive root modulo n then g
φ(n)
2 ≡ 1 (mod n) and ordn(g) =

φ(n)
2

.
To show that g is qnr modulo n that is 6 ∃x ∈ Z∗

n such that x2 ≡ g (mod n).
If possible let ∃x ∈ Z∗

n such that x2 ≡ g (mod n). Now

x2 ≡ g (mod n)⇒ xφ(n) ≡ 1 (mod n).

Again
x
φ(n)
2 = (x2)

φ(n)
4 = g

φ(n)
4 6≡ 1 (mod n).

So ordn(x) = φ(n) i.e. x is a primitive root, which is a contradiction. Therefore g is quadratic
non-residue modulo n.

But converse is not always true. For example 7 is quadratic non-residue modulo 25, but 7
is not semi-primitive root modulo 25. For above proposition it is clear that S(n) ⊂ K(n). The
following proposition gives the necessary and sufficient for S(n) = K(n).

Proposition 3.2. Let Z∗
n be the non-cyclic group possessing semi-primitive root. Then S(n) =

K(n) iff n = 23 or 12.

Proof. We consider the following cases:
Case (i)n = 2k(k > 2).

In this case, we have, φ(n) = 2k−1, and

φ(n)

4
= 2k−3 =

1, if k = 3

even, otherwise

When φ(n)
4

is odd, then |S(n)| = 3 and |K(n)| = 3
4
φ(n) = 3. So S(n) = K(n) for n = 23.

For φ(n)
4

is even, |S(n)| = 2k−2 and |K(n)| = 3.2k−3. So S(n) 6= K(n).
Case (ii) n = 4pk11 , where p1 is an odd prime and k ≥ 1.
As p1 is odd prime so φ(p1) = p1 − 1 = 2l1q1, where l1 ≥ 1 and q1 ≥ 1 is an odd integer.

(a) When k1 = 1, we have, φ(n) = 2l1+1q1 and

φ(n)

4
= 2l1−1q1 =

odd, if l1 = 1

even, otherwise

When φ(n)
4

is odd, then |S(n)| = 3φ(q1) and |K(n)| = 3q1. If |S(n)| = |K(n)| then
q1 = 1, which implies p1 = 3. So S(n) = K(n) if n = 4.3 = 12. When φ(n)

4
is even, then

|S(n)| = 2l1φ(q1) and |K(n)| = 3.2l1−1q1.If S(n) = K(n) then 2φ(q1) = 3q1, which is
not possible.
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(b) When k1 > 1, we have φ(n) = 2l1+1q1p
k1−1
1 and

φ(n)

4
= 2l1−1q1p

k1−1
1 =

odd, if l1 = 1

even, otherwise

When φ(n)
4

is odd, then |S(n)| = 6q1φ(q1)p
k1−2
1 and |K(n)| = 3q1p

k1−1
1 . If S(n) = K(n)

then 2φ(q1) = p1, which is not possible. When φ(n)
4

is even, then |S(n)| = 22l1q1φ(q1)p
k1−2
1

and |K(n)| = 2l1−13q1p
k1−1
1 . If S(n) = K(n) then 2l1+1φ(q1) = 3p1, which is not possible.

Case (iii) n = pk11 p
k2
2 , where p1, p2 are odd primes satisfying (φ(pk11 ), φ(pk22 )) = 2 and k1, k2 ≥ 1.

As p1, p2 are odd primes so φ(p1) = 2l1q1 and φ(p2) = 2l2q2, where l1, l2 ≥ 1 and q1, q2 ≥ 1

are odd integers. Since (φ(pk11 ), φ(pk22 )) = 2, so (φ(q1), φ(q2)) = 1 and at least l1 or l2 is equal
to 1. Suppose l1 = 1.

(a) When k1 = 1 = k2, we have φ(n) = 2l2+1q1q2 and

φ(n)

4
= 2l2−1q1q2 =

odd, if l2 = 1

even, otherwise

When φ(n)
4

is odd, |S(n)| = 3φ(q1)φ(q2) and |K(n)| = 3q1q2, so S(n) 6= K(n). When φ(n)
4

is even, then |S(n)| = 2l2φ(q1)φ(q2) and |K(n)| = 3.2l2−1q1q2, so S(n) 6= K(n).

(b) When k1 = 1, k2 > 1, we have φ(n) = 2l2+1q1q2p
k2−1
2 and

φ(n)

4
= 2l2−1q1q2p

k2−1
2 =

odd, if l2 = 1

even, otherwise

If φ(n)
4

is odd, |S(n)| = 6q2φ(q1)φ(q2)p
k2−2
2 and |K(n)| = 3q1q2p

k2−1
2 , so S(n) 6= K(n).

If φ(n)
4

is even, then |S(n)| = 2l2q2φ(q1)φ(q2)p
k2−2
2 and |K(n)| = 3.2l2−1q1q2p

k2−1
2 , so

S(n) 6= K(n).

(c) When k1 > 1 and k2 = 1 then in similar way we get S(n) 6= K(n).

(d) When k1, k2 > 1, we have φ(n) = 2l2+1q1q2p
k1−1
1 pk2−1

2 and

φ(n)

4
= 2l2−1q1q2p

k1−1
1 pk2−1

2 =

odd, if l2 = 1

even, otherwise

If φ(n)
4

is odd, |S(n)| = 12q1q2φ(q1)φ(q2)p
k1−2
1 pk2−2

2 and |K(n)| = 3q1q2p
k1−1
1 pk2−1

2 , so
S(n) 6= K(n). I φ(n)

4
is even, then |S(n)| = 22l2+1q1q2φ(q1)φ(q2)p

k1−2
1 pk2−2

2 and |K(n)| =
3.2l2−1q1q2p

k1−1
1 pk2−1

2 , so S(n) 6= K(n).

Case (iv) When n = 2pk11 p
k2
2 , where p1, p2 are odd primes satisfying (φ(pk11 ), φ(pk22 )) = 2 and

k1, k2 ≥ 1.
As φ(pk11 p

k2
2 ) = φ(2pk11 p

k2
2 ), so in this case also S(n) 6= K(n).

Hence combining all the cases we get S(n) = K(n) iff n = 23 or 12.
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4 Conclusion and Future work

In this paper, we have dealt with the number of semi-primitive modulo n, which is an application
of inverse Euler’s ϕ-function. We also get a connection between set of semi-primitive roots
modulo n and set of quadratic non-residue modulo n.

Semi-primitive roots in non-cyclic groups play almost the same role as primitive roots in
cyclic groups, so it may be useful to construct a secure cryptosystem. We will consider this issue
in our future work.
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