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1 Introduction

The classical settings for Mobius inversion are special cases of Leroux’s Mobius categories. The
locally finite posets are categories in which there is one morphism = — y whenever x < y; and
the monoids with the finite decomposition property are categories with only one object. In [7]
an arithmetic incidence function is a complex-valued function ¢ : Z, x Z, — C defined for
all pairs of positive integers such that £(m,n) = 0 if m £ n. An arithmetic incidence function
defined above has all the defining properties of both an arithmetic function of two variables and a
poset incidence function. In this short note we consider a simple example where “poset incidence
function” is replaced by “monoid incidence function”.

The S-convolution (’S” from the standard ordering) considered in [7] as a generalization of
the Cauchy convolution is defined by (see [7, Definition 5.2]):
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(V(m,n) € Zy x Zy) = (Exm)(mn) = Y &(m,p)n(m,q).

m<p<n
prg=m-+n

Now, referring to the S-convolutions, we can view the arithmetic indidence functions as complex-
valued functions defined on the set

Mc={(m,n) € Zy xZy: m <n}.

The set M< contains the diagonal A of Z x Z, and a such arithmetic incidence function £ has
a convolution inverse if and only if £(m, m) # 0 for every (m, m) € A. The Mobius function
is the convolution inverse of the zeta function ¢ defined by ((m,n) = 1 for all arguments of the
domain set M<.

It is clear that if we remove the diagonal, for example instead of A< we consider

M<={(m,n) €Z, XZ,: m<n},

z=

then the tide turns and the problem of Md&bius function (Mobius inversion) takes on another
meaning. The set M< equipped with a convenient multiplication (denoted by - but often omitted)
leads us to a monoid convolution of arithmetic functions of two variables. For example, if M§ is
a right cancellative monoid such that no element is invertible except the identity e, and for any
(u,v) € Mc there are at most a finite number of pairs ((m,n), (p,q)) € Mg x Mz such that
(u,v) = (m,n) - (p,q) (in other words, if M is a right cancellative Mobius monoid), then one
may define the convolution £ * 7 of two arithmetic functions &, 7 : M< — C by

Exmwo)= > &mnnp,q).

(mvn)'(p»Q):(uvv)

In this case an arithmetic function of two variables £ has a convolution inverse if and only if
&(e) # 0 (see [5, Proposition 2.2]). Thus the diagonal of a locally finite partial ordered set was
substituted by the identity element of the monoid; the Mobius function i : M< — C being the
convolution inverse of the zeta function ¢ : M< — C (V(u,v) € Mz, ((u,v) = 1).

The monoid (M, -) that we consider in this note is a special monoid: it is right cancellative
but not left cancellative; it is atomic (with only two atoms) and all factorizations of a non-identity
into atoms have the same length. It is also a Mobius monoid (a Mobius category in the sense of
Leroux [1],[3] with one object; for more details see [2] or [5]), etc. As a non-standard example,
it brings new challenges to the study of convolutions of such arithmetic incidence functions. The
computation of the Mobius function is presented in the last Section.

2 The right cancellative Mobius monoid )<

The set
Mg ={(m,n) € Zy x Zy|m S n}

equipped with the multiplication defined by:
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(p,mn+q—2) if m=1
(m+q—2n+q—2) if m>2

(m,n) - (p,q) :{

is a non-commutative monoid, the element e = (1, 2) being the identity. It is straightforward to
check that this monoid is right cancellative but it is not left cancellative. We say that y € Mg is
a right divisor of z € Mc if there exists a (necessary unique) v € Mc such that z = z - y. We
write in symbols y|z and x = § Since My is a right cancellative monoid, the right divisibility on
My is a partial order relation on M<. As we will see below (Proposition 2.1), for any z € Mg
the set of all right divisors of 2 in Mc is finite; the (non-commutative) convolution & * 7 of two
arithmetic functions of two variables £ and 7 on M (i.e. complex valued functions with domain

(Exn)(z }js

ylz

Mzc) being given by:

Proposition 2.1. Let z = (u,v) € Mg. The set R(z) of all right divisors of z is the following

{(L), (Lo = 1), (1,2)} i ou=1,
R(z) = § {(u,0), (4,0 = 1), oo (wyu+ 1)} UL(L,2)} U{(L,3), (2:3)} U
U{(L), (200), e (1 — L)} i ous1

Proof. Let (m,n) - (p,q) = (u,v).

a) fu=1thenm =p=1and (1,n+¢—2) = (1,v), thatisn + ¢ = v + 2. Since n,q > 1
it follows:

n=2q=v = (1,2)-(1,v)=(1,v)
n=3q¢=v—1=(1,3)-(L,v—1)=(1,v)

n=v,q=2 = (17U)(172):(17U)
b) If u > 1and

b)) m=1,thenp =wandn+ g = v+ 2. Since n > 1 and ¢ > w it follows:
n=2q¢g=v = (1,2) - (u,v) = (u,v)
n=3q=v—1 = (1,3)  (u,v—1) = (u,v)

n=v—u+l,g=u+1= (L,v—u+1) (u,u+1)=(u,0)
by) m> 1,thenm+qg=v+2andn+ g = v + 2. It follows:

q=2=m=u,n=vandp < qimplies

p=1and (u,v)-(1,2) = (u,v)

29



g=3=m=u—1,n=v—1andp < q implies

p=1land (u—1,v—1)-(1,3) = (u,v)
p=2and(u—1,v—1)-(2,3) = (u,v)

g=u=>m=2n=v—u-+2andp < qimplies

p=1land (2,v —u+2)-(1,u) = (u,v)
p=2and (2,v —u+2)-(2,u) = (u,v)

p=u—1land (2,v —u+2)-(u—1,u) = (u,v).
[]

Corollary 2.1. The set R(z) of right divisors of an element z = (u,v) € Mx is finite and the

number T,.(u,v) of all right divisors of (u,v) is given by

7(u,0) = [R(z)| = v —u+ w

A Mobius monoid M is a decomposition-finite monoid (i.e. for any s € M there is a finite
number of pairs (¢,t') € M x M such that s = ¢t) in which the identity e is indecomposable,
and st = t implies s = e for any s,¢ € M. The monoid M< is decomposition-finite since R(z) is
finite for any z € Mz. The identity e = (1, 2) is indecomposable (since |R(e)| = 1), and Ms is
right cancellative. Thus, we have

Proposition 2.2. The non-commutative monoid (M, -) is a right cancellative Mobius monoid.

Proposition 2.3. The convolution £ * 1 of two arithmetic functions § and 1 on M is given by:

(& n)(u,v) =
v—u+1 u Jj—1
S eimuv—i+2)+ Y [Su—j+2v-5+2)> nk i),
=2 j=2 k=1
where i[{:(u—j+2,v—j+2)j§n(k‘,j)] =0ifu=1.
j=2 k=1

3 The half-factorial monoid M <

The study of half-factorial monoids is a main subject in non-unique factorization theory. In
[6], Haukkanen and the author showed that a commutative Mobius monoid which arise from a
combinatorial bisimple inverse monoid, satisfies a unique factorization theorem. For any monoid
M with units M* an element s € M — M* is called atom if for all ¢,t € M, s = tt’ implies
t € M* ort' € M*. The monoid M is said to be atomic if every s € M — M* is a product
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of finitely many atoms of M. A half-factorial monoid is an atomic monoid in which every two
decompositions into atoms of a non-unit element s have the same length, denoted ¢(s).

By virtue of Corollary 2.1, for = € Mg we have |R(z)| = 2 if and only if z = (1,3) or
z = (2,3). Since M<™ is a singleton it follows that in M< there are only two atoms:

a=(1,3)and b = (2,3).
It is straightforward to see that
a™ = (1,m+ 2) (expansion) and 0" = (n + 1,n + 2) (translation).

Since
ba = b,

it follows
Lemma 3.1. For any positive integers m and n we have:
(i) (ba)" = 0"
(i1) (ab)™ = ab®*~1;
(i7d) b™a™ = o™t
(iv) a™b"aPb? = ™" TPH,

For notational convenience, the elements a, b and e will be often written as ab®, a°b and a°#°,
respectively. Now, since (u,u + 1) = (1,4 + 1) - (u,u + 1) = a* 6%, it follows

Lemma 3.2. For any (u,v) € Mx we have

(U, U) _ av—u—lbu—ll

Using Lemma 3.2 it is easy to see that

Lemma 3.3. We have:
a™" =(n+1,m+n+2).

By Lemma 3.2, every element (u,v) # (1,2) can be expressed as a product of atoms. This
representation is not unique (for example: (3,4) = ba = b?). It is straightforward to check that
every non-identity element (u, v) has a unique decomposition of the form (u,v) = a™b", called
the normal representation of (u,v). The assertions of Lemma 3.1 lead us to the following result:
every two decompositions into atoms in /< of a non-identity element (u, v) have the same length.
Thus we have (the part two of the result follows from Lemma 3.2):

Proposition 3.1. The non-commutative, right cancellative Mébius monoid My is half-factorial,
and the length ((u,v) of a non-identity element (u,v) is given by

lu,v) =v—2.
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4 The Mobius function

It is straightforward to check that the normal representation in M of the product of two elements
of Mc is given by:

Lemma 4.1. If (u,v) = a™b" and (u',v") = aPb? are the normal representations of the non-
identity elements (u,v) and (u',v"), respectively, then

a™tPhl  if n=0

’oN
(u7v).(u’v)_{ambn+10+q lf n>0

is the normal representation of the product (u,v) - (u', v").

Now, Proposition 2.1, Corollary 2.1 and Proposition 2.3 (using Lemmas 3.2, 3.3 and 4.1)
imply

Proposition 4.1. (1) Let z = a™b" € Mx. The set R(z) of right divisors of z is the following one:

{a™ a™ 1, .. a,e} if n=0,
R(z) =< {a™™ a™ 1", ...,ab", 0"} U{e} U {(a,b} U{a? ab,b*} U ...
~U{a™ a2, a3 L a0 if n>0.

(2) the number 7,.(a™b") of all right divisors of z = a™b" € Mz is given by

n(n+1)‘

7, (a™b") = |R(z)| =m+ 1+ 5

(3) The convolution £ * 1 of two arithmetic functions § and 1 on Mc is given by:

n+1 j—1
(& m)(a™b") Zf " n(a't") + D L6 ) Y (el ),
j=2 k=1
n+1 i1
where > [£(a™" 1) ST n(a?FE N = 0if n = 0.
i=2 k=1

Proposition 4.2. The Mibius function ju of the Mobius monoid My is given by

1 if [m=0,n=0orm=0n=2]
pl@™™)=q¢ =1 if [m=1,n=0or[m=0n=1]

0 otherwise.

Proof. The above result can be obtained directly from the defining property of Mobius’ p-function:
¢ * = 6, where 0 is the convolution identity (i.e., 6(¢) = 1, and 6(z) = 0 if z # e). Thus we

have ,
n+1l j— .
1 if m=n=0
zbn j—k— lbk 1\ —
Z )+ Z Z i ) 0 otherwise,
=0 j=2 k=1
ntlj—1 )
where 7[> p(a?7*=1F1)] = 0if n = 0. It follows:
=2 k=1
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(i) m=n=0= pa) = ple) =1;

(it) m>0,n=0= > pla’) =0;

i=0
mo n+l j— . m—1
(iii) m > 0,n > 0= 0= > p(abd") + Z [Z (@@= FN] = p(a™o™) + > p(a’d™) +
i=0 j=2 k=1 i=0
n+1 j—1 )
2130 pl(aTEIM] = p(a™bn).
j=2 k=1
ntlj=l
(iv) m=0,n>0= pud")+ Z [Z p(a?=*=1p%=1)] = 0, and using (i7i) we obtain: u(b") +
n—1 e
;}[u(az) + (0] = p(1) =0.
Now, it is straightforward to see that:
1 if m=n=0
(1) (¢) and (77) imply that p(a™b") = ¢ —1 if m=1n=0
0 if m>1n=0,
(2) (4i7) says that p(a™b") = 0if m > 0,n > 0,
-1 if m=0n=1
(3) (iv) implies that u(a™b™) = 1 if m=0,n=2
0 if m=0,n>2,
and the proof is complete. []

Using Lemma 3.3,
Corollary 4.1. We have:

1 if [u=lLov=2lor[u=3v=A4;
V(u,v) € Mg o p(u,v) =<9 —1 if [u=1,v=3lor[u=2v=3|
0 otherwise.
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