A Möbius arithmetic incidence function

Emil Daniel Schwab ${ }^{1}$, Gabriela Schwab ${ }^{2}$
${ }^{1}$ Department of Mathematical Sciences
The University of Texas at El Paso
El Paso, Texas 79968, USA
e-mail: eschwab@utep.edu
${ }^{2}$ Department of Mathematics
El Paso Community College
El Paso, Texas 79902, USA
e-mail: gschwab@epcc.edu

Abstract

The aim of this note is to study a non-standard right cancellative and half-factorial Möbius monoid, and to compute its Möbius function.

Keywords: Convolution, right divisibility, Möbius monoid, half-factorial monoid, Möbius function.
AMS Classification: 11A25.

1 Introduction

The classical settings for Möbius inversion are special cases of Leroux's Möbius categories. The locally finite posets are categories in which there is one morphism $x \rightarrow y$ whenever $x \leq y$; and the monoids with the finite decomposition property are categories with only one object. In [7] an arithmetic incidence function is a complex-valued function $\xi: \mathbb{Z}_{+} \times \mathbb{Z}_{+} \rightarrow \mathbb{C}$ defined for all pairs of positive integers such that $\xi(m, n)=0$ if $m \not \leq n$. An arithmetic incidence function defined above has all the defining properties of both an arithmetic function of two variables and a poset incidence function. In this short note we consider a simple example where "poset incidence function" is replaced by "monoid incidence function".

The S-convolution ("S" from the standard ordering) considered in [7] as a generalization of the Cauchy convolution is defined by (see [7, Definition 5.2]):

$$
\left(\forall(m, n) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}\right): \quad(\xi * \eta)(m, n)=\sum_{\substack{m \leq p \leq n \\ p+q=m+n}} \xi(m, p) \eta(m, q) .
$$

Now, referring to the S-convolutions, we can view the arithmetic indidence functions as complexvalued functions defined on the set

$$
M_{\leq}=\left\{(m, n) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}: m \leq n\right\}
$$

The set M_{\leq}contains the diagonal Δ of $\mathbb{Z}_{+} \times \mathbb{Z}_{+}$and a such arithmetic incidence function ξ has a convolution inverse if and only if $\xi(m, m) \neq 0$ for every $(m, m) \in \Delta$. The Möbius function μ is the convolution inverse of the zeta function ζ defined by $\zeta(m, n)=1$ for all arguments of the domain set M_{\leq}.

It is clear that if we remove the diagonal, for example instead of M_{\leq}we consider

$$
M_{\nsupseteq}=\left\{(m, n) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}: m \supsetneqq n\right\},
$$

then the tide turns and the problem of Möbius function (Möbius inversion) takes on another meaning. The set M_{\S} equipped with a convenient multiplication (denoted by • but often omitted) leads us to a monoid convolution of arithmetic functions of two variables. For example, if M_{\lessgtr} is a right cancellative monoid such that no element is invertible except the identity e, and for any $(u, v) \in M_{\ngtr}$ there are at most a finite number of pairs $((m, n),(p, q)) \in M_{\ngtr} \times M_{\ngtr}$ such that $(u, v)=(m, n) \cdot(p, q)$ (in other words, if M_{\ngtr} is a right cancellative Möbius monoid), then one may define the convolution $\xi * \eta$ of two arithmetic functions $\xi, \eta: M_{\ngtr} \rightarrow \mathbb{C}$ by

$$
(\xi * \eta)(u, v)=\sum_{(m, n) \cdot(p, q)=(u, v)} \xi(m, n) \eta(p, q) .
$$

In this case an arithmetic function of two variables ξ has a convolution inverse if and only if $\xi(e) \neq 0$ (see [5, Proposition 2.2]). Thus the diagonal of a locally finite partial ordered set was substituted by the identity element of the monoid; the Möbius function $\mu: M_{\lessgtr} \rightarrow \mathbb{C}$ being the convolution inverse of the zeta function $\zeta: M_{\ngtr} \rightarrow \mathbb{C}\left(\forall(u, v) \in M_{\ngtr}, \zeta(u, v)=1\right)$.

The monoid $\left(M_{\S}, \cdot\right)$ that we consider in this note is a special monoid: it is right cancellative but not left cancellative; it is atomic (with only two atoms) and all factorizations of a non-identity into atoms have the same length. It is also a Möbius monoid (a Möbius category in the sense of Leroux [1],[3] with one object; for more details see [2] or [5]), etc. As a non-standard example, it brings new challenges to the study of convolutions of such arithmetic incidence functions. The computation of the Möbius function is presented in the last Section.

2 The right cancellative Möbius monoid M_{\ngtr}

The set

$$
M_{\ngtr}=\left\{(m, n) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+} \mid m \supsetneqq n\right\}
$$

equipped with the multiplication defined by:

$$
(m, n) \cdot(p, q)=\left\{\begin{array}{cll}
(p, n+q-2) & \text { if } & m=1 \\
(m+q-2, n+q-2) & \text { if } & m \geq 2
\end{array}\right.
$$

is a non-commutative monoid, the element $e=(1,2)$ being the identity. It is straightforward to check that this monoid is right cancellative but it is not left cancellative. We say that $y \in M_{\lessgtr}$ is a right divisor of $z \in M_{\ngtr}$ if there exists a (necessary unique) $x \in M_{\ngtr}$ such that $z=x \cdot y$. We write in symbols $y \mid z$ and $x=\frac{z}{y}$. Since M_{\ngtr} is a right cancellative monoid, the right divisibility on M_{\S} is a partial order relation on M_{\lesseqgtr}. As we will see below (Proposition 2.1), for any $z \in M_{\S}$ the set of all right divisors of z in M_{\lesseqgtr} is finite; the (non-commutative) convolution $\xi * \eta$ of two arithmetic functions of two variables ξ and η on M_{\ngtr} (i.e. complex valued functions with domain $\left.M_{\ngtr}\right)$ being given by:

$$
(\xi * \eta)(z)=\sum_{y \mid z} \xi\left(\frac{z}{y}\right) \eta(y) .
$$

Proposition 2.1. Let $z=(u, v) \in M_{\ngtr}$. The set $R(z)$ of all right divisors of z is the following one:

$$
R(z)=\left\{\begin{array}{ccc}
\{(1, v),(1, v-1), \ldots,(1,2)\} & \text { if } u=1 \\
\{(u, v),(u, v-1), \ldots,(u, u+1)\} \cup\{(1,2)\} \cup\{(1,3),(2,3)\} \cup \ldots & \\
\ldots \cup\{(1, u),(2, u), \ldots,(u-1, u)\} & \text { if } u>1 .
\end{array}\right.
$$

Proof. Let $(m, n) \cdot(p, q)=(u, v)$.
a) If $u=1$ then $m=p=1$ and $(1, n+q-2)=(1, v)$, that is $n+q=v+2$. Since $n, q>1$ it follows:

$$
\begin{aligned}
& n=2, q=v \Rightarrow(1,2) \cdot(1, v)=(1, v) \\
& n=3, q=v-1 \Rightarrow(1,3) \cdot(1, v-1)=(1, v) \\
& \ldots \\
& n=v, q=2 \Rightarrow \quad(1, v) \cdot(1,2)=(1, v)
\end{aligned}
$$

b) If $u>1$ and
$\left.b_{1}\right) m=1$, then $p=u$ and $n+q=v+2$. Since $n>1$ and $q>u$ it follows:

$$
\begin{aligned}
& n=2, q=v \quad \Rightarrow \quad(1,2) \cdot(u, v)=(u, v) \\
& n=3, q=v-1 \quad \Rightarrow \quad(1,3) \cdot(u, v-1)=(u, v) \\
& \cdots \\
& n=v-u+1, q=u+1 \Rightarrow(1, v-u+1) \cdot(u, u+1)=(u, v)
\end{aligned}
$$

$\left.b_{2}\right) m>1$, then $m+q=v+2$ and $n+q=v+2$. It follows:
$q=2 \Rightarrow m=u, n=v$ and $p<q$ implies

$$
p=1 \text { and }(u, v) \cdot(1,2)=(u, v)
$$

$$
q=3 \Rightarrow m=u-1, n=v-1 \text { and } p<q \text { implies }
$$

$$
\left\{\begin{array}{c}
p=1 \text { and }(u-1, v-1) \cdot(1,3)=(u, v) \\
p=2 \operatorname{and}(u-1, v-1) \cdot(2,3)=(u, v)
\end{array}\right.
$$

$q=u \Rightarrow m=2, n=v-u+2$ and $p<q$ implies

$$
\left\{\begin{array}{c}
p=1 \text { and }(2, v-u+2) \cdot(1, u)=(u, v) \\
p=2 \text { and }(2, v-u+2) \cdot(2, u)=(u, v) \\
\ldots \\
p=u-1 \text { and }(2, v-u+2) \cdot(u-1, u)=(u, v) .
\end{array}\right.
$$

Corollary 2.1. The set $R(z)$ of right divisors of an element $z=(u, v) \in M_{\ngtr}$ is finite and the number $\tau_{r}(u, v)$ of all right divisors of (u, v) is given by

$$
\tau_{r}(u, v)=|R(z)|=v-u+\frac{u(u-1)}{2} .
$$

A Möbius monoid M is a decomposition-finite monoid (i.e. for any $s \in M$ there is a finite number of pairs $\left(t, t^{\prime}\right) \in M \times M$ such that $\left.s=t t^{\prime}\right)$ in which the identity e is indecomposable, and $s t=t$ implies $s=e$ for any $s, t \in M$. The monoid M_{\nsupseteq} is decomposition-finite since $R(z)$ is finite for any $z \in M_{\S}$. The identity $e=(1,2)$ is indecomposable (since $|R(e)|=1$), and M_{\ngtr} is right cancellative. Thus, we have

Proposition 2.2. The non-commutative monoid $\left(M_{\S}, \cdot\right)$ is a right cancellative Möbius monoid.
Proposition 2.3. The convolution $\xi * \eta$ of two arithmetic functions ξ and η on M_{\ngtr} is given by: $(\xi * \eta)(u, v)=$

$$
\sum_{i=2}^{v-u+1} \xi(1, i) \eta(u, v-i+2)+\sum_{j=2}^{u}\left[\xi(u-j+2, v-j+2) \sum_{k=1}^{j-1} \eta(k, j)\right]
$$

where $\sum_{j=2}^{u}\left[\xi(u-j+2, v-j+2) \sum_{k=1}^{j-1} \eta(k, j)\right]=0$ if $u=1$.

3 The half-factorial monoid M_{\ddagger}

The study of half-factorial monoids is a main subject in non-unique factorization theory. In [6], Haukkanen and the author showed that a commutative Möbius monoid which arise from a combinatorial bisimple inverse monoid, satisfies a unique factorization theorem. For any monoid M with units M^{\times}an element $s \in M-M^{\times}$is called atom if for all $t, t^{\prime} \in M, s=t t^{\prime}$ implies $t \in M^{\times}$or $t^{\prime} \in M^{\times}$. The monoid M is said to be atomic if every $s \in M-M^{\times}$is a product
of finitely many atoms of M. A half-factorial monoid is an atomic monoid in which every two decompositions into atoms of a non-unit element s have the same length, denoted $\ell(s)$.

By virtue of Corollary 2.1, for $z \in M_{\ngtr}$ we have $|R(z)|=2$ if and only if $z=(1,3)$ or $z=(2,3)$. Since $M_{\ngtr}{ }^{\times}$is a singleton it follows that in M_{\ngtr} there are only two atoms:

$$
a=(1,3) \text { and } b=(2,3) .
$$

It is straightforward to see that

$$
a^{m}=(1, m+2) \text { (expansion) } \quad \text { and } \quad b^{n}=(n+1, n+2) \text { (translation). }
$$

Since

$$
b a=b^{2},
$$

it follows
Lemma 3.1. For any positive integers m and n we have:
(i) $(b a)^{n}=b^{2 n}$;
(ii) $(a b)^{n}=a b^{2 n-1}$;
(iii) $b^{m} a^{n}=b^{m+n}$;
(iv) $a^{m} b^{n} a^{p} b^{q}=a^{m} b^{n+p+q}$.

For notational convenience, the elements a, b and e will be often written as $a b^{0}, a^{0} b$ and $a^{0} b^{0}$, respectively. Now, since $(u, u+i)=(1, i+1) \cdot(u, u+1)=a^{i-1} b^{u-1}$, it follows

Lemma 3.2. For any $(u, v) \in M_{\varsubsetneqq}$ we have

$$
(u, v)=a^{v-u-1} b^{u-1}
$$

Using Lemma 3.2 it is easy to see that
Lemma 3.3. We have:

$$
a^{m} b^{n}=(n+1, m+n+2)
$$

By Lemma 3.2, every element $(u, v) \neq(1,2)$ can be expressed as a product of atoms. This representation is not unique (for example: $(3,4)=b a=b^{2}$). It is straightforward to check that every non-identity element (u, v) has a unique decomposition of the form $(u, v)=a^{m} b^{n}$, called the normal representation of (u, v). The assertions of Lemma 3.1 lead us to the following result: every two decompositions into atoms in M_{\S} of a non-identity element (u, v) have the same length. Thus we have (the part two of the result follows from Lemma 3.2):

Proposition 3.1. The non-commutative, right cancellative Möbius monoid M_{\ngtr} is half-factorial, and the length $\ell(u, v)$ of a non-identity element (u, v) is given by

$$
\ell(u, v)=v-2 .
$$

4 The Möbius function

It is straightforward to check that the normal representation in M_{\varsubsetneqq} of the product of two elements of M_{\lessgtr} is given by:

Lemma 4.1. If $(u, v)=a^{m} b^{n}$ and $\left(u^{\prime}, v^{\prime}\right)=a^{p} b^{q}$ are the normal representations of the nonidentity elements (u, v) and $\left(u^{\prime}, v^{\prime}\right)$, respectively, then

$$
(u, v) \cdot\left(u^{\prime}, v^{\prime}\right)=\left\{\begin{array}{cll}
a^{m+p} b^{q} & \text { if } n=0 \\
a^{m} b^{n+p+q} & \text { if } n>0
\end{array}\right.
$$

is the normal representation of the product $(u, v) \cdot\left(u^{\prime}, v^{\prime}\right)$.
Now, Proposition 2.1, Corollary 2.1 and Proposition 2.3 (using Lemmas 3.2, 3.3 and 4.1) imply

Proposition 4.1. (1) Let $z=a^{m} b^{n} \in M_{\ngtr}$. The set $R(z)$ of right divisors of z is the following one:

$$
R(z)=\left\{\begin{array}{ccc}
\left\{a^{m}, a^{m-1}, \ldots, a, e,\right\} & \text { if } n=0, \\
\left\{a^{m} b^{n}, a^{m-1} b^{n}, \ldots, a b^{n}, b^{n}\right\} \cup\{e\} \cup\left\{(a, b\} \cup\left\{a^{2}, a b, b^{2}\right\} \cup \ldots\right. & \\
\ldots \cup\left\{a^{n-1}, a^{n-2} b, a^{n-3} b^{2}, \ldots, a b^{n-2}, b^{n-1}\right\} & \text { if } n>0 .
\end{array}\right.
$$

(2) the number $\tau_{r}\left(a^{m} b^{n}\right)$ of all right divisors of $z=a^{m} b^{n} \in M_{\ngtr}$ is given by

$$
\tau_{r}\left(a^{m} b^{n}\right)=|R(z)|=m+1+\frac{n(n+1)}{2}
$$

(3) The convolution $\xi * \eta$ of two arithmetic functions ξ and η on M_{\varsubsetneqq} is given by:

$$
(\xi * \eta)\left(a^{m} b^{n}\right)=\sum_{i=0}^{m} \xi\left(a^{m-i}\right) \eta\left(a^{i} b^{n}\right)+\sum_{j=2}^{n+1}\left[\xi\left(a^{m} b^{n-j+2}\right) \sum_{k=1}^{j-1} \eta\left(a^{j-k-1} b^{k-1}\right)\right]
$$

where $\sum_{j=2}^{n+1}\left[\xi\left(a^{m} b^{n-j+2}\right) \sum_{k=1}^{j-1} \eta\left(a^{j-k-1} b^{k-1}\right)\right]=0$ if $n=0$.
Proposition 4.2. The Möbius function μ of the Möbius monoid M_{\varsubsetneqq} is given by

$$
\mu\left(a^{m} b^{n}\right)=\left\{\begin{array}{ccc}
1 & \text { if } & {[m=0, n=0] \text { or }[m=0, n=2]} \\
-1 & \text { if } & {[m=1, n=0] \text { or }[m=0, n=1]} \\
0 & \text { otherwise }
\end{array}\right.
$$

Proof. The above result can be obtained directly from the defining property of Möbius' μ-function: $\zeta * \mu=\delta$, where δ is the convolution identity (i.e., $\delta(e)=1$, and $\delta(z)=0$ if $z \neq e$). Thus we have

$$
\sum_{i=0}^{m} \mu\left(a^{i} b^{n}\right)+\sum_{j=2}^{n+1}\left[\sum_{k=1}^{j-1} \mu\left(a^{j-k-1} b^{k-1}\right)\right]=\left\{\begin{array}{cc}
1 & \text { if } \quad m=n=0 \\
0 & \text { otherwise }
\end{array}\right.
$$

where $\sum_{j=2}^{n+1}\left[\sum_{k=1}^{j-1} \mu\left(a^{j-k-1} b^{k-1}\right)\right]=0$ if $n=0$. It follows:
(i) $m=n=0 \Rightarrow \mu\left(a^{0} b^{0}\right)=\mu(e)=1$;
(ii) $m>0, n=0 \Rightarrow \sum_{i=0}^{m} \mu\left(a^{i}\right)=0$;
(iii) $m>0, n>0 \Rightarrow 0=\sum_{i=0}^{m} \mu\left(a^{i} b^{n}\right)+\sum_{j=2}^{n+1}\left[\sum_{k=1}^{j-1} \mu\left(a^{j-k-1} b^{k-1}\right)\right]=\mu\left(a^{m} b^{n}\right)+\sum_{i=0}^{m-1} \mu\left(a^{i} b^{n}\right)+$ $\sum_{j=2}^{n+1}\left[\sum_{k=1}^{j-1} \mu\left(a^{j-k-1} b^{k-1}\right)\right]=\mu\left(a^{m} b^{n}\right)$.
(iv) $m=0, n>0 \Rightarrow \mu\left(b^{n}\right)+\sum_{j=2}^{n+1}\left[\sum_{k=1}^{j-1} \mu\left(a^{j-k-1} b^{k-1}\right)\right]=0$, and using (iii) we obtain: $\mu\left(b^{n}\right)+$ $\sum_{i=0}^{n-1}\left[\mu\left(a^{i}\right)+\mu\left(b^{i}\right)\right]-\mu(1)=0$.

Now, it is straightforward to see that:
(1) (i) and (ii) imply that $\mu\left(a^{m} b^{n}\right)=\left\{\begin{array}{ccc}1 & \text { if } & m=n=0 \\ -1 & \text { if } & m=1, n=0 \\ 0 & \text { if } & m>1, n=0,\end{array}\right.$
(2) (iii) says that $\mu\left(a^{m} b^{n}\right)=0$ if $m>0, n>0$,
(3) (iv) implies that $\mu\left(a^{m} b^{n}\right)=\left\{\begin{array}{ccc}-1 & \text { if } & m=0, n=1 \\ 1 & \text { if } & m=0, n=2 \\ 0 & \text { if } & m=0, n>2,\end{array}\right.$
and the proof is complete.
Using Lemma 3.3,
Corollary 4.1. We have:

$$
\forall(u, v) \in M_{\ngtr}: \quad \mu(u, v)=\left\{\begin{array}{ccc}
1 & \text { if } & {[u=1, v=2] \text { or }[u=3, v=4] ;} \\
-1 & \text { if } & {[u=1, v=3] \text { or }[u=2, v=3]} \\
0 & \text { otherwise } .
\end{array}\right.
$$

References

[1] Content, M., Lemay, F., \& Leroux, P. (1980) Catégories de Möbius et fonctorialités: Un cadre général pour l'inversion de Möbius J. Combin. Theory Ser. A, 28, 169-190.
[2] Lawvere, F. W., \& Menni, M. (2010) The Hopf algebra of Möbius intervals, Theory and Appl. of Categories, 24, 221-265.
[3] Leroux, P. (1975) Les catégories de Möbius, Cah. Topol. Géom. Diffé. Catég., 16, 280-282.
[4] McCarthy, P. J. (1986) Introduction to Arithmetical Functions, Springer-Verlag, New York.
[5] Schwab, E. D. (2015) Möbius monoids and their connection to inverse monoids, Semigroup Forum,90(3), 694-720.
[6] Schwab, E. D., \& Haukkanen, P. (2008) A unique factorization in commutative Möbius monoids, Int. J. Number Th., 14, 549-561.
[7] Soppi, R. (2013) Arithmetic incidence functions. A study of factorability, University of Tampere, Licentiate Thesis, https://tampub.uta.fi/handle/10024/95043.

