Generating function and combinatorial proofs of Elder’s theorem

Robson da Silva¹, Jorge F. A. Lima², José Plínio O. Santos³ and Eduardo C. Stabel⁴

¹ ICT, UNIFESP
12247-014, São José dos Campos-SP, Brazil
e-mail: silva.robson@unifesp.br

² IMECC, UNICAMP
C.P. 6065, 13084-970, Campinas-SP, Brazil
e-mail: jorge.fa.lima@gmail.com

³ IMECC, UNICAMP
C.P. 6065, 13084-970, Campinas-SP, Brazil
e-mail: josepli@ime.unicamp.br

⁴ UFSM
97105-900, Santa Maria-RS, Brazil
e-mail: dudastabel@gmail.com

Abstract: We revisit Elder’s theorem on integer partitions, which is a generalization of Stanley’s theorem. Two new proofs are presented. The first proof is based on certain tilings of $1 \times \infty$ boards while the second one is a consequence of a more general identity we prove using generating functions.

Keywords: Elder’s theorem, Integer partition, Generating function, Tiling.

AMS Classification: 11P84, 05A19.

1 Introduction

We remember that an integer partition of a given positive integer n is a set of positive integers whose sum equals n and every integer in this set is called a part of the partition. In what follows,
we revisit Elder’s theorem, which relates the number of appearances of a given part among all partitions of n with the number of repetitions of parts, i.e.,

Theorem 1 (Elder’s theorem). *Let n and k be positive integers. The number of parts equal to k in all partitions of n is equal to the number of parts that appear at least k times in a given partition of n, summed over all partitions of n. *

For example, considering the 7 partitions of 5, namely $5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1$, we see four parts 2 and the sum of the number of parts appearing at least twice in each of these partitions is $0 + 0 + 0 + 1 + 1 + 1 + 1 = 4$.

Elder’s theorem is a generalization of the following theorem, known as Stanley’s theorem:

Theorem 2 (Stanley’s theorem). *Let n be a positive integer. The number of parts equal to 1 in all partitions of n is equal to the number of parts that appear at least once in a given partition of n, summed over all partitions of n. *

In 1982, M. S. Kirdar and T. H. R. Skyrme presented a generating function based proof of Elder’s theorem in [6]. A combinatorial proof of this identity can be found in [10], page 59, or in [8]. Some generalizations of both Elder’s and Stanley’s theorem are presented in [4].

In Section 2 we show a simple and elegant proof of Elder’s theorem using tilings. In Section 3, we use generating functions in order to obtain a proof of a partition identity from which Elder’s theorem follows as a particular case.

Our tiling proof of Elder’s theorem was inspired in recent applications of this technique to prove certain results (see, for example, [2, 3, 7, 9]). An introduction to this subject can be found in [1].

2 The first proof

In order to present our combinatorial proof of Elder’s theorem, we will need the following result.

Lemma 3. *Let n, k, and r be positive integers. The number of partitions of n with at least k parts r is equal to the number of partitions of n having at least r parts k. *

We prove this lemma via tilings. Consider a $1 \times \infty$ board that will be tiled using white and finitely many black squares, allowing stacking the black ones. All white tiles have weight 1 and the weight of a black tile in position i is defined as q^i. Then, we define the weight of a tiling T as the product of its tiles weights: $w(T) = \prod_{t \in T} w(t)$, where $w(t)$ is the weight of tile $t \in T$.

Proof. Let X^r_k be the set of all tilings T with at least k black tiles in position r. We define the function

$$
\varphi^k_r : X^r_k \to X^k_r
$$

in the following way. Given $T \in X^r_k$, remove k black squares from position r and add r black squares in position k, obtaining $T' = \varphi^k_r(T) \in X^k_r$. This function is clearly a bijection whose inverse is φ^k_r. It is also clear that $w(\varphi^k_r(T)) = w(T), \forall T \in X^r_k$.

31
In order to finish the proof we exhibit a bijection between these tilings of weight \(n \) and the partitions of \(n \). Let \(\lambda = \lambda_1 + \lambda_2 + \cdots + \lambda_j \) be a partition of \(n \). We associate to \(\lambda \) the tiling \(T_\lambda \) having a black square in each position \(\lambda_1, \ldots, \lambda_j \). Note that we may have more than 1 black square in a position since the parts of \(\lambda \) are not necessarily distinct.

Then \(w(T_\lambda) = q^{\lambda_1 + \lambda_2 + \cdots + \lambda_j} = q^n \).

In the proof of the theorem below we use the same tilings of the \(1 \times \infty \) board described above.

Theorem 4 (Elder’s theorem). Let \(n \) and \(k \) be positive integers. The number of parts equal to \(k \) in all partitions of \(n \) is equal to the number of parts that appear at least \(k \) times in a given partition of \(n \), summed over all partitions of \(n \).

Proof. Let \(Y^r_k \) be the subset of \(X^r_k \) consisting of the tilings with weight \(q^n \). According to the previous lemma, \(\varphi^r_k : X^r_k \to X^r_k \) is a weight preserving bijection for each \(r = 1, 2, \ldots \). Hence,

\[
\sum_{r=1}^{\infty} |Y^r_k| = \sum_{r=1}^{\infty} |Y^r_k|.
\]

The l.h.s. of (1) counts the numbers of tilings of weight \(q^n \) having \(k \) black squares in positions \(r = 1, 2, \ldots \), then this sum counts the number of parts that appear at least \(k \) times in the partitions of \(n \).

Each \(|Y^r_k| \) counts the number of tilings of weight \(q^n \) with at least \(r \) black squares in the position \(k \), which correspond to partitions of \(n \) with \(r \) parts equal to \(k \). It is easy to see that if \(T \in Y^r_s \), then \(T \in Y^s_r \), for \(s = 1, 2, \ldots, r \). Hence the r.h.s. of (1) counts the number of times \(k \) appears as part of the partitions of \(n \).

3 The second proof

We now prove a certain partition identity from which it follows a new proof of Elder’s theorem.

Let \(n \) and \(k_1, \ldots, k_r \) be positive integers with \(n \geq k_i \) and \(k_i \neq k_j \), if \(i \neq j \), \(P(n) \) the set of all partitions of \(n \), \(p(n) \) the number of partitions of \(n \) and \(\lambda \) a partition in \(P(n) \). We define \(f_{k_1, \ldots, k_r}(\lambda) \) as the number of times that the integers \(k_1, \ldots, k_r \) appear in \(\lambda \) and \(g_{k_1, \ldots, k_r}(\lambda) = \sum_{i=1}^{r} g_{k_i}(\lambda) \), where \(g_{k_i}(\lambda) \) is the number of parts in \(\lambda \) appearing at least \(k_i \) times. For example, considering \(\lambda = 5 + 4 + 4 + 3 + 2 + 2 + 2 + 1 \), a partition of \(n = 23 \), \(k_1 = 2 \), and \(k_2 = 3 \), we have:

\[
\begin{align*}
 f_{2,3}(5 + 4 + 4 + 3 + 2 + 2 + 2 + 1) &= 4, \\
 g_{2,3}(5 + 4 + 4 + 3 + 2 + 2 + 2 + 1) &= 3.
\end{align*}
\]

As another example, Table 1 below shows, for the eleven partitions of 6, a few values of \(f_{k_1, \ldots, k_r}(\lambda) \) as well as of \(g_{k_1, \ldots, k_r}(\lambda) \).

Our goal now is to prove the identity

\[
\sum_{\lambda \in P(n)} g_{k_1, \ldots, k_r}(\lambda) = \sum_{\lambda \in P(n)} f_{k_1, \ldots, k_r}(\lambda).
\]

32
Partitions λ of 6	$f_{2,3}(\lambda)$	$g_{2,3}(\lambda)$	$f_{2,3,5}(\lambda)$	$g_{2,3,5}(\lambda)$
6 | 0 | 0 | 0 | 0 |
5 + 1 | 0 | 0 | 1 | 0 |
4 + 2 | 1 | 0 | 1 | 0 |
3 + 3 | 2 | 1 | 2 | 1 |
4 + 1 + 1 | 0 | 1 | 0 | 1 |
3 + 2 + 1 | 2 | 0 | 2 | 0 |
2 + 2 + 2 | 3 | 2 | 3 | 2 |
3 + 1 + 1 + 1 | 1 | 2 | 1 | 2 |
2 + 2 + 1 + 1 | 2 | 2 | 2 | 2 |
2 + 1 + 1 + 1 + 1 | 0 | 2 | 0 | 3 |
1 + 1 + 1 + 1 + 1 + 1 | 0 | 2 | 0 | 3 |
Sum | 12 | 12 | 13 | 13 |

Table 1: Some values for $n = 6$

As a consequence, it will follow a proof of the identity known as Elder’s theorem

$$\sum_{\lambda \in P(n)} g_k(\lambda) = \sum_{\lambda \in P(n)} f_k(\lambda),$$

where n and k are integers with $n \geq k > 0$, which was proved by Kirdar and Skyrme in [6] in a different manner.

3.1 The generating function for $\sum_{\lambda \in P(n)} f_{k_1,\ldots,k_r}(\lambda)$

Using the standard notation

$$(q; q)_{\infty} = \prod_{i=0}^{\infty} (1 - q^i),$$

we define

$$F(z, q) = \frac{\prod_{i=1}^{r} (1 - q^{k_i})}{(q; q)_{\infty}} \cdot \frac{1}{\prod_{i=1}^{r} (1 - z q^{k_i})} = \sum_{n \geq j \geq 0} P_{k_1,\ldots,k_r}(n, j) z^{j} q^{n},$$

where, clearly, $P_{k_1,\ldots,k_r}(n, j)$ is the number of partitions of n having j parts equal to k_1, \ldots, and k_r. Then, by definition, we have

$$\sum_{\lambda \in P(n)} f_{k_1,\ldots,k_r}(\lambda) = \sum_{j=1}^{n} j \cdot P_{k_1,\ldots,k_r}(n, j). \quad (3)$$

Considering that the generating function for the right hand side of (3) is obtained from $\frac{\partial F}{\partial z}(1, q)$ we have that the generating function for $\sum_{\lambda \in P(n)} f_{k_1,\ldots,k_r}(\lambda)$ is:
\[
\sum_{i=1}^{r} q^{k_i} \prod_{i \neq j=1}^{r} (1 - q^{k_j}) \over (q; q)_{\infty} \prod_{j=1}^{r} (1 - q^{k_j}).
\] (4)

In order to finish the proof of (2), we want to show that (4) also is the generating function for \(\sum_{\lambda \in P(n)} g_{k_1, \ldots, k_r}(\lambda) \).

3.2 The generating function for \(\sum_{\lambda \in P(n)} g_{k_1, \ldots, k_r}(\lambda) \)

As the factor \(1/(1 - q^m) = \sum_{i=0}^{\infty} q^{im} \) is responsible for the number of times that \(m \) appears and we are interested in counting just the partitions where each part appears at least \(k_l \) times, \(l = 1, 2, \ldots, r \), we consider the following sum:

\[
\sum_{i=0}^{\infty} q^{im} - \sum_{i=k_l}^{\infty} q^{im} + z \sum_{i=k_l}^{\infty} q^{im} = \sum_{i=0}^{\infty} q^{im} - q^{mk_l} \sum_{i=0}^{\infty} q^{im} + zq^{mk_l} \sum_{i=0}^{\infty} q^{im} = \frac{1}{1 - q^m} - \frac{q^{mk_l}}{1 - q^m} + \frac{zq^{mk_l}}{1 - q^m}.
\]

Thus, we define

\[
G(z, q) = \frac{1}{(q; q)_{\infty}} \left(\prod_{i=1}^{\infty} (1 - q^{ik_1} + zq^{ik_1}) + \cdots + \prod_{i=1}^{\infty} (1 - q^{ik_r} + zq^{ik_r}) \right)
\]

\[
= \frac{1}{(q; q)_{\infty}} \sum_{l=1}^{r} \prod_{i=1}^{\infty} (1 - q^{ik_l} + zq^{ik_l})
\]

\[
= \sum_{n \geq j \geq 0} Q_{k_1, \ldots, k_r}(n, j) z^j q^n,
\]

where \(Q_{k_1, \ldots, k_r}(n, j) \) is equal to the sum, for \(l = 1, 2, \ldots, r \), of the number of partitions of \(n \) having \(j \) parts appearing at least \(k_l \) times. Then, by definition,

\[
\sum_{\lambda \in P(n)} g_{k_1, \ldots, k_r}(\lambda) = \sum_{j=1}^{n} j \cdot Q_{k_1, \ldots, k_r}(n, j).
\]

Knowing that the generating function for the right hand side of the equality above is obtained from \(\frac{\partial G}{\partial z}(1, q) \) we find it by calculating this derivative using the definition of partial derivative:

\[
\frac{\partial G}{\partial z}(1, q) = \lim_{h \to 0} \frac{G(1 + h, q) - G(1, q)}{h}
\]

\[
= \lim_{h \to 0} \left(\sum_{i=1}^{r} \prod_{i=1}^{\infty} (1 - q^{ik_l} + (1 + h)q^{ik_l}) - r \right)
\]

\[
= \lim_{h \to 0} \left(\sum_{i=1}^{r} \prod_{i=1}^{\infty} (1 + hq^{ik_l}) - r \right).
\]
Note that \(\prod_{i=1}^{\infty} (1 + hq^{ik_i}) = 1 + \sum_{i=1}^{\infty} hq^{ik_i} + M_i(h, q) \), where \(M_i(h, q) \) is a series in which the powers of \(h \) are greater than or equal to 2, i.e., \(M_i(h, q) = h^2 R_i(h, q) \). Then,

\[
\frac{\partial G}{\partial z}(1, q) = \lim_{h \to 0} \left(\frac{\sum_{i=1}^{r} (1 + \sum_{i=1}^{\infty} hq^{ik_i} + M_i(h, q)) - r}{h(q; q)_{\infty}} \right)
\]

\[
= \lim_{h \to 0} \left(\frac{h(\sum_{i=1}^{\infty} q^{ik_1} + \cdots + \sum_{i=1}^{r} q^{ik_r}) + \sum_{i=1}^{r} M_i(h, q)}{h(q; q)_{\infty}} \right)
\]

\[
= \lim_{h \to 0} \left(\frac{\sum_{i=1}^{r} q^{k_i} - \sum_{i=1}^{r} hR_i(h, q)}{h(q; q)_{\infty}} \right)
\]

\[
= \sum_{i=1}^{r} \frac{q^{k_i}}{(q; q)_{\infty}} - \sum_{i=1}^{r} \frac{q^{k_i}}{(q; q)_{\infty}} \prod_{i \neq j=1}^{r} (1 - q^{k_j})
\]

Clearly, as the generating functions for \(\sum_{\lambda \in P(n)} f_{k_1, \ldots, k_r}(\lambda) \) and for \(\sum_{\lambda \in P(n)} g_{k_1, \ldots, k_r}(\lambda) \) are the same, we have proved (2).

References

