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Abstract: This is sequel to our previous work [2, 3, 6] on region algebra. An important 
contribution in [2] is that the minimum platform required and being used so far by the world 
for practicing elementary algebra is unearthed and uniquely identified which is not group, ring, 
field, module, linear space, algebra over a field, associative algebra over a field, division 
algebra, or any existing algebraic system in general, but ‘Region Algebra’. The properties of 
region algebra are interesting as this is the minimal algebra which justifies free and fluent 
practice of elementary as well as higher algebra. This important identification was missing so 
far in any past literature of algebra or mathematics, and thus it is surely a unique algebra of 
absolute integrated nature. A new theory called by “Theory of Objects” and as a special case of 
it the classical “Theory of Numbers” were also studied in [2, 6]. In this paper we say that every 
complete region A has its own ‘Theory of Numbers’ called by ‘Theory of A-numbers’, where 
the classical ‘Theory of Numbers’ is the ‘Theory of RR-numbers’ corresponding to the 
particular complete region RR. For the sake of presentation and to avoid any confusion we 
consider three theories here but finally we arrive at a unified unique theory at the end. The 
three theories designated in this paper are: Theory-1 (Theory of Numbers) which is exactly 
the existing “Theory of Numbers” in the literature (on real numbers and complex numbers); 
Theory-2 (Theory of Objects) which is about combinatorics on Region Algebra, about prime 
objects and composite objects, about a new ‘Theory of Numbers’ corresponding to every 
complete region (viz. the ‘Theory of A-numbers’ is corresponding to the complete region A, 
etc.); and Theory-3 (Theory of RR-numbers) which is all about the “Theory of  
RR-numbers”, a particular case of the “Theory of A-numbers” of Theory-2 where the region A 
is the complete region RR. In fact Theory-1 happens to be a special case of Theory-3, but 
initiating of Theory-3 done by the author is not with the purpose of ‘Making a generalization of 
the Theory-1’. It may also be noted that the Theory-3 is a special case of “Theory of  
A-numbers” where “Theory of A-numbers” is derived from the “Theory of Objects” of  
Theory-2. The “Theory of Objects” also induces a new field called by “Object Geometry” of a 
complete region, being a generalization of our rich classical geometry of the existing notion. 
It is claimed that the “Theory of Objects” will play a huge role to the Number Theorists in a 
new direction.  
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1 Introduction 

This is sequel to our previous work [2, 3, 6] in which we introduced the notion of region 
algebra, theory of objects and calculus space. It has been justified in [2, 6] with the help of 
several examples that many of the simple results, formula, equalities, identities, rules etc. of 
elementary algebra are not valid, in general, in a group, ring, field, module, linear space, 
algebra over a field, associative algebra over a field, division algebra, or in any existing 
algebraic system [1, 9–13, 15], but in region algebra. It is unearthed and uniquely identified 
that the minimum platform required for practicing elementary algebra is the region algebra. It 
is also noticed that a region algebra is basically a “commutative division F-algebra”, but the 
most important contribution in [2, 6] is that the huge unique potential of region algebra is 
discovered and consequently its characteristics are well studied, which validates the free and 
fluent practice of elementary as well as higher algebra (not possible by any other existing 
algebra, even not by division algebra) by the world scientists. Theory of region algebra is 
surely a major field, deserves major attention for understanding the existing huge volume of 
literature on algebra in an integrated way. In [3], we introduced the notion of extended region, 
2-to-1 bijective mapping, positive and negative objects on making an absolute partition of a 
real region, object line of a region and then a calculus space on which a new calculus can be 
developed. The preliminaries about the region algebra are not discussed further in this work, 
and for details one could see [2].  

In this paper we introduce two parts of region mathematics.  
In the first part we introduce that for every complete region A, there is a corresponding 

Theory of Numbers called by “Theory of A-numbers”. We then show that the existing classical 
‘Theory of Numbers’ is a particular instance of our newly introduced notion of “Theory of 
A-numbers”. For the sake of smooth presentation, we initially designate three theories here 
which finally integrate into a unified unique theory: Theory-1 (Theory of Numbers) which is 
exactly the existing “Theory of Numbers” in the literature; Theory-2 (Theory of Objects) 
which is about combinatorics on Region Algebra, about prime objects and composite objects, 
about a new ‘Theory of Numbers’ corresponding to every complete region (viz. the ‘Theory of 
A-numbers’ is corresponding to the complete region A, ‘Theory of B-numbers’ is corres-
ponding to the complete region B, etc.); and Theory-3 (Theory of RR-numbers) which is 
all about the “Theory of RR-numbers”, a particular case of the “Theory of A-numbers” of  
Theory-2 if the region A is the complete region RR. 

In the second part we introduce another new field “Object Geometry” corresponding to a 
complete region A, and also we show that the existing classical ‘Geometry’ is a particular 
instance of our newly introduced “Object Geometry”.  
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2  Region Algebra “Calculus Space” & “Complete Region” 

It has been observed that there is a genuine need to introduce a new algebraic system having 
unique self-identity in order to provide a minimal but sufficient platform where ‘elementary 
mathematics’ can be fluently practiced with algebraic right and validity. This job is done in [2] 
by introducing the algebraic system called by “Region”, which is a very simple algebraic 
system, very complete and sound.  
 
Definition 2.1. Region. Consider a non-null set A equipped with three binary operations ⊕ , * 
and •  such that for a given field (F, +, .), the following three conditions are satisfied : - 

(i) ( A, ⊕ , * ) forms a field,  

(ii) (A, ⊕ , •  ) forms a linear space over the field (F, +, .), and  

(iii) A satisfies the property of : “Compatibility with the scalars of the field F” 

i.e. (a• x) * (b• y) = (a.b)•  (x*y) ∀ a, b∈F and ∀ x, y∈A. Then the algebraic system  
(A, ⊕ , *, • ) is called a Region over the field (F, +, . ). If there is no confusion, we may simply 
use the notation A to represent the region (A, ⊕ , *, • ), for brevity. 
 
In the region (A, ⊕ , *, • ), its component algebraic system (A, ⊕ , *) is a field. Thus we see 
that the region A is a commutative division algebra. Also the other component algebraic system 
(A, ⊕ , • ) is a linear space over the field F. Considering the distributive properties of the field 
(A, ⊕ , *) along with the condition (iii) of the definition 2.1, it can be observed that the region 
A is F-algebra. Thus a region is a “Commutative Division F-Algebra”, but defined 
independently and uniquely with a self-identity in [2] with its important properties and results.  
Consider any region A. A variable x which can take values from the region A is called an 
‘object variable’. The concept of positive objects and negative objects of a complete region is 
introduced in [3]. In this section we review the results and make further analysis. 
 
Definition 2.2.  Extended Region. Consider a region A. If we include two more objects +∝ A 

and -∝ A in A, where +∝ A = 
A

x
0

 where x (≠0A) is any positive object, and -∝ A = 
A

z
0

 where z 

(≠0A) is any negative object, then the set A ∪ {+∝ A, -∝ A} is called to be an extended region. 
Note that an extended region is not a region. But if we say that A is an extended region, it 
implies that A is a region and two infinities are included to it. 
 
Definition 2.3. 2-to-1 Bijective Mapping 
Consider two non-null sets X and Y. A function f : X →  Y is said to be a ‘2-to-1 Bijective 
Mapping’ if  
(i)  f is onto, and 
(ii)  ∀ y ∈  Y, ∃  two and only two distinct (not same) elements x1 and x2 in X  such that   
 f(x1) = y = f(x2). 
 
For example, the function f : R − {0} →  R+ given by f(x) = x2 is a 2-to-1 Bijective Mapping.  
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In [3], we explored the ‘calculus space’ as the minimum necessary requirements of 

mathematics if we want to develop a new calculus.  
 
Definition 2.4.  Calculus Space. Consider any real region A = (A, ⊕ , *, • ) over the field 
(R, +, .). Then A forms a Calculus Space if the following conditions are true: 
(i) A is an extended real region.  
(ii) A is a normed complete metric space with respect to a norm ║.║ and the corresponding 

induced metric ρ (x, y) = ║x~y║, (i.e. ║x║ = ρ (x, 0A) ).  
(iii)  The norm ║.║ is 2-to-1 bijective mapping from A − {0A} to R+. 
(iv) A is a chain w.r.t. a total order relation ‘≤’ . 
 
As a particular instance, if we choose the real region A to be the RR region and ║x║ = |x| in 
RR where ρ (x, y) =║x−y║= |x−y| and the RR region is a chain w.r.t. the crisp order relation 
“≤”, then the corresponding calculus happens to be the classical calculus (developed 
independently by Newton and Leibniz). The set R of real numbers is so interesting that it very 
comfortably forms the region RR, and the region RR is so beautiful that it satisfies all the above 
four conditions to form a Calculus Space (an eligible platform on which a calculus can be 
developed). Consequently, it is clear now that the classical calculus developed independently 
by Newton and Leibniz happens to be on the calculus space RR.  
 
The following facts [9, 15, 16] may be recalled that the metric associated with this norm, i.e. 
the metric ρ (x, y) = ║x~y║ has the following special properties : 
(i) ‘Translation Invariance’, i.e. ∀ z∈A we have ρ (x⊕ z, y⊕ z) = ρ (x, y) = ║x~y║, and 
(ii) ‘Homogeniety’, i.e. ∀ r∈R we have ρ (r• x, r• y) = |r|.║x~y║ = |r|. ρ (x, y). 
 
We already have a complete idea about the development and growth of the classical calculus 
since its inception (happened to be developed on the calculus space RR). In an analogous way, 
the basic concepts of any new calculus (new differential calculus) viz. limit, continuity, 
differentiability of a function of objects, etc. are explained in [3] on a general calculus space. 
 
Definition 2.5. Complete Region. A real region which forms a calculus space satisfying the 
above properties is called a “complete region”. For instance, the region RR is a complete 
region.  
 
The collection of all complete regions is called the region universe Ʃ.  
 
Definition 2.6. ‘Absolute Partition’ of the complete region A. We defined ‘Absolute 
Partition’ of the region A = (A, ⊕ , *, • ) in [3]. Consider a partition PA of a region A (forming 
calculus space) into three mutually disjoint non-null sets A+, A- and {0A} such that  
(i) A+ = {a : a ∈  A and 0A < a} 
(ii) A− = {a : a ∈  A and a < 0A}.  
Clearly, ∀ a ∈  A+, ~a ∈  A− and ∀ b ∈  A−, ~b ∈  A+

.  
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(Note: we say that a < b iff a ≤ b and a ≠ b where “≤” is the total order relation of the chain A). 
This partition PA, once made, must be regarded as an ‘absolute partition’ for the region A 

over which one desires to develop a calculus and any branch of region mathematics in any 
direction. It is called to be absolute in the sense that it generates the sign of every object of A, 
positive or negative, which will remain absolute for the complete literature of the 
corresponding calculus or corresponding region mathematics. The elements of A+

 are said to be 
positive objects and the elements of A− are said to be negative objects. The object 0A is neither 
in A+ nor in A−, and so we say that 0A is neither a positive object nor a negative object. The 
attribute of being positive or negative is called the sign of the object, and 0A is not considered 
to have a sign.  

For the sake of avoiding confusion, let us designate the classical ‘Theory of Numbers’ 
(available in the existing literature) by “Theory-1”. In the next section we discuss about a new 
theory called by “Theory of Objects” which we designate by “Theory-2”. However, in 
Theory-2 we will have a special interest on the “Theory of RR-numbers” of it, which we 
designate as “Theory-3”. But these are temporary designations and will be ignored while we 
conclude the work here at the end.  

3  Theory of Objects (Theory-2) 

By an object we mean an element of a region. In this section we develop a new theory called 
by “Theory of Objects” in Region Algebra. As a part of it, we first of all discuss about a new 
Theory of Numbers and then about Object Geometry.  

Consider a complete region A. Corresponding to every complete region A, we derive a 
corresponding ‘Theory of Numbers’ called by “Theory of A-numbers”. If RR, A, B, C, … are 
the complete regions in region algebra, then the corresponding theories are “Theory of RR-
numbers”, “Theory of A-numbers”, “Theory of B-numbers”, “Theory of C-numbers”, ... etc. as 
shown in Figure 1.  

 
Figure 1. Every complete region has its own Theory of Numbers 
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3.1  Theory of A-numbers 

 
3.1.1 Object line in a complete region A 
 
Consider a complete region A. A line can be drawn on which one point may be fixed to be the 
location for the object 0A, with all positive objects of A having location to the right and all 
negative objects of A having location to the left of 0A. Thus the ‘positive direction’ of the line 
can be called to be XA-axis and the ‘negative direction’ of the line can be called to be XA

1-axis. 
And the line which the objects of the region A is considered to lie upon is called the Object 
Line for the complete region A (see Figure 2 and Figure 3).  

 

 
Figure 2. Object line of the region A with consecutive equi-spaced object points 

 
The term ‘equi-spaced’ in the caption of Figure 2 is well understood in the sense of the corres-
ponding metric (or norm) of the region A, i.e. for any real integer r, ρ (r• 1A, (r+1)• 1A) = 
constant (independent of r), in the Theory of A-numbers.  

 

 
Figure 3. Objects line of the region A, a general view 

 
Since A = (A, ⊕ , *, • ) is complete (normed complete metric space), there are no "points 

missing" from it (inside or at the boundary). Since A is a chain, every object has a unique 
address on this linear continuum XA

1XA; and corresponding to every address (point) on this 
linear continuum XA

1XA there is a unique object of A. 
 
3.1.2 Unit length & inverse unit length in a complete region A 
 
Consider a complete region A = (A, ⊕ , *, • ). For xA ∈A, we use the notation xa to denote 
║xA║ = xa which is a positive real number. If xA is a positive object on the object line, then the 
distance of xA from the point O (the location of the object 0A on the linear continuum XA

1XA) is 
denoted by xa which is a positive real number (we use the convention that ~xA is at a distance of 
–xa from the point O).  

Corresponding to the unit element 1A of the complete region A, the positive real number 1a 
(i.e. ║1A║) is called the ‘unit length’ in the Theory of A-numbers. Clearly 0a = 0, and it may 
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also be noted here that in general 1a ≠ 1 (where 0 is the oRR and 1 is the 1RR). Suppose that 
1/1a = ǝa. The positive real number ǝa is called ‘Inverse Unit Length’ in A.  

Clearly 1a. ǝa = 1 and in general 1a ≠ ǝa for A. However, for the particular complete region 
RR we have 1rr = ǝrr = 1 (= 1RR) . 
 
3.1.3 ‘Ontegers’ in the complete region A 
 
Consider the object xA in the complete region A. Consider the real number xa/1a i.e. xa. ǝa which 
let us denote by the symbol x. Thus x = xa/1a = xa. ǝa, which means xa = x.1a ∀ xA∈A. It may be 
noted here that in general 1a ≠ 1, in a similar way xa ≠ x. However for a particular instance of 
the complete region RR, we have xrr = x (= xRR). 

If m is a real integer, then the object mA is called an ‘object integer’ or ‘onteger’ in the 
Theory of A-numbers.  

Thus the ontegers in the Theory of A-numbers are 0A, ⊕1A, ~1A, ⊕2A, ~2A, ⊕3A, ~3A, ..., 
etc. The ontegers ⊕1A, ⊕2A, ⊕3A, ⊕4A, …, etc., are ‘positive ontegers’ and the ontegers 
~1A, ~2A, ~3A, ~4A, …, etc., are ‘negative ontegers’.  

It is to be carefully noted that corresponding to any onteger ⊕mA of the complete region A, 
the distance ma from the point oA on the object line is a real number but need not necessarily is 
a real integer; and similarly corresponding to any onteger ~mA, the distance −ma is a real 
number but not necessarily is a real integer.  

Corresponding to every complete region A, there is a “Theory of A-numbers”. Consider 
the complete regions RR, A, B, C, D, … etc. and the corresponding “Theory of RR-numbers”, 
“Theory of A-numbers”, “Theory of B-numbers”, “Theory of C-numbers”, “Theory of D-
numbers”… respectively. If we imagine a common object line for these different complete 
regions RR, A, B, C, D, …, etc., with the respective zero elements 0, 0A, 0B, 0C, 0D, …, being 
situated at exactly the same point on the common object line, then it is obvious that the 
respective unit elements 1(1RR), 1A, 1B, 1C, 1D, …, etc., will be situated in general at different 
points on the common line because of the fact that the ‘unit length’ is region-dependent. Thus, 
for any real number x, in general the points x, xA, xB, xC, xD, …, etc., will be situated at different 
locations on the common object line. Distance (if measured in a common scale, say with the 
help of real numbers) between two consecutive ontegers for any given complete region A on 
the object line will be same, but will be different for different complete regions. On the RR 
region line i.e. on the real number line, distance of the object ⊕1RR or ~1RR from the object 0RR 
(i.e. distance of the real number +1 or -1 from the number 0) is of unit length called us by 
‘one’. It may be noted that for every xA∈A, xa is in R.  

It may also happen that the integer 1 of the set R (i.e. the onteger 1RR of the Theory of RR-
numbers) is not an onteger in the “Theory of A-numbers” and the onteger 1a of the “Theory of 
A-numbers” is not an onteger in the “Theory of RR-numbers” (i.e. is not an integer in the 
classical “Theory of numbers”). The main source of such differences lies in the difference of 
size of ‘unit length’ of different complete regions.  

Thus “Theory of A-numbers” is different for different complete region A in the Theory of 
Objects, whereas the classical “Theory of Numbers” being available in the existing literature 
and being practiced by us traditionally so far is a content of the “Theory of RR-numbers” in the 
Theory of Objects.  
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The following proposition is straightforward and quite important. 
 

Proposition 3.1. Corresponding to a real number x (−x), there is a unique object ⊕ xA (~xA) in 
the complete region A and hence a unique corresponding real number xa (-xa).  
 

Definition 3.1 ‘RA value’ of a real number x. Let A be a complete region. Consider the 1-to-1 
mapping RA : R → R defined by RA(x) = xa ∀ x∈R. Then the real number xa is called the 
‘RA value’ of x denoted by RA(x) = xa corresponding to the complete region A. Clearly, in that 
case RA(−x) = −xa. Also RA(0) = 0a, and RA(1) = 1a.  
 
It is obvious that RRR : R → R is an identity mapping.  
 
Definition 3.2 ‘Set of R values’ and ‘Set of R objects’ corresponding to a real number x. If 
RR, A, B, C, D, … are the complete regions in the region universe Ʃ, then for any given real 
number x the set Ʃx = {xrr (= x), xa, xb, xc, xd, …} is called the ‘Set of R values’ of x in the 
region universe Ʃ and the set ƩX = {xRR (= x), xA, xB, xC, xD, …} is called the ‘Set of R objects’ 
of x in the region universe Ʃ. Although we call Ʃx a set, it could be a multiset (bag) too. 
Collection of R values of the real number 1 is the set (multiset) of all unit length values 
forming Ʃ1, and the Collection of R values of the real number 0 is the set (multiset) Ʃ0. 
 
Definition 3.3 Natural A-ontegers and Natural A-numbers. In the Theory of A-numbers, the 
positive ontegers ⊕1A, ⊕2A, ⊕3A, ⊕4A, … are called the Natural A-ontegers and the 
positive real numbers 1a, 2a, 3a, 4a, … are called the Natural A-numbers.  
 
For instance, in the Theory of RR-numbers, the Natural RR-ontegers are 1RR, 2RR, 3RR, 4RR, … 
and the Natural RR-numbers are 1rr, 2rr, 3rr, 4rr, … . Here the Natural RR-ontegers and Natural 
RR-numbers are same numbers i.e. the classical natural numbers 1, 2, 3, 4, … . 

Let us consider three complete regions RR, A and B (say). The natural RR-numbers 
(i.e., the classical natural numbers), natural A-numbers, natural B-numbers are as shown in 
Figure 4. The consecutive natural RR-numbers are equi-spaced on XRR-axis, and same is true 
for consecutive natural A-numbers on XA-axis, consecutive natural B-numbers on XB-axis. But 
the unit lengths are different for different object lines corresponding to different complete 
regions.  
 

 
Figure 4. Natural Ontegers for “Theory of RR-numbers”, “Theory of A-numbers”  

and “Theory of B-numbers” (a comparative view) 
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Consider the positive real number x∈R, and any three complete regions say RR, A and B. 
The corresponding three objects of ƩX : xRR (i.e., x itself) on the XRR-axis,  xA on the XA-axis, 
and xB on the XB-axis are shown in Figure 5. On their respective axis of linear continuum, the 
object x is at a distance x from O (i.e. ORR), the object xA is at a distance xa from OA and the 
object xB is at a distance xb from OB. Here xRR = x.1RR (where xRR = x and 1RR = 1), xa = x.1a, and 
xb = x.1b. The three real numbers 1a (the metric distance of the unit object 1A from the center 
point OA), 1b (the metric distance of the unit object 1B from the center point OB) and 1RR or 1 
(the metric distance of the unit object 1RR from the center point ORR) are not equal in general, a 
hypothetical case is shown in the Figure 4, where 1b < 1RR (=1) < 1a. 

 

 
 

Figure 5. Three elements of ƩX corresponding to “Theory of RR-numbers”, 
“Theory of A-numbers” and “Theory of B-numbers” (a comparative view) 

 
4 ‘Prime Objects’ in the Theory of Objects 
 
In this section we reproduce the notion of ‘prime object’ and ‘composite object’ in the Theory 
of Objects and few results on them. For this, first of all we consider the notion of ‘bachelor set 
set’ in a region.  
 
Definition 4.1 ‘Bachelor set Set’ in a Region. Let A be a region. A subset B of the region A is 
called a ‘bachelor set set’ in A if 
(i)  1A ∈  B, 0A ∉ B and  
(ii) ∀  x (≠ 1A) ∈  B , x−1 ∉B . 
 
Clearly, a bachelor set can never be a null set because the smallest bachelor set in a region A is 
the singleton {1A}. Also, the self-inverse objects other than 1A (like x where x2 = 1A) of the 
region A are not the members of any bachelor set of A. Any subset S of a bachelor set B in the 
region A is also a bachelor set in A if 1A ∈  S. 
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If B is a bachelor set in a region A, then the set 

B~  = { y : y = x−1 where x ∈  B } 

is also a bachelor set in A. This set B~  is called the ‘conjugate bachelor’ of the bachelor set B 
in the region A. 

Clearly, conjugate of the conjugate of B is B itself. The union of two bachelors in A need 
not be a bachelor set in A, but the intersection of two bachelors will be a bachelor set in A.  

For every bachelor set B in A, B ∩  B~  = {1A}.  
If B and C are two bachelor set sets in the region A, then the conjugate of (B∩C) = 

B~ ∩ C~ .  
If B = B~ , then the only case is that B = B~  = {1A }.  
 
Example 4.1.  Consider the region RR. Clearly the set N of natural numbers is a bachelor set in 
the region RR. The set M = {1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, …} = { m : m = 1/n, n ∈  N, 
where N is the set of natural numbers} is a bachelor set in the region RR. The set L = {1, 
78.261, 9287, 83.5} is also a bachelor set in the region RR. However the set R+

 of all positive 
real numbers is not a bachelor set in the region RR.  
 
Proposition 4.1. If B of cardinality n is a bachelor set in the region A, then B has 2n-1 number 
of distinct sub-bachelors.  
Proof:  For n = 1, the result is true because the only possibility is that B = {1A}.  
Now consider the case n > 1. The two trivial sub-bachelors are {1A } and B. The cardinality of 
the set B – {1A} is (n − 1), which is having 2n−1 number of subsets including the null set and the 
set B – {1A} itself. Adding the common element 1A to each of these 2n−1 subsets will create 2n−1 
number of bachelor set sets of A, being all the sub-bachelors of B.  
 
The division operations in a region are defined in [2]. We explain the operation of ‘Exact 
Division’ of an element of a bachelor set B by another element of B [2]. 
 
Definition 4.2 ‘Exact Division’ in a bachelor set set. Let B be a bachelor set in the region A. 
Consider two objects x, y ∈  B. We say that the object x exactly divides the object y in B, denoted 

by the notation “x |B y”, if ∃ z∈B such that y z
x
=  in the region A. (Division of type 

x
y  has been 

defined in details while making characterizations of regions in [2]).  
 

The notation “|B” signifies the operation of ‘exact division’ in B, and the notation “ |/ B” 
signifies the operation “cannot exactly divide” in B. 

The following proposition is straightforward.  
 
Proposition 4.2 
(i) |x xB   and 1 |A xB , ∀ x ∈ B. 

(ii) For  x ≠ y,  if  |x yB , then |y x/B , where x, y ∈ B. 
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Proposition 4.3.  It may happen that for a given pair of objects x, y in a bachelor set B, neither 
x |B y nor y |B  x. 

Proof: Consider a bachelor set C where x, y are in C and x |C y (such that 
x
y  = z).  

Now consider the bachelor set B = C – {z}. Clearly, x, y are in a bachelor set B but neither 
x |B y nor y |B x.   
 
In the next subsection, we reproduce the notion of ‘Composite Objects’ and ‘Prime Objects’ in 
a bachelor set B of a region A. 
 
Definition 4.3. ‘Composite Object’ in a bachelor set set. Let B be a bachelor set of a region 
A. An object x ∈  B is called a ‘Composite Object’ in B, if ∃  p, q ∈  B – {1A} such that 
x = p* q in A. 
 
Definition 4.4. ‘Prime Object’ in a bachelor set set. An object x ∈  B – {1A} is called a 
‘Prime Object’ in B if x is not a composite object in B.  
 
By construction here, there is no reason to check whether the element 0A and the self-inverse 
elements (other than 1A) of the region A are ‘prime’ or ‘composite’ or ‘neither prime nor 
composite’ in any bachelor set in the region A, as they cannot be members of any bachelor set 
in A. However, 1A is the only element in any bachelor set B which is neither a prime object nor 
a composite object. For every other object x (i.e. if x ≠1A) in B, x is either a prime or a 
composite. Thus the following proposition is straightforward. 
 
Proposition 4.4. There cannot be any object x in the bachelor set B in the region A which is 
both prime and composite.  
 

If may be noted here that an object x may be prime in a bachelor set B of a region A, but 
may not be so in another bachelor set C of the same region A, where x ∈  B, C both.  

Thus, for a given region, the property of prime, composite and ‘neither prime nor 
composite’ is dependent upon the concerned bachelor set set, and they must be members of this 
bachelor set set. For a given bachelor set set, checking an object of a region whether prime or 
composite or ‘neither prime nor composite’ where the object is not a member of the bachelor 
set set, is an invalid issue.  

For a bachelor set V in a region A, the partition of the set V into three subsets: the set of 
Prime objects in V, the set of Composite objects in V, and the set of neither Prime nor 
Composite objects in V, is shown in Figure 6. 

The following proposition is straightforward. 
 
Proposition 4.5.  If x is a prime (composite) object in a bachelor set B of a region R, then x−1 is 
a prime (composite) object in the conjugate bachelor set B , and conversely.  
 
We present below examples of the notion of prime objects and composite objects in a bachelor 
set in a region. 
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Figure 6. Prime, Composite and ‘Neither prime nor composite’ 

objects in a bachelor set V in the region A  
 
Example 4.2. Consider the region RR. Consider the bachelor set N of the region RR, where 
N = {1, 2, 3, 4, 5, 6, 7, 8, …} = the set of natural numbers. 
 

Clearly, the members 4, 6, 8, 9, 10, … are composite objects of the bachelor set N here in the 
region RR; and the members 2, 3, 5, … are prime objects of the bachelor set N in RR (which 
are popularly known as ‘composite numbers’ and ‘prime numbers’ respectively in the existing 
literature of the classical ‘Theory of Numbers’). And 1 is the only object in the bachelor set N 
which is neither a prime object nor a composite object. There is no object in the bachelor set N 
which is both prime and composite (Proposition 4.4). 
  

 
 
 

Figure 7. Prime, Composite and ‘Neither prime nor composite’ numbers  
in the bachelor set N (of natural numbers) in the region RR  

In Theory of RR-numbers  
(Taking bachelor set N) 

Composite numbers
in the bachelor set N. 

Ex.: 4, 6, 8, 9, …
Prime numbers 

in the bachelor set N. 
Ex.: 2, 3, 5, 7, 11, … 

Neither prime nor
composite numbers 

in the bachelor set N. 
Ex: 1 (no other number) 

Bachelor set V in  a Region A

Composite objects
in the bachelor set V Prime objects 

in the bachelor set V 

Neither prime nor
composite objects 

in the bachelor set V 
(only one object 1A) 
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Another example of prime and composite objects is given below. 
 
Example 4.3. Consider the region RR. Consider the bachelor set M of the region RR where 
M  = {1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, …} = { m : m = 1/n, n ∈  N, where N is the set of 
natural numbers}. Clearly, the members 1/4, 1/6, 1/8, 1/9, 1/10, … are composite objects of the 
bachelor set M here in the region RR; and the members 1/2, 1/3, 1/5, … are prime objects of M 
in RR. And 1 is the only object in the bachelor set M, which is neither a prime object, nor a 
composite object. There is no object in the bachelor set M which is both prime and composite 
(Proposition 4.4). 
  

 
 

Figure 8. Prime, Composite and ‘neither prime nor composite’ numbers  
in the bachelor set M in the region RR  

 
 
Example 4.4.  Consider the bachelor set L = {1, 78.261, 9287, 83.5} of the region RR. Clearly, 
the members 78.261, 9287, 83.5 are prime objects in the bachelor set L; there does not exist 
any composite object in L. And 1 is the only object in the bachelor set L, which is neither prime 
object nor composite object. There is no object in the bachelor set L, which is both prime and 
composite (Proposition 4.4).  

 
Thus Example 4.2 above shows that the classical prime numbers (in the classical ‘Theory 

of Numbers’) are particular case of prime objects in the “Theory of RR-numbers” with bachelor 
set N, where “Theory of RR-numbers” is one of the topics under the subject of the “Theory of 
Objects”.  

Once the notion of “Theory of A-numbers” of a complete region A is developed, we are 
now in a position to initiate a corresponding ‘Geometry’ on the complete region A.  
 

In Theory of RR-numbers  
(Taking bachelor set M) 

Composite numbers
in the bachelor set M. 

Ex.: 1/4, 1/6, 1/8, 1/9, … Prime numbers 
in the bachelor set M. 

Ex.: 1/2, 1/3, 1/5, … 
Neither prime nor

composite numbers 
in the bachelor set M. 

Ex: 1 (no other number) 
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5 “Object Geometry” of a complete region A 
 
In the Theory of Objects, for developing a new geometry called by “Object Geometry”, be it in 
a two dimensional object coordinate system, or in an n-dimensional object coordinate system, 
at least one complete region A = (A, ⊕ , *, • ) is required. Consider the object line and the 
XA-axis corresponding to the complete region A. Consider a point xA (a positive object) on the 
XA-axis. Then for the infinitesimal small positive object ∆xA, the point (xA + ∆xA) will be at 
a distance ║∆xA║ from the point xA along the positive direction of XA-axis and the point 
(xA − ∆xA) will be at a distance ║∆xA║ from the point xA along the negative direction XA

1-axis. 
In the next section, we introduce “YA-axis” and, hence, a coordinate object plane in the Theory 
of Objects.  
 
5.1 The Coordinate Plane of complete region A = (A, ⊕ , *, • ) 
 

We introduce first of all 2-D object geometry. It is a system of geometry where the position 
of points on the plane is described using an ordered pair of objects. A plane is a flat surface that 
goes on forever in both directions. If we were to place a point on the plane, object coordinate 
geometry gives us a way to describe exactly where it is by using two objects. Points are placed 
on the "object coordinate plane" as shown below in Figure 9. It has two scales − one running 
across the plane called the "XA-axis" and another at right angles to it called the 
“YA-axis”. The point where the two axes cross is called the origin at which both xA and yA are 
0A. On the XA-axis, as explained earlier that objects to the right of origin are positive and those 
to the left are negative. On the YA-axis, objects above the origin are positive and those below 
are negative.  
 

 

Figure 9. Objects coordinates on object plane of the region A 
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A point’s location on the plane is given by two objects in the form of object coordinates 
(xA, yA), the first coordinate reveals where it is away from the YA-axis at parallel to the XA-axis 
and the second coordinate reveals where it is away from the xA-axis at parallel to the YA-axis 
(see Figure 9 above). There are four quadrants and sign convention rule is same as that of 
classical coordinate geometry, i.e. same for all the object geometry of all the complete regions.  
 
5.2 Slope of an Object Line on the Object Plane 
 
Slope of an object line passing through the two object points P(x1A, y1A) and Q(x2A, y2A) is the 
real number ma  given by (as shown in Figure 10): 

  ma = tan θ  = (y2a – y1a)/ (x2a – x1a)  
     = (y2.1a – y1.1a)/ (x2.1a – x1.1a) 
     = (y2 – y1)/ (x2 – x1) 
 

 

Figure 10. Slope of an objects line 

This implies that slope of a line does not depend on the ‘unit length’ of the region. it is an 
absolute quantity irrespective of the region on which the object plane is drawn. Thus, slope of a 
line is region-independent. 
 
Proposition 5.1. Pythagoras Theorem is valid in every Object Geometry.  
Proof: Consider the Object Geometry corresponding to the complete region A. Let PQR be a 
right angled triangle (the angle PQR being the right angle) on the object plane of the complete 
region A (Figure 11(a)). 
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Figure 11(a), (b). Right angled triangles in two object planes 

Now, using the homogeneity property of the metric ρ (x, y) = ║x~y║, we can find a right-
angled triangle ABC (in fact there are infinite numbers of such triangles) on the real coordinate 
plane i.e. on the object plane of RR region, where  

 
AB
PQ  = 

BC
QR  = 

AC
PR  = 1a (1) 

Since slope of a line is region-independent, the right-angled property of the classical 
triangle ABC is guaranteed (the angle ABC being the right angle, see Figure 11(b)) on the 
coordinate plane from the right-angled property of the triangle PQR. Since Pythagoras theorem 
is valid in the triangle ABC, it is also so in the triangle PQR using equation (1).  
 
5.3 Distance between two object points on the object plane 
 

Consider the two object points P(x1A, y1A) and Q(x2A, y2A) on the object plane (see Figure 12). 
Distance PQ is the positive real number ra where  

ra = {(y2a – y1a)2 + (x2a – x1a)2 }1/2 . 

 

Figure 12. Distance between two object points 
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5.4 Equation of a line 

General equation of an object line whose slope is ma is 
yA = ma• xA ⊕  cA . 

Equation of an object line having slope ma and passing through the object point Q(x1A, y1A) is  
 (yA ~ y1A) = ma •  (xA ~ x1A). 
Equation of an object line passing through the two object points P(x1A, y1A) and Q(x2A, y2A) is  
 (yA ~ y1A) = ma •  (xA ~ x1A), where ma = (y2a – y1a) /(x2a – x1a). 
 
 

 

Figure 13. An object line having intercept of length ca on YA axis  

 

5.5 Object circle on the object plane 
 
Equation of an object circle with center at (0A, 0A) and radius ra is  

xa
2 + ya

2 = ra
2 

x2 .1a
2 + y2 . 1a

2 = r2 .1a
2 

or 
x2 + y2 = r2

  

(in the region A). 
Thus x2 + y2 = r2

 represents the equation of the object circle C1 with radius ra and center 
at (0A, 0A) on the object plane of region A. Again, x2 + y2 = r2

 does also represent the equation 
of the object circle C2 with radius rb and center at (0B, 0B) on the object plane of region B, 
and similarly x2 + y2 = r2

 is also the equation of the object circle C3 with radius rrr (= r) and 
center at (0RR, 0RR), i.e., at (0, 0) on the object plane of region RR, etc. for different complete 
regions. Each of these distinct circles C1, C2 and C3 has the equation x2 + y2 = r2

 but of 
different radii as they are on different object planes. However, the circle C3 is our classical 
circle of classical plane geometry.  

Thus the equation x2 + y2 = r2
 of circle is region-dependent. If one asks the questions: 

“What is the radius and center of the circle x2 + y2 = r2? What is the area of it?”, then we 
cannot answer immediately unless we know the identity of the concerned object plane. 
Consequently, these questions are incomplete questions.  
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Figure 14(a), (b). Objects circles  

If 1a > 1, then the object circle x2 + y2 = r2
 in the object plane of region A is a bigger circle 

than the classical circle x2 + y2 = r2; if 1a < 1, then the object circle x2 + y2 = r2
 in the object 

plane of region A is a smaller circle than the classical circle x2 + y2 = r2; and if 1a = 1, then the 
object circle x2 + y2 = r2

 is of same size with the classical circle x2 + y2 = r2.  
Equation of an object circle with center at (αA, βA) and radius ra is: 

(ya – βa)2 + (xa – αa)2 = ra
2 

or, (y – β)2 + (x – α)2 = r2 

Thus (y – β)2 + (x – α)2 = r2 represents the equation of the object circle C1 with radius ra 
and center at (αA, βA) on the object plane of region A. Again, (y – β)2 + (x – α)2 = r2 does also 
represent the equation of the object circle C2 with radius rb and center at (αB, βB) on the object 
plane of region B, and similarly (y – β)2 + (x – α)2 = r2 is also the equation of the object circle 
C3 with radius rrr (= r) and center at (αRR, βRR) i.e. at (α, β) on the object plane of region RR, 
etc. for different complete regions. Each of these distinct circles C1, C2 and C3 has the equation 
(y – β)2 + (x – α)2 = r2 but of different radii as they are on different object planes. However, 
the circle C3 is our classical circle of classical plane geometry. Thus the equation 

(y – β)2 + (x – α)2 = r2 

of circle is region-dependent. 
The classical geometry (2-D geometry, 3-D or higher dimensional geometry) being 

practiced by the world mathematicians at elementary (see [14]) or higher level is a particular 
case of the ‘Object Geometry’.  

6 Conclusion 

The classical “Theory of Numbers” and “Geometry” developed so far is mainly based on the 
set R of real numbers, extended with two infinities (and then took their expanding shape time 
to time with the growth of advanced higher mathematics). The growth of these two giant 
subjects at every stage so far required fluent applications of various operations and results 
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which are valid in the set of real numbers. In the existing literatures of the classical “Theory of 
Numbers” and “Geometry” of the subject Mathematics, R is assumed to be just a field or 
division algebra. But this assumption is not appropriate (rather, say ‘not sufficient’) because of 
the fact that using the properties of a ‘field’ or a ‘division algebra’ or of any existing algebra, 
many of the formulas, rules, results or materials of elementary as well as higher algebra cannot 
have the validity as shown with several examples in [2]. A careful study of the region algebra 
[2] will clarify that many of the results, formulas, equalities, identities, rules, etc. of elementary 
algebra (say, the algebra practiced at high school level or higher level) are not valid in the 
fields or in division algebras or in any existing algebras in general, but in regions only. It is 
observed that a region is a “Commutative Division F-Algebra”, but defined independently 
and uniquely with a self-identity here, with its important properties and results. 

Fortunately the set R happens to be a trivial example of real region called by region RR [2]. 
And in a hidden way R has been providing the world mathematicians all the properties of 
region algebra, not just the limited properties of division algebra or of any of the existing 
algebra. Interestingly, the field R (or, the division algebra R) satisfies few additional properties 
trivially, but not by virtue of the properties of division algebra, by which it qualifies to become 
a real region. And consequently the development and continuous growth of classical Geometry 
or the classical Calculus never faced any computational constraints or invalidity, even 
assuming R to be a division algebra or any of the existing algebra just. The region algebra is 
applicable in “NR-Statistics” introduced in [4] to define and study various region measures 
like: region mean, region standard deviation, region variance, etc. with algebraic approach (in 
the Algebraic Statistics part of NR-Statistics). The region algebra is also applied in Data 
Structure for Big Data [7, 8], in the Theory of Solid Matrices and Solid Latrices [8].  

In this work we have made further study of the “Theory of Objects” by introducing two 
new theories called by “Theory of A-numbers” and “Object Geometry”. These two topics will 
surely grow in a lot of volume with time, the present work being just an initialization. We have 
identified ‘What are the minimum properties which need to be satisfied by a set A so that a new 
Geometry can be developed over the platform A?’ It has been explained how the classical 
“Theory of Numbers” being practiced by the world so far happens to be a topic of “Theory of 
RR-numbers” where the “Theory of RR-numbers” is a particular instance of our new “Theory 
of A-Numbers” of a complete region A. For a non-example, the set of all triangular fuzzy 
numbers [5] do not form a real region with respect to its commonly used operations, and hence 
cannot open any platform to develop any calculus as mentioned in [3], cannot open any new 
Theory of Numbers or a new Geometry at the present form. The set of all triangular fuzzy 
numbers (or the set of all trapezoidal fuzzy numbers) ) is closed with respect to the addition 
operation defined over them, but is not closed with respect to the multiplication operation 
defined over them [5].  

But initially, for the sake of presentation and to avoid any confusion we start with the 
following three theories sequentially. Each of these three theories are complete within itself.  
 
Theory-1 (Theory of Numbers): The existing “Theory of Numbers” in the literature (on real 
numbers and complex numbers). 
 

Theory-2 (Theory of Objects): Combinatorics on Region Algebra.  
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Theory of A-numbers: It is a part of Theory-2. Corresponding to every complete region A, 
there is a unique Theory of Numbers which is called by Theory of A-numbers. The ‘Theory of 
Numbers’ of one complete region is different from the ‘Theory of Numbers’ of another 
complete region. Thus the “Theory of A-numbers” and the “Theory of B-numbers” corres-
ponding to two different complete regions A and B respectively are two independent theories. 
But all such theories fall under the Theory of Objects.  

Consider a particular region: the complete region RR. Corresponding to this complete 
region RR, there is a unique Theory of Numbers which is called by “Theory of RR-numbers”. 
This is designated her by Theory-3 as mentioned below.  
 
Theory-3 (Theory of RR-numbers): Theory-3 is all about the “Theory of RR-numbers”, 
which is a particular case of the “Theory of A-numbers” in Theory-2 where the region A is RR 
here. In fact, Theory-1 happens to be a special case of Theory-3, but initiating of Theory-3 
done by the author is not with the purpose of ‘Making a generalization of the Theory-1’. It may 
also be noted that the Theory-3 is a special case of “Theory of A-numbers” where “Theory of 
A-numbers” is derived from the “Theory of Objects”.  
 
 

 

Figure 15. The three theories in the Venn diagram 

Finally, we have arrived at a unified unique theory called by “Theory of Objects” at 
the end. 
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