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1 Introduction

The classical settings for Möbius inversion are special cases of Leroux’s Möbius categories. The
locally finite posets are categories in which there is one morphism x → y whenever x ≤ y; and
the monoids with the finite decomposition property are categories with only one object. In [7]
an arithmetic incidence function is a complex-valued function ξ : Z+ × Z+ → C defined for
all pairs of positive integers such that ξ(m,n) = 0 if m 6≤ n. An arithmetic incidence function
defined above has all the defining properties of both an arithmetic function of two variables and a
poset incidence function. In this short note we consider a simple example where ”poset incidence
function” is replaced by ”monoid incidence function”.

The S-convolution (”S” from the standard ordering) considered in [7] as a generalization of
the Cauchy convolution is defined by (see [7, Definition 5.2]):
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(∀(m,n) ∈ Z+ × Z+) : (ξ ∗ η)(m,n) =
∑

m≤p≤n
p+q=m+n

ξ(m, p)η(m, q).

Now, referring to the S-convolutions, we can view the arithmetic indidence functions as complex-
valued functions defined on the set

M≤ = {(m,n) ∈ Z+ × Z+ : m ≤ n}.

The set M≤ contains the diagonal ∆ of Z+ × Z+ and a such arithmetic incidence function ξ has
a convolution inverse if and only if ξ(m,m) 6= 0 for every (m,m) ∈ ∆. The Möbius function µ
is the convolution inverse of the zeta function ζ defined by ζ(m,n) = 1 for all arguments of the
domain set M≤.

It is clear that if we remove the diagonal, for example instead of M≤ we consider

M� = {(m,n) ∈ Z+ × Z+ : m � n},

then the tide turns and the problem of Möbius function (Möbius inversion) takes on another
meaning. The set M� equipped with a convenient multiplication (denoted by · but often omitted)
leads us to a monoid convolution of arithmetic functions of two variables. For example, if M� is
a right cancellative monoid such that no element is invertible except the identity e, and for any
(u, v) ∈ M� there are at most a finite number of pairs ((m,n), (p, q)) ∈ M� ×M� such that
(u, v) = (m,n) · (p, q) (in other words, if M� is a right cancellative Möbius monoid), then one
may define the convolution ξ ∗ η of two arithmetic functions ξ, η : M� → C by

(ξ ∗ η)(u, v) =
∑

(m,n)·(p,q)=(u,v)

ξ(m,n)η(p, q).

In this case an arithmetic function of two variables ξ has a convolution inverse if and only if
ξ(e) 6= 0 (see [5, Proposition 2.2]). Thus the diagonal of a locally finite partial ordered set was
substituted by the identity element of the monoid; the Möbius function µ : M� → C being the
convolution inverse of the zeta function ζ : M� → C (∀(u, v) ∈M�, ζ(u, v) = 1).

The monoid (M�, ·) that we consider in this note is a special monoid: it is right cancellative
but not left cancellative; it is atomic (with only two atoms) and all factorizations of a non-identity
into atoms have the same length. It is also a Möbius monoid (a Möbius category in the sense of
Leroux [1],[3] with one object; for more details see [2] or [5]), etc. As a non-standard example,
it brings new challenges to the study of convolutions of such arithmetic incidence functions. The
computation of the Möbius function is presented in the last Section.

2 The right cancellative Möbius monoid M�

The set
M� = {(m,n) ∈ Z+ × Z+|m � n}

equipped with the multiplication defined by:
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(m,n) · (p, q) =

{
(p, n+ q − 2) if m = 1

(m+ q − 2, n+ q − 2) if m ≥ 2

is a non-commutative monoid, the element e = (1, 2) being the identity. It is straightforward to
check that this monoid is right cancellative but it is not left cancellative. We say that y ∈ M� is
a right divisor of z ∈ M� if there exists a (necessary unique) x ∈ M� such that z = x · y. We
write in symbols y|z and x = z

y
. Since M� is a right cancellative monoid, the right divisibility on

M� is a partial order relation on M�. As we will see below (Proposition 2.1), for any z ∈ M�

the set of all right divisors of z in M� is finite; the (non-commutative) convolution ξ ∗ η of two
arithmetic functions of two variables ξ and η on M� (i.e. complex valued functions with domain
M�) being given by:

(ξ ∗ η)(z) =
∑
y|z

ξ(
z

y
)η(y).

Proposition 2.1. Let z = (u, v) ∈ M�. The set R(z) of all right divisors of z is the following
one:

R(z) =


{(1, v), (1, v − 1), ..., (1, 2)} if u = 1,

{(u, v), (u, v − 1), ..., (u, u+ 1)} ∪ {(1, 2)} ∪ {(1, 3), (2, 3)} ∪ ...
... ∪ {(1, u), (2, u), ..., (u− 1, u)} if u > 1.

Proof. Let (m,n) · (p, q) = (u, v).

a) If u = 1 then m = p = 1 and (1, n+ q − 2) = (1, v), that is n+ q = v + 2. Since n, q > 1

it follows:

n = 2, q = v ⇒ (1, 2) · (1, v) = (1, v)

n = 3, q = v − 1 ⇒ (1, 3) · (1, v − 1) = (1, v)

. . .

n = v, q = 2 ⇒ (1, v) · (1, 2) = (1, v)

b) If u > 1 and

b1) m = 1, then p = u and n+ q = v + 2. Since n > 1 and q > u it follows:

n = 2, q = v ⇒ (1, 2) · (u, v) = (u, v)

n = 3, q = v − 1 ⇒ (1, 3) · (u, v − 1) = (u, v)

. . .

n = v − u+ 1, q = u+ 1⇒ (1, v − u+ 1) · (u, u+ 1) = (u, v)

b2) m > 1, then m+ q = v + 2 and n+ q = v + 2. It follows:

q = 2⇒ m = u, n = v and p < q implies

p = 1 and (u, v) · (1, 2) = (u, v)
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q = 3⇒ m = u− 1, n = v − 1 and p < q implies{
p = 1 and (u− 1, v − 1) · (1, 3) = (u, v)

p = 2 and(u− 1, v − 1) · (2, 3) = (u, v)

. . .

q = u⇒ m = 2, n = v − u+ 2 and p < q implies
p = 1 and (2, v − u+ 2) · (1, u) = (u, v)

p = 2 and (2, v − u+ 2) · (2, u) = (u, v)

. . .

p = u− 1 and (2, v − u+ 2) · (u− 1, u) = (u, v).

Corollary 2.1. The set R(z) of right divisors of an element z = (u, v) ∈ M� is finite and the
number τr(u, v) of all right divisors of (u, v) is given by

τr(u, v) = |R(z)| = v − u+
u(u− 1)

2
.

A Möbius monoid M is a decomposition-finite monoid (i.e. for any s ∈ M there is a finite
number of pairs (t, t′) ∈ M ×M such that s = tt′) in which the identity e is indecomposable,
and st = t implies s = e for any s, t ∈M . The monoid M� is decomposition-finite since R(z) is
finite for any z ∈ M�. The identity e = (1, 2) is indecomposable (since |R(e)| = 1), and M� is
right cancellative. Thus, we have

Proposition 2.2. The non-commutative monoid (M�, ·) is a right cancellative Möbius monoid.

Proposition 2.3. The convolution ξ ∗ η of two arithmetic functions ξ and η on M� is given by:
(ξ ∗ η)(u, v) =

v−u+1∑
i=2

ξ(1, i)η(u, v − i+ 2) +
u∑

j=2

[ξ(u− j + 2, v − j + 2)

j−1∑
k=1

η(k, j)],

where
u∑

j=2

[ξ(u− j + 2, v − j + 2)
j−1∑
k=1

η(k, j)] = 0 if u = 1.

3 The half-factorial monoid M�

The study of half-factorial monoids is a main subject in non-unique factorization theory. In
[6], Haukkanen and the author showed that a commutative Möbius monoid which arise from a
combinatorial bisimple inverse monoid, satisfies a unique factorization theorem. For any monoid
M with units M× an element s ∈ M −M× is called atom if for all t, t′ ∈ M , s = tt′ implies
t ∈ M× or t′ ∈ M×. The monoid M is said to be atomic if every s ∈ M −M× is a product
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of finitely many atoms of M . A half-factorial monoid is an atomic monoid in which every two
decompositions into atoms of a non-unit element s have the same length, denoted `(s).

By virtue of Corollary 2.1, for z ∈ M� we have |R(z)| = 2 if and only if z = (1, 3) or
z = (2, 3). Since M�

× is a singleton it follows that in M� there are only two atoms:

a = (1, 3) and b = (2, 3).

It is straightforward to see that

am = (1,m+ 2) (expansion) and bn = (n+ 1, n+ 2) (translation).

Since
ba = b2,

it follows

Lemma 3.1. For any positive integers m and n we have:

(i) (ba)n = b2n;

(ii) (ab)n = ab2n−1;

(iii) bman = bm+n;

(iv) ambnapbq = ambn+p+q.

For notational convenience, the elements a, b and e will be often written as ab0, a0b and a0b0,
respectively. Now, since (u, u+ i) = (1, i+ 1) · (u, u+ 1) = ai−1bu−1, it follows

Lemma 3.2. For any (u, v) ∈M� we have

(u, v) = av−u−1bu−1.

Using Lemma 3.2 it is easy to see that

Lemma 3.3. We have:
ambn = (n+ 1,m+ n+ 2).

By Lemma 3.2, every element (u, v) 6= (1, 2) can be expressed as a product of atoms. This
representation is not unique (for example: (3, 4) = ba = b2). It is straightforward to check that
every non-identity element (u, v) has a unique decomposition of the form (u, v) = ambn, called
the normal representation of (u, v). The assertions of Lemma 3.1 lead us to the following result:
every two decompositions into atoms inM� of a non-identity element (u, v) have the same length.
Thus we have (the part two of the result follows from Lemma 3.2):

Proposition 3.1. The non-commutative, right cancellative Möbius monoid M� is half-factorial,
and the length `(u, v) of a non-identity element (u, v) is given by

`(u, v) = v − 2.
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4 The Möbius function

It is straightforward to check that the normal representation in M� of the product of two elements
of M� is given by:

Lemma 4.1. If (u, v) = ambn and (u′, v′) = apbq are the normal representations of the non-
identity elements (u, v) and (u′, v′), respectively, then

(u, v) · (u′, v′) =

{
am+pbq if n = 0

ambn+p+q if n > 0

is the normal representation of the product (u, v) · (u′, v′).

Now, Proposition 2.1, Corollary 2.1 and Proposition 2.3 (using Lemmas 3.2, 3.3 and 4.1)
imply

Proposition 4.1. (1) Let z = ambn ∈M�. The set R(z) of right divisors of z is the following one:

R(z) =


{am, am−1, ..., a, e, } if n = 0,

{ambn, am−1bn, ..., abn, bn} ∪ {e} ∪ {(a, b} ∪ {a2, ab, b2} ∪ ...
... ∪ {an−1, an−2b, an−3b2, ..., abn−2, bn−1} if n > 0.

(2) the number τr(ambn) of all right divisors of z = ambn ∈M� is given by

τr(a
mbn) = |R(z)| = m+ 1 +

n(n+ 1)

2
.

(3) The convolution ξ ∗ η of two arithmetic functions ξ and η on M� is given by:

(ξ ∗ η)(ambn) =
m∑
i=0

ξ(am−i)η(aibn) +
n+1∑
j=2

[ξ(ambn−j+2)

j−1∑
k=1

η(aj−k−1bk−1)],

where
n+1∑
j=2

[ξ(ambn−j+2)
j−1∑
k=1

η(aj−k−1bk−1)] = 0 if n = 0.

Proposition 4.2. The Möbius function µ of the Möbius monoid M� is given by

µ(ambn) =


1 if [m = 0, n = 0] or [m = 0, n = 2];

−1 if [m = 1, n = 0] or [m = 0, n = 1]

0 otherwise.

Proof. The above result can be obtained directly from the defining property of Möbius’ µ-function:
ζ ∗ µ = δ, where δ is the convolution identity (i.e., δ(e) = 1, and δ(z) = 0 if z 6= e). Thus we
have

m∑
i=0

µ(aibn) +
n+1∑
j=2

[

j−1∑
k=1

µ(aj−k−1bk−1)] =

{
1 if m = n = 0

0 otherwise,

where
n+1∑
j=2

[
j−1∑
k=1

µ(aj−k−1bk−1)] = 0 if n = 0. It follows:
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(i) m = n = 0⇒ µ(a0b0) = µ(e) = 1;

(ii) m > 0, n = 0⇒
m∑
i=0

µ(ai) = 0;

(iii) m > 0, n > 0 ⇒ 0 =
m∑
i=0

µ(aibn) +
n+1∑
j=2

[
j−1∑
k=1

µ(aj−k−1bk−1)] = µ(ambn) +
m−1∑
i=0

µ(aibn) +

n+1∑
j=2

[
j−1∑
k=1

µ(aj−k−1bk−1)] = µ(ambn).

(iv) m = 0, n > 0 ⇒ µ(bn) +
n+1∑
j=2

[
j−1∑
k=1

µ(aj−k−1bk−1)] = 0, and using (iii) we obtain: µ(bn) +

n−1∑
i=0

[µ(ai) + µ(bi)]− µ(1) = 0.

Now, it is straightforward to see that:

(1) (i) and (ii) imply that µ(ambn) =


1 if m = n = 0

−1 if m = 1, n = 0

0 if m > 1, n = 0,

(2) (iii) says that µ(ambn) = 0 if m > 0, n > 0,

(3) (iv) implies that µ(ambn) =


−1 if m = 0, n = 1

1 if m = 0, n = 2

0 if m = 0, n > 2,

and the proof is complete.

Using Lemma 3.3,

Corollary 4.1. We have:

∀(u, v) ∈M� : µ(u, v) =


1 if [u = 1, v = 2] or [u = 3, v = 4];

−1 if [u = 1, v = 3] or [u = 2, v = 3]

0 otherwise.
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monoids, Int. J. Number Th., 14, 549–561.

[7] Soppi, R. (2013) Arithmetic incidence functions. A study of factorability, University of Tam-
pere, Licentiate Thesis, https://tampub.uta.fi/handle/10024/95043.

34


