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Abstract: Consider the multiplicative group of integers modulo n, denoted by Z;. An element
a € Z} is said to be a semi-primitive root modulo n if the order of a is ¢(n)/2, where ¢(n) is
the Euler’s phi-function. In this paper, we’ll discuss on the number of semi-primitive roots of
non-cyclic group Z! and study the relation between S(n) and K (n), where S(n) is the set of
all semi-primitive roots of non-cyclic group Z and K (n) is the set of all quadratic non-residues
modulo n.
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1 Introduction

Given a positive integer n, the integers between 1 and n that are coprime to n form a group with
multiplication modulo n as the operation. Itis denoted by Z; and is called the multiplicative group
of integers modulo n. The order of this group is ¢(n), where ¢(n) is the Euler’s phi-function.

For any a € Z, the order of a is the smallest positive integer & such that a* = 1 (mod n).
Now, a is said to be a primitive root modulo n (in short primitive root) if the order of a is equal
to ¢(n). It is well known that Z; has a primitive root, equivalently, Z is cyclic if and only if n
is equal to 1,2, 4, p* or 2p* where p is an odd prime number and k& > 1. In this connection, it is
interesting to study Z; that does not possess any primitive roots.

As a first step the authors in [1] showed that if Z; does not possess primitive roots, then

a*3 =1 (mod n) for any integer a € 7. This motivate the following definition:
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Definition 1.1. An element a € 7Z;, is said to be a semi-primitive root modulo n (in short semi-
primitive root) if the order of a is equal to ¢(n) /2.

Clearly, if a € Z;, is a primitive root, then a® € Z is a semi-primitive root. In the same paper
they classified the non-cyclic groups of the form Z; possessing semi-primitive roots as follows:

Theorem 1.1. Let 7 be the multiplicative group of integer modulo n that does not possess
any primitive roots. Then 7 has a semi-primitive root if and only if n is equal to 2*(k >

2), 4p1 ,pl p2 , or 2p1 p2 , where py and po are odd primes satisfying (qi)(plfl), gi)(pé”)) = 2 and
kl) k2 2 1.

In [2], the authors introduced the notion of good semi-primitive (GSP) root modulo n. A
semi-primitive root h in Z7, is said to be a GSP root if Z can be expressed as Z} = (h) x (—1).

They showed that if Z; is a non-cyclic group possessing semi-primitive roots then Z has
exactly 2gi)( )Y (i.e. ¢(¢(n))) incongruent GSP roots. From paper [2] it is clear that the number
of semi-primitive root is either ¢(4(n)) or ¢p(¢p(n)) + (ﬁ(d)(f)) according as ‘b( ) is even or odd.

In the rest of this paper Z;, is considered as a non-cyclic group possessing seml—pnmmve root
i.e., nis equal to 2% (k > 2), 4]91 , p1 p2 , Or 2101 p2 , where p; and p, are odd primes satisfying
(e(pY"), 6(p5*) = 2 and ky, bz > 1.

This paper is organized as follows. Section 2 is devoted to the number of semi-primitive roots
of Z; and in section 3 we discuss the relation between set of all semi-primitive roots of Z;, and
set of all quadratic non-residues modulo n. Throughout the paper all notations are usual. For
example the greatest common divisor of two integers m and n is denoted by (m, n), the order of
a modulo n is denoted by ord,,(a) etc.

2 New results on number of semi-primitive roots

In this section we dealing with number of semi-primitive roots for different values of n. For
positive values of n, we define

S(n) ={g € Z}|g is a semi — primitive root modulo n}

o(o(n)) + ¢(2%), if Y s odd
é(p(n)),  if s even

Where cardinality of S(n) is denoted by |S(n)|.
We begin with the following proposition which shows that the number of semi-primitive roots
is always greater than 2.

Proposition 2.1. Let Z;, be a non-cyclic group possessing a semi-primitive root. Then the number
of semi-primitive roots is at least 3.
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Proof. The number of semi-primitive roots is given by ¢(¢p(n)) + qﬁ(@) or ¢(¢(n)) according

$(n)
as =

is odd or even. As ¢(n) > 2, so ¢(¢(n)) is even. Therefore number of semi-primitive
roots is greater than 1.

Consider the smallest possible case ¢(¢(n)) = 2. Then ¢(n) = 3,4 or 6. The only possibility
is ¢(n) = 4, which implies that # is odd. So the number of semi-primitive roots is greater than

2. O
The following proposition gives the necessary and sufficient condition for which |S(n)| = 3.

Proposition 2.2. Let Z) be a non-cyclic group possessing a semi-primitive root. Then 7, has
exactly 3 semi-primitive roots iff n = 23 or 12.

Proof. The number of semi-primitive roots is given by ¢(¢(n)) + ¢( 22 f ) or ¢(¢p(n)) according
¢(” is odd or even. As ¢(n) > 2, so ¢(¢(n)) is even. Therefore ¢(o(n)) + (%) = 3, which
1mphes ¢(") is odd. The only possibility of gzﬁ(T) is 1, which implies ¢(n) = 4. Son = 5,8, 10

or 12. But n # 5,10 as they are not any of the above form. So n = 8 or 12. [l

In the following proposition we showed that number of semi-primitive roots is always an even
number for n # 23, 12.

Proposition 2.3. Let Z;, be a non-cyclic group possessing a semi-primitive root. Then the number

of semi-primitive roots is always an even number except for n = 23, 12.

Proof. Suppose there exist an integer n(n # 23,12), for which number of semi-primitive roots
is an odd number (say m). Since number of semi- prlmltlve roots is odd, so ¢(4) is odd. Now
d(3(n))+o( L) = m, so the only possibility is ¢(2%) = 1, which implies ¢(n) = 4. Therefore

n = 23 or 12, which is a contradiction. O

The following proposition is dealing with the number of semi-primitive roots of the form 2p,
where p is odd prime.

Proposition 2.4. Let ZZ) be a non-cyclic group possessing a semi-primitive root. Let 2p, where p

is an odd prime be the number of semi-primitive roots. Then p = 3 and n = 21,28, or 42.

Proof. Suppose ( ) is even. For p = 3, ¢(n) = 7,9, 14, or 18, which is not possible. For p > 5,
o(n) =2p+1,or 4p+ 2 (where 2p+ 1 is prime). Both are not possible. Therefore if |[S(n)| = 2p
then £ (”) must be odd.

Obv1ously n # 2%(k > 3) as in this case number of semi-primitive roots is 3.

Case (i) Suppose n = 4p’f1, where p; is an odd prime and k£, > 1. As p; is odd prime so
#(p1) = 2"qy, where [; > 1 and ¢; > 1 is an odd number. If k; = 1 then ¢(n) = 24+1q, and so
Iy = 1. Therefore |S(n)| = 3¢(q1), which implies p = 3 and ¢; = 3. Son = 28.

If k; > 1then ¢(n) = 24T qp" ' and I, = 1. Then |S(n)| = 6¢1¢(q1)p}* * and therefore
p = 3q10(q1)p™* 2, which is not possible.

Case (ii) When n = p{'p52, where p; and p, are odd prime such that (¢(p}*), #(p5?)) = 2 and
ki, ko > 1. As p; and p, are odd prime so ¢(p1) = 2'*q; and ¢(py) = 2'2q, where [1,l, > 1 and
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¢1 > 1,¢2 > 1 are odd numbers such that (¢(q1), ¢(q2)) = 1. As (G(pt"), d(p52)) = 2 so at least
[ or l5 is equal to 1. Without loss of generality we can assume that [; = 1.

If b, = 1 = ky then ¢(n) = 2271¢qo and I, = 1. Therefore |S(n)| = 3¢(q1)P(q2) =
30(q1)9(q2) = 2p = p = 3aneither ¢(q1) = 1,d(q2) = 2, or ¢(q1) = 2, ¢(g2) = 1. So,p =3
and either ¢; = 1 and g = 3 or ¢, = 3 and ¢ = 1. And hence p = 3 and n = 21.

If ky = 1,ky > 1then ¢(n) = 22+1q qoph> ™ and I, = 1. Then |S(n)| = 6¢26(q1)d(g2)ph> >
— 2p and therefore 3¢2¢(q1)d(g2)p2 > = p, which is not possible. Similarly for k; > 1,k = 1.

If £y > 1 and ko > 1 then p; and p, are factors of |S(n)|, so |S(n)| # 2p.

As (P p5?) = ¢(2p)"p5?) so [S(n)| = 2p if p = 3 and n = 42.

Hence from the above cases we can say that if the number of semi-primitive roots is 2p then
p=3andn = 21,28, or 42. O

Note: It is easy to see that if Z; is a non-cyclic group possessing semi-primitive root and if
number of semi-primitive roots is of the form Qkp, where p is an odd prime then for &) g even,

4
0<k<3landp=3.

It is clear that the number of semi-primitive roots for n = 2¥(k > 3) is in power of 2. So it is
interesting to find the other form of n for which number of semi-primitive roots is in power of 2.
In this direction we have the following propositions.

Proposition 2.5. Let 7} be a non-cyclic group possessing a semi-primitive root. Then for n =
4p'f1, where py is an odd prime and ky > 1 has number of semi-primitive roots is in power of 2
(say 2™, m > 2)iff ky = 1 and either p; # 3 is a Fermat prime or p; is a prime of the form
2lq + 1 where | > 1 and q is the product of Fermat primes.

Proof. 1t is easy to see that if k; = 1 and if p, satisfied any of the above conditions then the
number of semi-primitive roots is always in power of 2.

Conversely, let the number of semi-primitive roots be 2”*(m > 2). There will be two cases to
be consider for n = 4plf1. If &1 > 1 then p; is a factor of number of semi-primitive roots, which
is not possible. So k; = 1. Also, as p; is odd prime so ¢(p;) = 2!q, where ¢ > 1 is odd number
and [ > 1. Therefore ¢(n) = 2*1q for n = 4p, and

o(n) 4 odd, ifl=1

4 even, otherwise

When @ is odd then |S(n)| = 3¢(q), which is not power of 2. When @ is even, then
|S(n)| = 2'¢(q) which implies that 2'¢(g) = 2™, so either ¢(g) = 1 or ¢(q) is power of 2 (say
20 a>1).If ¢(q) = 1 theng = 1 and so p; = 2! + 1(I > 1). Since p; is prime so 2! + 1 is also
prime, which is possible only when [ is power of 2i.e. 2! + 1(/ > 1) is Fermat prime. So p; (# 3)
is Fermat prime. Suppose ¢(q) = 2% a > 1. The equation ¢(q) = 2* have one odd solution ¢ iff
a < 31. The solution g is the product of the Fermat primes. So p; = 2'q + 1,1 > 1, where ¢ is

the product of Fermat primes. Hence complete the proved. [
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Proposition 2.6. Let 7} be a non-cyclic group possessing a semi-primitive root. Then for n =
k2 where ki, ko > 1 and py, ps are odd primes such that (¢(p™*), ¢(p5?)) = 2 has number of
semi-primitive roots is in power of 2 (say 2™, m > 2) iff ky = 1 = ks and either any one of p,
and ps is equal to 3 or 2q1 + 1 where ¢, is the product of Fermat primes and other is of the form
2'q + 1 where | > 1 and either ¢ = 1 or q is the product of Fermat primes.

Proof. 1t is easy to see that if p; and p, satisfied all the above condition then the number of
semi-primitive roots is always power of 2.

Conversely, suppose n. = p''ph?, where py, p, are prime such that (¢(p5"), ¢(ph?)) = 2 and
ki,ko > 1 and let |S(n)| = 2™(m > 2). Since p; and p, are odd prime so ¢(p;) = 2¢; and
d(p2) = 2"2q, where ¢1, g, > 1 are odd numbers and 1,1, > 1. As (4(p5"), p(p52)) = 2, so at
least [; or [y is equal to 1 (say I; = 1) and (¢(q1), #(q2)) = 1. If ky or ko or both greater than 1
then p; or p, or both are the factor(s) of |S(n)|, which is not possible. So the only possibility is
that k; = 1 = ky. Then ¢(n) = 2"2*1q,q, and

M gty g = odd, ifly=1

4 even, otherwise

When # is odd, then | S(n)| = 3¢(q1)¢(g2), which is not power of 2. When @ is even, then

1S(n)| = 22¢(q1)p(qa), so either ¢(q1)d(q2) = 1 or ¢(q1)P(q2) = 2%,a > 1. If ¢(q1)(gz) = 1
then ¢; = 1 = ¢, and therefore p; = 3 and py = 22 + 1(ly > 1) i.e. po # 3 is Fermat prime. If

d(q1)P(g2) = 2% then one of ¢(q1) or ¢(qz) is equal to 1 and other is equal to 2%. Let ¢(q;) = 1
and ¢(qz) = 2% then ¢ = 1 so p; = 3 and ¢y is the product of Fermat prime for a < 31 so
py = 22qy + 1,15 > 1. If ¢(q1) = 2% and ¢(qz) = 1 then p; = 2¢; + 1,where ¢; is the product
of Fermat prime for ¢ < 31 and p, = 22 + 1 is Fermat prime. Hence considering all the cases
we can say that either any one of p; and ps is equal to 3 or 2¢; + 1 where ¢; is the product of
Fermat primes and other is of the form 2/q + 1 where [ > 1 and either ¢ = 1 and ¢ is the product
of Fermat primes. ]

Remark: The above result is true for n = 210’1“1 pé” where p1,p, are odd primes such that
(¢(ph"), 6(p?)) = 2 and ki, ko > 1as ¢(n) = $(p)p3?).

3 Relation between S(n) and K (n)

For a positive integer n, set
K(n) ={a € Z}|a is quadratic non-residue modulo n}

Whenever 7Z: is non-cyclic and ¢ is a semi-primitive root modulo n, then g¢g* for

l=0,1,..., %”) — 1 are all the quadratic residue modulo 7 i.e., number of quadratic residues is
@, which gives |K (n)| = 3¢(n), where cardinality of K (n) is denoted by | K (n)|.
In this section we study the relation between S(n) and K (n). We begin with the following

proposition.
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Proposition 3.1. Let 7 be the non-cyclic group possessing semi-primitive root. If g is a semi-
primitive root modulo n then g is quadratic non-residue (gnr) modulo n.

Proof. Suppose ¢ is a semi-primitive root modulo n then g@ =1 (modn)andord,(g) = @
To show that g is gnr modulo n that is Az € Z such that 2? = g (mod n).
If possible let 3z € Z such that 22 = g (mod n). Now

> =g (modn) = 2™ =1 (modn).

Again
@

255 = (1) = ¢

=g 1 #1 (modn).
So ord,(z) = ¢(n) i.e. z is a primitive root, which is a contradiction. Therefore g is quadratic

non-residue modulo n. OJ

But converse is not always true. For example 7 is quadratic non-residue modulo 2°, but 7
is not semi-primitive root modulo 2°. For above proposition it is clear that S(n) C K(n). The
following proposition gives the necessary and sufficient for S(n) = K(n).

Proposition 3.2. Let 7! be the non-cyclic group possessing semi-primitive root. Then S(n) =
K(n)iffn=2%or12.

Proof. We consider the following cases:
Case (i)n = 2% (k > 2).
In this case, we have, ¢(n) = 2571, and

1, if k=3

even, otherwise

¢(n) _ ks _
’ ok—3

When 2% is odd, then |S(n)| = 3 and |K (n)| = 3¢(n) = 3. So S(n) = K(n) for n = 2.
For 2% is even, |S(n)| = 252 and | K (n)| = 3.257%. So S(n) # K(n).
Case (i) n = 4p]f1, where p; is an odd prime and k£ > 1.
As p; is odd prime so ¢(p;) = p; — 1 = 21¢qy, where [; > 1 and q; > 1 is an odd integer.

(a) When k; = 1, we have, ¢(n) = 2"'*1¢, and
q

odd, ifl, =1

even, otherwise

When 2™ is odd, then |S(n)| = 3¢(q1) and |K(n)| = 3q,. If |S(n)| = |K(n)| then
¢1 = 1, which implies p; = 3. So S(n) = K(n) if n = 4.3 = 12. When @ is even, then
|S(n)| = 2"¢(q1) and | K (n)| = 3.2 ¢, .If S(n) = K(n) then 2¢(q1) = 3¢, which is

not possible.
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(b) When k; > 1, we have ¢(n) = 21+1¢;p{* " and
¢n) _gna, gor_ ) odds if hi=1
4 - q1P1 - .
even, otherwise

When 2% is odd, then |S(n)| = 6¢16(q1)p™ 2 and |K (n)| = 3¢ L If S(n) = K(n)
then 2gz§(q1) p1, which is not possible. When ( ) is even, then |S(n)| = 221 q1¢(q1)p"* 2
and | K (n)| = 24713 pf" 1 If S(n) = K(n )then 211 ¢(q1) = 3py, which is not possible.

Case (iii) n = p¥'p52, where p;, p, are odd primes satisfying (¢(pi'), ¢(p52)) = 2 and ky, ky > 1.

As py, p are odd primes so ¢(p;) = 2''q; and ¢(py) = 2"2qy, where I1,ly > 1 and q1, g2 > 1
are odd integers. Since (H(pi'), p(p52)) = 2, s0 (¢(q1), #(g2)) = 1 and at least I; or I, is equal
to 1. Suppose [; = 1.

(a) When k; = 1 = ko, we have ¢(n) = 22+, ¢, and

n ) odd, ifly=1
¢( ):212 1q1q2: 2

4 even, otherwise

When 2% is odd, |S(n)| = 3¢(q1)¢(q2) and | K (n)| = 3q1g2, s0 S(n) # K (n). When 2%
is even, then 1S(n)] = 22¢(q1)d(q2) and | K (n)| = 3.2 1q1q, s0 S(n) # K(n).

(b) When ky = 1,k > 1, we have ¢(n) = 212+1(]1Q2p§2_1 and

odd, ifly=1
¢(47’L) _ 2l2 1(] i ng 1_ f 2 |
even, otherwise

If ¢(") :

S(n)| = 6426(q1)6(q2)p5** and |K (n)] = 3q1q2p5* ", s0 S(n) # K(n).
If ( is even, then [S(n)| = 22¢,¢(q1)(g2)ps2 ™% and | K (n)] = 3.22 g qph* ™, so

S(n ) 7 K(n).
(c) When k; > 1 and ky = 1 then in similar way we get S(n) # K(n).

(d) When ky, ks > 1, we have ¢(n) = 221 g qop ' ph2~! and

o(n B odd, ifly=1
—(4> =2k 191Q2p’f1 lpgz b= .
even, otherwise

I 262 is 0dd, [S(n)| = 1201020(0)$(a2)pt’ 9y and K (n)] = 3augapl'~'pf*™", s0
S(n) # K (n). 19 is even, then |S(n)| = 22+ quga(qn) o (q)pl*p* ™ and | K (n)| =
S 119’52 ', 50 S(n) # K(n).

Case (iv) When n = 2p% ph?, where py, p, are odd primes satisfying (4(pi'), ¢(p52)) = 2 and
ke kg > 1.

As ¢(pi ph?) = (25 ph?), so in this case also S(n) # K (n).

Hence combining all the cases we get S(n) = K(n) iff n = 23 or 12. O
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4 Conclusion and Future work

In this paper, we have dealt with the number of semi-primitive modulo n, which is an application
of inverse Euler’s p-function. We also get a connection between set of semi-primitive roots
modulo n and set of quadratic non-residue modulo 7.

Semi-primitive roots in non-cyclic groups play almost the same role as primitive roots in
cyclic groups, so it may be useful to construct a secure cryptosystem. We will consider this issue
in our future work.
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