Conjectured polynomial time primality tests for numbers of special forms

Predrag Terzić

Podgorica, Montenegro e-mail: pedja.terzic@hotmail.com

Abstract: Conjectured polynomial time primality tests for numbers of special forms similar to the Riesel primality test for numbers of the form $k \cdot 2^n - 1$ are introduced. Keywords: Primality test, Polynomial time, Prime numbers. AMS Classification: 11A51.

1 Introduction

In number theory the Riesel primality test [1], is the fastest deterministic primality test for numbers of the form $k \cdot 2^n - 1$ with k odd and $k < 2^n$. The test was developed by Hans Riesel and it is based on Lucas-Lehmer test [2]. In this note I present polynomial time primality tests that are similar to the Riesel primality test.

2 Main result

Definition 2.1. Let $P_m(x) = 2^{-m} \cdot \left(\left(x - \sqrt{x^2 - 4} \right)^m + \left(x + \sqrt{x^2 - 4} \right)^m \right)$, where m and x are positive integers.

Conjecture 2.1. Let $N = k \cdot 2^n - 1$ such that n > 2, $3 \mid k, k < 2^n$ and

$$\begin{cases} k \equiv 1 \pmod{10} \text{ with } n \equiv 2,3 \pmod{4} \\ k \equiv 3 \pmod{10} \text{ with } n \equiv 0,3 \pmod{4} \\ k \equiv 7 \pmod{10} \text{ with } n \equiv 1,2 \pmod{4} \\ k \equiv 9 \pmod{10} \text{ with } n \equiv 0,1 \pmod{4} \end{cases}$$

Let
$$S_i = P_2(S_{i-1})$$
 with $S_0 = P_k(3)$, then
 N is prime iff $S_{n-2} \equiv 0 \pmod{N}$

Conjecture 2.2. *Let* $N = k \cdot 2^n - 1$ *such that* $n > 2, 3 \mid k, k < 2^n$ *and*

- $\begin{cases} k \equiv 3 \pmod{42} \text{ with } n \equiv 0, 2 \pmod{3} \\ k \equiv 9 \pmod{42} \text{ with } n \equiv 0 \pmod{3} \\ k \equiv 15 \pmod{42} \text{ with } n \equiv 1 \pmod{3} \\ k \equiv 27 \pmod{42} \text{ with } n \equiv 1, 2 \pmod{3} \\ k \equiv 33 \pmod{42} \text{ with } n \equiv 0, 1 \pmod{3} \\ k \equiv 39 \pmod{42} \text{ with } n \equiv 2 \pmod{3} \end{cases}$
 - Let $S_i = P_2(S_{i-1})$ with $S_0 = P_k(5)$, then N is prime iff $S_{n-2} \equiv 0 \pmod{N}$

Conjecture 2.3. Let $N = k \cdot 2^n + 1$ such that n > 2, $k < 2^n$ and

 $\begin{cases} k \equiv 5, 19 \pmod{42} \text{ with } n \equiv 0 \pmod{3} \\ k \equiv 13, 41 \pmod{42} \text{ with } n \equiv 1 \pmod{3} \\ k \equiv 17, 31 \pmod{42} \text{ with } n \equiv 2 \pmod{3} \\ k \equiv 23, 37 \pmod{42} \text{ with } n \equiv 0, 1 \pmod{3} \\ k \equiv 11, 25 \pmod{42} \text{ with } n \equiv 0, 2 \pmod{3} \\ k \equiv 1, 29 \pmod{42} \text{ with } n \equiv 1, 2 \pmod{3} \end{cases}$

Let $S_i = P_2(S_{i-1})$ with $S_0 = P_k(5)$, then N is prime iff $S_{n-2} \equiv 0 \pmod{N}$

Conjecture 2.4. Let $N = k \cdot 2^n + 1$ such that n > 2, $k < 2^n$ and

 $\begin{cases} k \equiv 1 \pmod{6} \text{ and } k \equiv 1,7 \pmod{10} \text{ with } n \equiv 0 \pmod{4} \\ k \equiv 5 \pmod{6} \text{ and } k \equiv 1,3 \pmod{10} \text{ with } n \equiv 1 \pmod{4} \\ k \equiv 1 \pmod{6} \text{ and } k \equiv 3,9 \pmod{10} \text{ with } n \equiv 2 \pmod{4} \\ k \equiv 5 \pmod{6} \text{ and } k \equiv 7,9 \pmod{10} \text{ with } n \equiv 3 \pmod{4} \end{cases}$

Let $S_i = P_2(S_{i-1})$ with $S_0 = P_k(8)$, then N is prime iff $S_{n-2} \equiv 0 \pmod{N}$

Conjecture 2.5. Let $F = 2^{2^n} + 1$ such that $n \ge 2$. Let $S_i = P_4(S_{i-1})$ with $S_0 = 8$, then

F is prime iff $S_{2^{n-1}-1} \equiv 0 \pmod{F}$

Conjecture 2.6. Let $N = k \cdot 2^n - 3$ such that n > 3, k is odd $k < 2^n$.

Let $S_i = P_2(S_{i-1})$ with $S_0 = P_k(6)$, then N is prime iff $S_{n-1} \equiv -P_1(6) \pmod{N}$

Conjecture 2.7. Let $N = k \cdot 2^n + 3$ such that n > 4, k is odd $k < 2^n$. Let $S_i = P_2(S_{i-1})$ with $S_0 = P_k(6)$, then N is prime iff $S_{n-1} \equiv -P_2(6) \pmod{N}$ **Conjecture 2.8.** Let $N = k \cdot 2^n - 5$ such that n > 4, k is odd $k < 2^n$. Let $S_i = P_2(S_{i-1})$ with $S_0 = P_k(6)$, then N is prime iff $S_{n-1} \equiv -P_2(6) \pmod{N}$ **Conjecture 2.9.** Let $N = k \cdot 2^n + 5$ such that n > 4, k is odd, $3 \nmid k$, $k < 2^n$. Let $S_i = P_2(S_{i-1})$ with $S_0 = P_k(4)$, then N is prime iff $S_{n-1} \equiv -P_2(4) \pmod{N}$ **Conjecture 2.10.** Let $N = k \cdot 2^n - 7$ such that n > 8, k is odd, $k < 2^n$. Let $S_i = P_2(S_{i-1})$ with $S_0 = P_k(6)$, then N is prime iff $S_{n-1} \equiv P_4(6) \pmod{N}$ **Conjecture 2.11.** Let $N = k \cdot 2^n + 7$ such that n > 6, k is odd, $k < 2^n$. Let $S_i = P_2(S_{i-1})$ with $S_0 = P_k(6)$, then N is prime iff $S_{n-1} \equiv P_3(6) \pmod{N}$ **Conjecture 2.12.** Let $N = k \cdot 2^n - 9$ such that n > 5, $k < 2^n$ and $\begin{cases} k \equiv 1 \pmod{6} \text{ with } n \equiv 0 \pmod{2} \\ k \equiv 5 \pmod{6} \text{ with } n \equiv 1 \pmod{2} \end{cases}$ Let $S_i = P_2(S_{i-1})$ with $S_0 = P_k(4)$, then N is prime iff $S_{n-1} \equiv -P_4(4) \pmod{N}$ **Conjecture 2.13.** Let $N = k \cdot 2^n + 9$ such that n > 10, k is odd, $k < 2^n$. Let $S_i = P_2(S_{i-1})$ with $S_0 = P_k(6)$, then N is prime iff $S_{n-1} \equiv P_4(6) \pmod{N}$ **Conjecture 2.14.** Let $N = k \cdot b^n - 1$ such that n > 2, k is odd, $3 \nmid k$, b is even, $3 \nmid b$, $k < b^n$. Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{bk/2}(P_{b/2}(4))$, then N is prime iff $S_{n-2} \equiv 0 \pmod{N}$

Conjecture 2.15. Let $N = k \cdot b^n + 1$ such that n > 2, b is even, $3 \nmid b, 7 \nmid b, k < b^n$ and

 $\begin{cases} k \equiv 5, 19 \pmod{42} \text{ with } n \equiv 0 \pmod{3} \\ k \equiv 13, 41 \pmod{42} \text{ with } n \equiv 1 \pmod{3} \\ k \equiv 17, 31 \pmod{42} \text{ with } n \equiv 2 \pmod{3} \\ k \equiv 23, 37 \pmod{42} \text{ with } n \equiv 0, 1 \pmod{3} \\ k \equiv 11, 25 \pmod{42} \text{ with } n \equiv 0, 2 \pmod{3} \\ k \equiv 1, 29 \pmod{42} \text{ with } n \equiv 1, 2 \pmod{3} \end{cases}$

Let
$$S_i = P_b(S_{i-1})$$
 with $S_0 = P_{bk/2}(P_{b/2}(5))$, then
 N is prime iff $S_{n-2} \equiv 0 \pmod{N}$

Conjecture 2.16. Let $N = k \cdot b^n + 1$ such that n > 2, b is even, $3 \nmid b, 5 \nmid b, k < b^n$ and

 $\begin{cases} k \equiv 1 \pmod{6} \text{ and } k \equiv 1,7 \pmod{10} \text{ with } n \equiv 0 \pmod{4} \\ k \equiv 5 \pmod{6} \text{ and } k \equiv 1,3 \pmod{10} \text{ with } n \equiv 1 \pmod{4} \\ k \equiv 1 \pmod{6} \text{ and } k \equiv 3,9 \pmod{10} \text{ with } n \equiv 2 \pmod{4} \\ k \equiv 5 \pmod{6} \text{ and } k \equiv 7,9 \pmod{10} \text{ with } n \equiv 3 \pmod{4} \end{cases}$

Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{bk/2}(P_{b/2}(8))$, then N is prime iff $S_{n-2} \equiv 0 \pmod{N}$

Conjecture 2.17. Let $N = b^n - b - 1$ such that n > 2, $b \equiv 0, 6 \pmod{8}$.

Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(6)$, then N is prime iff $S_{n-1} \equiv P_{(b+2)/2}(6) \pmod{N}$

Conjecture 2.18. *Let* $N = b^n - b - 1$ *such that* n > 2, $b \equiv 2, 4 \pmod{8}$.

Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(6)$, then N is prime iff $S_{n-1} \equiv -P_{b/2}(6) \pmod{N}$

Conjecture 2.19. Let $N = b^n + b + 1$ such that n > 2, $b \equiv 0, 6 \pmod{8}$.

Let $S_i = P_b(S_{i-1})$ with $S_0 = P_{b/2}(6)$, then N is prime iff $S_{n-1} \equiv P_{b/2}(6) \pmod{N}$

Conjecture 2.20. Let $N = b^n + b + 1$ such that n > 2, $b \equiv 2, 4 \pmod{8}$.

Let
$$S_i = P_b(S_{i-1})$$
 with $S_0 = P_{b/2}(6)$, then
N is prime iff $S_{n-1} \equiv -P_{(b+2)/2}(6) \pmod{N}$

References

- [1] Riesel, H. Lucasian Criteria for the Primality of $N = h \cdot 2^n 1$, *Mathematics of Computation* (American Mathematical Society), Vol. 23(108), 1969, 869–875.
- [2] Crandall, R., C. Pomerance. "Section 4.2.1: The Lucas-Lehmer test", *Prime Numbers:* A Computational Perspective (1st ed.), Berlin: Springer, 2001, 167–170.