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Abstract: Two polynomials from Z[x] are called evaluationally relatively prime if the greatest
common divisor of the two polynomials in Z[x] is 1 and gcd(f(t), g(t)) = 1 for all t ∈ Z. A
characterization is given for when a linear function is evaluationally relatively prime with another
polynomial.
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1 Introduction

Suppose two polynomials are relatively prime. In this case we write GCD(f, g) = 1. In reality
the 1 signifies a zero degree polynomial. One might ask: if we evaluate the two polynomials at a
common integer, is the resulting pair of integers relatively prime. For example, let f(x) = x2 +1

and g(x) = x2−1. Now f(x) is irreducible over Z[x], thus GCD(f(x), g(x)) = 1. If we evaluate
these polynomials at x = 3, we get

gcd(f(3), g(3)) = gcd(10, 8) = 2,

a pair of integers that are not relatively prime. Moreover, we can find polynomials F (x), G(x) ∈
Z[x] such that f(x)F (x) + g(x)G(x) = 2. In particular F (x) = 1 and G(x) = −1. Writing f(x)

and g(x) in this linear combination is a result from the following well-known theorem. Results
like this theorem can be found in [1] and [2].

Theorem 1.1. Given any two polynomials f(x) and g(x) over Q, not both identically zero, there
corresponds a unique monic polynomial d(x) ∈ Q[x] such that
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(a) d(x)|f(x) and d(x)|g(x),

(b) d(x) is a linear combination of f(x) and g(x), and

(c) any common divisor of f(x) and g(x) is a divisor of d(x), therefore there are no divisors
having a higher degree than that of d(x).

We will be focusing our attention on Z[x], and since Z[x] is a GCD domain we have the
previous theorem holding true when Q is replaced by Z. The polynomial d in the above theorem
is called the greatest common divisor of f and g. We write d = GCD(f, g). The GCD is to
signify that we are talking about the greatest common divisor in a polynomial sense. We will use
lower case gcd when referring to the greatest common divisor in the integer sense.

Suppose f is a polynomial of degree n and g is a polynomial of degree m (both in Z[x]). The
Sylvester matrix of f and g is an n+m square matrix whose entries consist of coefficients from
f , coefficients from g, and zeros. For example, if f(x) =

∑n
i=0 aix

i and g(x) = cx+ d, then the
Sylvester matrix S(f, g) is an n+ 1 square matrix that looks like this:

S(f, g) =



an c 0 · · · 0

an−1 d c
...

... 0 d

a1
...

... c

a0 0 0 · · · d


.

The resultant, denoted Res(f, g), is the determinant of S(f, g). In fact, in the special case
above where g is a linear function, we will have Res(f, g) =

∑n
i=0 aic

n−i(−d)i. It is well-known
that there exist polynomials F (x), G(x) ∈ Z[x] such that f(x)F (x) + g(x)G(x) = Res(f, g).
Information on the resultant can be found in [3].

2 The set up

This brings us to the main question we would like to explore. What property must two polyno-
mials have in order to ensure that: (1) they are relative prime in the polynomial sense, and (2) if
we evaluate them at any integer value the resulting pair of integers are also relatively prime. Let
us define the property that we are interested in exploring.

Definition 2.1. We will say that f, g ∈ Z[x] are evaluationally relatively prime (ERP) if
GCD(f, g) = 1 and gcd(f(t), g(t)) = 1 for all t ∈ Z.

One immediate observation is that the constant coefficients must be relatively prime. If not,
then f(0) and g(0) would have a common factor greater than one.

Proposition 2.2. Let f, g ∈ Z[x]. If f(0) and g(0) are not relatively prime, then f and g are not
ERP.
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Suppose that f, g ∈ Z[x] and GCD(f, g) = 1. By Theorem 1.1 we can find polynomials
F,G ∈ Q[x] such that f(x)F (x)+g(x)G(x) = 1. By clearing the denominators of the coefficients
of F and G, we can make F,G ∈ Z[x] and thus have f(x)F (x)+g(x)G(x) = k, for some k ∈ Z.

Lemma 2.3. Suppose that f, g ∈ Z[x], t ∈ Z, and GCD(f, g) = 1. Now there exists polynomials
F,G ∈ Z[x] and k ∈ Z such that f(x)F (x) + g(x)G(x) = k. If dt = gcd(f(t), g(t)), then dt|k.

Proof. We have f(t)F (t) + g(t)G(t) = k for any t ∈ Z. Now dt|f(t) and dt|g(t), thus dt|k.

Lemma 2.4. Suppose f, g ∈ Z[x] and GCD(f, g) = 1. Now there exists F,G ∈ Z[x] such that
f(x)F (x) + g(x)G(x) = k for some k ∈ Z. If k = 1, then f and g are ERP.

Proof. Suppose k = 1, then f(t)F (t) + g(t)G(t) = 1 for all t ∈ Z. Let dt = gcd(f(t), g(t)), by
lemma 2.3, dt|k. So f and g are ERP.

It is natural to wonder if the converse of the previous lemma is true, thus giving a complete
characterization of two polynomials that are evaluationally relatively prime. However the follow-
ing example demonstrates that the converse is indeed false.

Let f(x) = 3x+ 4 and g(x) = 3x+ 1. First we establish that f and g are ERP. Note that for
any t ∈ Z, f(t) and g(t) have opposite parity. Therefore 2 cannot divide both f(t) and g(t). Next
note that f(x) ≡ g(x) ≡ 1 (mod 3), thus 3 does not divide f(t) or g(t) for any t ∈ Z. Since
f(t) − g(t) = 3, no prime greater than 3 can divide both f(t) and g(t). Hence f and g are ERP.
Now if we write f and g in the form cited in lemma 2.3, we have

f(x)F (x) + g(x)G(x) = 3,

where F (x) = 1 and G(x) = −1.

3 The main results

Since the previous proposition and lemmas fall short of fully classifying when two polynomials
are ERP, we will now take a step back. We will begin by classifying when two linear functions
have this property.

Proposition 3.1. Let f(x) = ax + 1 and g(x) = cx + 1 where a, c ∈ Z with a < c. Let a =

qm1
1 ...q

mj

j and c−a = pn1
1 ...pnl

l be prime factorizations. Let B = {p1, ..., pl} and A = {q1, ..., qj}.
Then f and g are ERP if and only if B ⊆ A.

Proof. First suppose B ⊆ A. Let t ∈ Z and let p ∈ Z be a prime dividing f(t). Then p does not
divide a or t, so p /∈ A and thus p /∈ B. It follows that p does not divide c− a. Hence p does not
divide [(at+ 1) + (c− a)t], i.e., p does not divide g(t). Thus f and g are ERP.

Conversely, assume B 6⊆ A, say pi ∈ BrA. Since gcd(pi, a) = 1, the equation (ax+1) ≡ 0

(mod pi) has a solution k. Since pi|(ak+1) and pi ∈ B, pi|[(ak+1)+(c−a)k], that is, pi|g(k).
Thus pi|gcd(f(k), g(k)) and we conclude that f and g are not ERP.
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In the next proposition we will add the condition that f is a primitive polynomial. This allows
us to keep track of common factors and will play an important role in many of the following
results. Note if a polynomial is not primitive, then the coefficients have a common factor. This
common factor will always divide the result of the polynomial evaluated at any integer.

Proposition 3.2. Let a, b, c ∈ Z such that a 6= 0, c 6= 0 and gcd(b, c) = 1. Suppose f(x) =

ax + b and g(x) = c where f is a primitive polynomial. Then f and g are ERP if and only if
gcd(a, c) 6= 1.

Proof. If gcd(a, c) = 1, then the equation ax + b ≡ 0 (mod c) has a solution, call it k. Hence
f(k) = ak+ b and g(k) = c are both divisible by c, and so f and g are not ERP. If gcd(a, c) 6= 1,
then since f is primitive we know that the equation ax+ b ≡ 0 (mod c) does not have a solution.
Thus f and g are ERP.

Lemma 3.3. Let an, an−1, ..., a1, a0, c, d ∈ Z, n ≥ 1, and let f(x) =
∑n

i=0 aix
i and g(x) = cx+d

be primitive polynomials. If p|Res(f, g) and p|c, then p|an.

Proof. If p|c, then since p|Res(f, g) and

Res(f, g) =
n∑

i=0

aic
n−i(−d)i = c

[
n−1∑
i=0

aic
n−i−1(−d)i

]
+ an(−d)n,

we know p also divides an(−d)n. But g is primitive, so p - d and hence p|an.

Note that Lemma 3.3 could be stated as: if p is a prime dividing Res(f, g), then either
p|gcd(an, c) or p - c. This form will be applied in the proofs of the following results.

Theorem 3.4. Let an, an−1, ..., a1, a0, c, d ∈ Z such that an, a0, c, d 6= 0, n ≥ 1, and gcd(a0, d) =

1. Let f(x) =
∑n

i=0 aix
i and g(x) = cx+ d both be primitive polynomials.

1. If gcd(an, c) = 1, then f and g are ERP if and only if |Res(f, g)| = 1.

2. If gcd(an, c) 6= 1, then let gcd(an, c) = pn1
1 pn2

2 ...pns
s be the prime factorization of gcd(an, c).

Then f and g are ERP if and only if |Res(f, g)| = pj11 ...p
js
s for some j1, j2, ..., js ∈ N∪{0}.

Before we prove this theorem, we would like to discuss the following corollary.

Corollary 3.5. Let a1, a0, c, d ∈ Z such that a1, a0, c, d 6= 0 and gcd(a0, d) = 1. Let f(x) =

a1x+ a0 and g(x) = cx+ d both be primitive polynomials.

1. If gcd(a1, c) = 1, then f and g are ERP if and only if |a1d− a0c| = 1.

2. If gcd(a1, c) 6= 1, then let gcd(a1, c) = pn1
1 pn2

2 ...pns
s be the prime factorization of gcd(a1, c).

Then f and g are ERP if and only if |a1d − a0c| = pm1
1 ...pms

s for some m1,m2, ...,ms ∈
N ∪ {0}.
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Corollary 3.5. is a special case of Theorem 3.4 for two primitive linear functions. When
proving this corollary, we notice that clearly f and g are ERP if |Res(f, g)| = 1. Otherwise, if
there exists a prime q dividing Res(f, g) and q - gcd(a1, c), by lemma 3.3 we know q - c. In
this linear case, however, we can say even more: q - c and q - a1. To see this, notice if q divides
Res(f, g) and q divides a1, then q divides a0c. But f(x) is primitive, hence q divides c. It follows
that if q|Res(f, g) and q - gcd(a1, c), then q - a1 and q - c. Thus a−1

1 and c−1 both exist modulo q

and the following equivalences are satisfied:

a(−a−1b) + b ≡ 0 (mod q) and

c(−c−1d) + d ≡ 0 (mod q)

where
−a−1b ≡ −c−1d (mod q).

These equivalences provide a value k = −dc−1 such that f(k) and g(k) are both divisible by q.
This approach for linear functions is the motivation for the following proof of Theorem 3.4.

Proof. Recall that we can write Res(f, g) = f(x)F (x)+g(x)G(x). It follows that gcd(f(t), g(t))
divides Res(f, g) for all t ∈ Z.

First assume that gcd(an, c) = 1. If |Res(f, g)| = 1, then gcd(f(t), g(t)) = 1 for all t ∈ Z
and so f and g are ERP. Next suppose there exists a prime dividing Res(f, g), say q. By Lemma
3.3, we know q - c. So let c−1 be an inverse of c modulo q. Let k = −dc−1, then k is a solution
to cx+ d ≡ 0 (mod q). Moreover, k is a solution to f(x) ≡ 0 (mod q) since

f(k) ≡ an(−dc−1)n + ...+ a1(−dc−1) + a0

≡ c−n[an(−d)n + an−1(−d)n−1c+ ...+ a1(−d)cn−1 + a0c
n]

≡ c−nRes(f, g)

≡ 0 (mod q)

So let k = −dc−1, then both f(k) and g(k) are divisible by q. Hence f and g are not ERP.
Next assume that gcd(an, c) 6= 1. Suppose that |Res(f, g)| = pj11 ...p

js
s for some j1, j2, ..., js ∈

N ∪ {0}. Assume, by way of contradiction, that f and g are not ERP, say q is a prime dividing
gcd(f(r), g(r)) for some r ∈ Z. Since q ∈ {p1, ..., ps}, we know q|an and q|c. Since q also
divides g(r), q must also divide d. However, g is primitive, a contradiction. Thus f and g are
ERP.

Conversely, suppose that there exists a prime q such that q divides |Res(f, g)| but q /∈
{p1, ..., ps}. In particular, q - gcd(an, c). So by Lemma 3.3, q - c. Again let k = −dc−1,
then k is a solution to cx + d ≡ 0 (mod q). The same argument as above yields that k is a
solution to f(x) ≡ 0 (mod q). So both f(k) and g(k) are divisible by q. Therefore f and g are
not ERP.

Theorem 3.4. classifies when a nonconstant linear function and a polynomial are evaluation-
ally relatively prime. Recall that if gcd(a, b) = 1 and gcd(a, c) = 1, then the gcd(a, bc) = 1.
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Therefore, if f and g are ERP and f and h are ERP, then we have that f and g · h are ERP.
This gives a method of constructing two polynomials that are evaluationally relatively prime. In
addition, given two polynomials one can determine if they are evaluationally relatively prime
provided that at least one of the polynomials is the product of linear terms over Z[x].
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