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Abstract: The row structures of the prime-subscripted Fibonacci numbers in the modular ring 
Z4 show distinction between primes and composites. The class structure of the Fibonacci 
numbers suggest that these row structures must survive to infinity and hence that Fibonacci 
primes must too. The functions Fp = Kp ± 1 and Fp (factors) = kp ± 1 support the structural 
evidence. The graph of (K/k) versus p displays a Raman-spectra form persisting to infinity: 
ln(K/k) is linear in p in the composite case while primes lie along the p-axis to infinity. 
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1 Introduction 

On knowing the infinite, Franklin has this to say: “It is evident that the idea of an infinite 
structure cannot be derived purely from perceptual experience [...] Our perceptual experience is 
finite in character” [2]. This paper will explore an aspect of infinity in the context of Fibonacci 
primes and the regularity of the Fibonacci numbers generated from the second order 
homogeneous recurrence relation 

 ,2,21 >+= −− nFFF nnn  (1.1) 

which gives rise to the many periodicities found in this sequence [14] and its very precise 
integer structure; for example, in the associated modular ring Z4 (Table 1). 
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Row 
ri ↓ 

Class
i  → 40  41  42  43  Comments 

0 0 1 2 3 • 4 iN r i= +  

1 4 5 6 7 • even 40 , 24 

2 8 9 10 11 • ( )2
4, 0n nN N ∈  

3 12 13 14 15 • odd 4 41 ,3 ; 2nN ∈ 41  

Table 1. Classes and rows for Z4 

This particular ring is the most appropriate in this context because the prime-subscripted 
Fibonacci numbers satisfy [1, 15] 

 22

2
1

2
1 −+ += pp FFFp  (1.2) 

and the only odd class in Z4, which can form this sum of squares is 41 , which is generated by 
4r1 + 1 [12]; that is, prime-subscripted Fibonacci numbers will always fall in this class. When 
Fp is itself prime, Equation (1.2) is the only possible sum [12], but not with composites [7, 8]. 

2 Class structures with Fibonacci numbers 

The prime-subscripted Fibonacci numbers will now be considered in detail in order to assess 
the evidence of infinitely many Fibonacci primes. Since there are infinitely many primes, Fp 
will have infinitely many values, but since Fp may be composite, the number of prime-
subscripted Fibonacci primes may be finite. The class structure for the Fibonacci numbers in 
the modular ring Z4 is. 

 ...013211013211013211 444444444444444444  (2.1) 

which is repeated to infinity as the formation of a recursive sequence does not change [5]. 
Since 41∈pF , the row structure is given by 

 .14 1 += rFp  (2.2) 

The row structures of  Fp for p = 7 to 101 are displayed in Table 2 according to p*, the right-
end-digit of p (that is, p (mod 10)).  This p* defines the class of p in the modular ring Z5 
[8, 12, 18]. 

As can be seen there is a distinction between primes and composites which is worth 
exploring further.  If there are no primes for very large p, then the row structure of Fp would be 
very restricted for p* = 1 or 3, and some row structures for p* = 7 or 9 would not occur.  In 
view of the precise nature of the Fp structure this would not be possible. This makes a 
compelling case for infinitely many prime Fibonacci numbers. 
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p* Primes Composites 

1 444 101 , 444 011 , 444 021 , 442 121  444 131  

3 ,301 444  444 211 , 444 221  444 311  

7 444 201 , 444 331  444 301 , 444 111 , 444 321  

9 444 111  444 011 , 444 211 , 444 031 , 444 331  

Table 2. Row structures of Fp 

3 Functions and factors 

Here we consider functions and factors [10, 11] defined respectively by Fp = pK ± 1 and 
Fp (factors) = pk ± 1. When K/k for p 7 to 101 is plotted as function of p, the result is a Raman-
like spectra [13] with a base of unity (since K = k for primes), and a variety of bands when 
K/k ≠ 1 (representing the composites).  Continuous bands without the base of 1 would have to 
occur if no more primes occur for large p.  This would be inconsistent with any normal spectra 
and would indicate severe rupture of the Fp-sequence structure which would not be possible in 
view of the formation mechanism of the Fibonacci recurrence relation. 

ln(K/k) as a function of p: for composite Fp this function is linear and passes through the 
origin where K = k and ln(K/k) = 0; that is, for composites only 

 ( )
)1(10

/ln
−

≈
ϕ
pkK  (3.1) 

in which ϕ is the Golden Ratio [14].  In Table 3 the standardized values represented by ln(K/k)‡ 
and p/10(ϕ-1)‡, respectively are set out to show that the two sides of (3.1) are proportionally 
approximate. The following standard normalization formula was utilized [6] 

 
minmax

min‡

xx
xxx i

i −
−

=  (3.2) 

 

p ln(K/k)‡ p/10(ϕ-1)‡ 

19 0 0 
31 0.1 0.1 
37 0.2 0.1 
41 0.2 0.3 
53 0.4 0.4 
59 0.5 0.5 
67 0.6 0.6 
79 0.8 0.8 
89 0.9 0.9 
97 1 1 

Table 3. Composite Fp 
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When Fp is prime the line coincides with the p-axis which meets the composite line at the 
origin and increases asymptotically. 

Another parameter which supports this structural evidence is Sp [3]:  

 ∑
=

=
p

i
ip FS

1
12 −= +pF  (3.3) 

from which, Sp
*,  the right-end-digits for Sp, for primes are distinct from those of composite Fp 

(Table 4). 
 

p* 

Sp
* 

Primes Composites

1 3 6, 8 
3 5, 9 4 
7 1, 4, 8 5 
9 9 6 

Table 4. Sp, 3 ≤  p ≤ 97 

The stability of Sp* is based on the structural ability of the Fibonacci numbers from their 
very definition by means of a linear recurrence relation (1.1) and the periodicity of their class 
structure in the modular ring (2.1). 

4 Concluding comments 

This class pattern of Fp is invariant since the mechanism of generation of the Fibonacci 
numbers remains the same to infinity.  If class structure is invariant, then the demonstrated 
difference between the row structures for primes and composites should also be invariant. The 
relationships of K and k with p also show that primes are generated as long as primes exist; that 
is, since there is an infinity of primes [19], then there must also be an infinity of prime-
subscripted Fibonacci prime numbers. 

Another possible line of approach for further research related to the central issue in this 
paper would be by means of asymptotic proofs; that is, for ‘almost all n’.  These have been 
used previously for Fibonacci numbers by Horadam and Subba Rao [4, 16, 17]. 
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