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Abstract: It is known that any binary rational cubic form satisfies the Hasse principle. The next
natural question to ask is whether this still holds for a system of binary rational cubic forms.
However, there seems to be no known result on this topic. In our paper we show, by establishing
an explicit equivalence between a rational cubic form and an intersection of quadric surfaces, that
any system of finitely many binary rational cubic forms satisfies the Hasse principle.
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1 Introduction

1.1 Hasse Principle

One of the fundamental questions in Diophantine Number Theory is whether a rational Diophan-
tine equation or a system of such equations has a solution in Q. Answering such a question is
difficult and not always possible. Such questions are addressed by Hilbert’s 10th problem [5].

A solution to a Diophantine equation in t variables with coefficients in a field F is said to
have a nontrivial solution (α1, . . . , αt) in F if αj is in F for 1 ≤ j ≤ t and αj 6= 0 for at least
one j. If a polynomial with rational coefficients has a nontrivial rational solution, then it has
nontrivial solutions in all p-adic fields Qp and in R. The Hasse principle asks when the reverse
direction is true. That is, if a polynomial with rational coefficients has a nontrivial solution in
each p-adic field Qp and in R, does it have a nontrivial rational solution? If it does, then one says
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that it satisfies the Hasse principle. More generally, the Hasse principle for a variety is a statement
about the existence of global points given the existence of local points.

For a quadratic form, Minkowski established around 1920 (generalized to arbitrary number
fields by Hasse later) the following beautiful theorem [9]:

Theorem 1.1. (Hasse-Minkowski Theorem) Let F be a quadratic form with rational coefficients.
Then F has a nontrivial rational solution if and only if F has a nontrivial solution in each
completion Qp of Q where p ranges over all finite and infinite primes.

For cubic forms, Selmer [8] shows, using the Finite Basis theorem of Mordell [6], that the
Hasse principle fails with the following well-known counterexample:

3x3 + 4y3 + 5z3 = 0.

H. Davenport [1] shows that the Hasse principle holds trivially for cubic forms with rational
coefficients in at least 16 variables. Roger Heath-Brown proves a similar result, using the Hardy-
Littlewood circle method, for cubic forms with rational coefficients in at least 14 variables [3].
For nonsingular cubic forms with rational coefficients, Hooley [4] uses a similar method to show
that the Hasse principle holds for forms with 9 or more variables.

The main goal of this paper is to prove that any system of binary rational cubic forms in fact
satisfies the Hasse principle. We obtain this result by establishing an explicit equivalence between
a rational cubic plane curve (also a system of rational cubic plane curves) and an intersection of
quadric surfaces.

2 Main results

Let us denote by Fu,v = 0 a system of v homogeneous forms, representing 0, of the same degree
in u variables with rational coefficients. Then we say that Fu,v = 0 satisfies the Hasse principle
if the forms in Fu,v = 0 has a common nontrivial rational solution if and only if they have a
common nontrivial solution in every completion Qp of Q and in R.

Theorem 2.1. Let
f(x, y, z) = 0

be a cubic plane curve with rational coefficients. Then there exists a system F6,9 = 0 of 9
homogeneous quadratic forms in 6 variables, depending on f(x, y, z) = 0, with rational coeffi-
cients such that f(x, y, z) = 0 has nontrivial solutions in all completions Qp of Q and in R if and
only if

F6,9 = 0

has common nontrivial solutions in all completions Qp of Q and in R and the Hasse principle for
f(x, y, z) = 0 is equivalent to the Hasse principle for the system F6,9 = 0.
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Theorem 2.2. If 
f1(x, y, z) = 0

f2(x, y, z) = 0
...
fm(x, y, z) = 0

(2.1)

is a system of m homogeneous cubic forms with rational coefficients, then there exists a system
F6,3m+6 = 0 of 3m+6 homogeneous quadratic forms in 6 variables, depending on fi(x, y, z) for
all 1 ≤ i ≤ m, with rational coefficients such that system (2.1) has common nontrivial solutions
in all completions Qp of Q and in R if and only if F6,3m+6 = 0 has common nontrivial solutions
in all completions Qp of Q and in R and the Hasse principle for System (2.1) is equivalent to the
Hasse principle of the system F6,3m+6 = 0.

Remark 2.3. Theorem 2.1 also provides a simple extra condition, from the perspective of quadratic
forms, required for a cubic plane curve to satisfy the Hasse principle. That is, a cubic plane curve
satisfies the Hasse principle if and only if a certain corresponding system of quadratic forms has
the following equivalent properties:

• The existence of a common nontrivial solution in each completion Qp and in R implies the
existence of a common nontrivial rational solution.

• The existence of a nonempty intersection of the sets of nontrivial solutions in each comple-
tion Qp and in R of each form in the system implies not only the set of nontrivial rational
solutions of each form in the system is nonempty (Theorem 1.1) but also the existence of a
nonempty intersection of these sets.

Theorem 2.1 allows us to obtain the following result concerning the Hasse principle of any
system of finitely many binary cubic forms with rational coefficients.

Corollary 2.4. Let 
g1(x, y) = 0

g2(x, y) = 0
...
gn(x, y) = 0

(2.2)

be a system of n homogeneous binary cubic forms with rational coefficients. Then System (2.2)
satisfies the Hasse principle.

Remark 2.5.

1. It is known that any one homogeneous binary cubic form with coefficients in an algebraic
number field satisfies the Hasse priciple [2].

2. Even though we are only interested in forms with rational coefficients, it should be noted
that the proofs we provide below for Theorems 2.1 and 2.2 work for any field of character-
istic zero. Our proof for Corollary 2.4 works for forms with fields of coefficients which are
algebraic number fields.
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3 Proof of results

Proof. (Proof of Theorem 2.1)
Let F (x, y, z) = 0 be a general cubic plane curve with rational coefficients, i.e., F (x, y, z) = 0

has the form
A1x

3 + A2y
3 + A3z

3 + A4x
2y + A5x

2z + A6y
2x+ A7y

2z+ (3.1)

+A8z
2x+ A9z

2y + A10xyz = 0

where Ai is a rational number for each i. Suppose that F (x, y, z) = 0 has a nontrivial solution in
each Qp and in R.

In the rest of the paper, a local or global solution

(x0, y0, z0)

of F (x, y, z) = 0 is said to be nontrivial if at least one of the components in nonzero.
By multiplying both sides of (3.1) by x, y and z, we obtain respectively:

A1x
4 + A2xy

3 + A3xz
3 + A4x

3y + A5x
3z + A6y

2x2 + A7y
2zx+ (3.2)

+A8z
2x2 + A9z

2yx+ A10x
2yz = 0,

A1x
3y + A2y

4 + A3z
3y + A4x

2y2 + A5x
2zy + A6y

3x+ A7y
3z+ (3.3)

+A8z
2xy + A9z

2y2 + A10xy
2z = 0,

A1x
3z + A2y

3z + A3z
4 + A4x

2yz + A5x
2z2 + A6y

2xz + A7y
2z2+ (3.4)

+A8z
3x+ A9z

3y + A10xyz
2 = 0.

Let X := x2, Y := y2, Z := z2, W := xy, M := xz and N := yz. Then

WM −XN = 0, (3.5)

MN − ZW = 0, (3.6)

WN − YM = 0, (3.7)

W 2 −XY = 0, (3.8)

M2 −XZ = 0, (3.9)

N2 − Y Z = 0. (3.10)

Thus (3.2), (3.3) and (3.4) can be rewritten respectively as

A1X
2 + A2YW + A3ZM + A4XW + A5XM + A6XY + A7YM+ (3.11)

+A8XZ + A9ZW + A10XN = 0,
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A1XW + A2Y
2 + A3ZN + A4XY + A5XN + A6YW + A7Y N+ (3.12)

+A8ZW + A9Y Z + A10YM = 0,

A1XM + A2Y N + A3Z
2 + A4XN + A5XZ + A6YM + A7Y Z+ (3.13)

+A8ZM + A9ZN + A10ZW = 0.

Thus quadratic forms (3.5)-(3.13) have a common nontrivial solution in each Qp and in R if
F (x, y, z) = 0 is assumed to have a common nontrivial solution in each Qp and in R. For conve-
nience, we denote (3.11), (3.12) and (3.13) byFx(X, Y, Z,W,M,N) = 0, Fy(X, Y, Z,W,M,N) =

0 and Fz(X, Y, Z,W,M,N) = 0 respectively where each index indicates which variable is mul-
tiplied to both sides of (3.2) to form the corresponding equation.

Proposition 3.1. The system of equations

F6,9 =



Fx(X, Y, Z,W,M,N) = 0

Fy(X, Y, Z,W,M,N) = 0

Fz(X, Y, Z,W,M,N) = 0

WM −XN = 0

MN − ZW = 0

WN − YM = 0

W 2 −XY = 0

M2 −XZ = 0

N2 − Y Z = 0

(3.14)

has a common nontrivial solution in each Qp and in R if and only if equation (3.1) has a nontrivial
solution in each Qp and in R.

Proof. Let F denote either R or Qp for some prime p. If equation (3.1) has a nontrivial solution
in F , then it is clear from its construction that the system of equations (3.14) has a common
nontrivial solution in F . Suppose that the system of equations (3.14) has a common nontrivial
solution in F , say

(X0, Y0, Z0,W0,M0, N0) 6= (0, 0, 0, 0, 0, 0). (3.15)

It follows from (3.11)-(3.13) that at least one of the three components X0, Y0 and Z0 must
be nonzero. If all three components are nonzero, then it can be verified that all the rest of the
components must also be nonzero. If one of the components X0, Y0 and Z0 is zero, then two
of the components W0, M0 and N0 must be zero. For example, if X0 = 0, then it follows that
W0 = 0 and M0 = 0. Now let us suppose that X0 6= 0. Then(

1,
Y0
X0

,
Z0

X0

,
W0

X0

,
M0

X0

,
N0

X0

)
(3.16)

is also a common nontrivial solution in F of system (3.16). Also,
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
W 2

0 −X0Y0 = 0

M2
0 −X0Z0 = 0

N2
0 − Y0Z0 = 0

(3.17)

implies that 

(
W0

X0

)2

=
Y0
X0(

M0

X0

)2

=
Z0

X0(
N0

X0

)2

=
Y0
X0

Z0

X0

.

(3.18)

It is then straight forward, using (3.2), (3.7) and (3.13), to verify that(
1,
W0

X0

,
M0

X0

)
(3.19)

is a nontrivial solution in F of (3.1). Similar arguments work for Y0 6= 0 and for Z0 6= 0. Note
that if A1A2A3 6= 0, then at most one in {X0, Y0, Z0} is 0.

Proposition 3.2. The system of equations

F6,9 =



Fx(X, Y, Z,W,M,N) = 0

Fy(X, Y, Z,W,M,N) = 0

Fz(X, Y, Z,W,M,N) = 0

WM −XN = 0

MN − ZW = 0

WN − YM = 0

W 2 −XY = 0

M2 −XZ = 0

N2 − Y Z = 0

(3.20)

has a common nontrivial rational solution if and only if equation (3.1) has a nontrivial rational
solution.

Proof. The same proof as above works, with F now denoting Q.

Theorem 2.1 follows immediately from Propositions 3.1 and 3.2.
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Proof. (Proof of Theorem 2.2)

Proposition 3.3. Let 
f1(x, y, z) = 0

f2(x, y, z) = 0
...
fm(x, y, z) = 0

(3.21)

be a system of m cubic plane curves with rational coefficients. Define

F (6, 3m+ 6) :=



F
(1)
x (X, Y, Z,M,N,W ) = 0

F
(1)
y (X, Y, Z,M,N,W ) = 0

F
(1)
x (X, Y, Z,M,N,W ) = 0

...

F
(m)
x (X, Y, Z,M,N,W ) = 0

F
(m)
y (X, Y, Z,M,N,W ) = 0

F
(m)
x (X, Y, Z,M,N,W ) = 0

WM −XN = 0

MN − ZW = 0

WN − YM = 0

W 2 −XY = 0

M2 −XZ = 0

N2 − Y Z = 0

(3.22)

where X , Y , Z, M , N and W are defined as above while

F (i)
x (X, Y, Z,M,N,W ) := xfi(x, y, z),

F (i)
y (X, Y, Z,M,N,W ) := yfi(x, y, z),

and
F (i)
z (X, Y, Z,M,N,W ) := zfi(x, y, z)

for 1 ≤ i ≤ m. Then:

1. System (3.21) has a common nontrivial solution in each Qp and in R if and only if the
system (3.22) does.

2. System (3.21) has a common nontrivial solution in Q if and only if the system (3.22) does.

Proof. The proof is a generalization of that of Theorem 2.1.
(1) Let F denote either R or Qp for some prime p. From construction, it is also clear that if

system (3.21) has a common nontrivial solution in F , then system (3.22) does as well. For the
other direction, the proof of Theorem 2.1 can be modified as follows: The nontrivial solutions
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(3.15) and (3.16) in the proof of Theorem 2.1 are now nontrivial solutions of system (3.22) in F .
Systems (3.17) and (3.18) are exactly the same for this case. The solution (3.19) in the proof of
Theorem 2.1 can now be shown to be a common nontrivial solution of system (3.21) in F .

(2) The same argument as in (1) works, with F denoting Q.

By Prop 3.3, Theorem 2.2 follows.

Proof. (Proof of Corollary 2.4)
Let 

g1(x, y) = 0

g2(x, y) = 0
...
gn(x, y) = 0

(3.23)

be a system of n homogeneous binary cubic forms with rational coefficients. Let X , Y and W be
defined as before. Define 

F
(1)
x (X, Y,W ) = 0

F
(1)
y (X, Y,W ) = 0

...
F

(n)
x (X, Y,W ) = 0

F
(n)
y (X, Y,W ) = 0

W 2 −XY = 0

(3.24)

where
F (i)
x (X, Y, Z) := xgi(x, y)

and for 1 ≤ i ≤ n

F (i)
y (X, Y, Z) := ygi(x, y).

Proposition 3.4. 1. System (3.23) has a common nontrivial solution in R or Qp for any prime
p if and only if system (3.24) does.

2. System (3.23) has a common nontrivial solution in Q if and only if system (3.24) does.

Proof. (1) For each i, the form gi(x, y) = 0 in (3.23) takes the form

A1x
3 + A2y

3 + A3z
3 + A4x

2y + A5x
2z + A6y

2x+ A7y
2z + A8z

2x+ A9z
2y + A10xyz = 0

with each Aj being rational and with

A3 = A5 = A7 = A8 = A9 = A10 = 0.

Therefore, the proof of (1) of Theorem 2.2 applies and the result follows.
(2) This follows from the same argument as in (1) but uses the proof of (2) of Theorem 2.2

instead.
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Proposition 3.5. System (3.24) satisfies the Hasse principle.

Proof. In Theorem 1 of [7], A. Schinzel proves that any system of finitely many ternary ratio-
nal quadratic forms satisfies the Hasse principle. Therefore, System (3.24) satisfies the Hasse
Principle as required.

Corollary 2.4 follows then from Propositions 3.4 and 3.5.
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