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On integer solutions of A5 +B3 = C5 +D3
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Abstract: In this note, we study the diagonal nonhomogeneous symmetric Diophantine equation
of the title, and show that when a solution has been found, a series of other solutions can be
derived. This shows that difference of quintics equals difference of cubics for infinitely many
integers. We do so using a method involving elliptic curves, which makes it possible to naturally
find any solution in a matter of minutes.
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1 Introduction

The study of Diophantine equations has long been of interest to mathematicians. In this work, we
consider

Am +Bn = Ck +D`, (1)

where m,n, k, ` ∈ Z>0. For arbitrary values of m,n, k, and `, there does not seem to be many
results on finding integral solutions to (1). From Dickson’s History [3], it appears that the first,
second, and third homogenous equations of the type (1), i.e., An+Bn = Cn+Dn for n = 2, 3, 4,
have been mainly investigated respectively by Pasternak, Binet, and Euler among others. The
nonhomogeneous special cases of (1) that have been discussed are the classical ones proposed by
Cunningham [3, pp. 698–699], in which m = 5, n = 5, k = 2, and ` = 2, and by Gerardin
[3, p. 566], in which m = 3, n = 2, k = 3, and ` = 2. We note other specific cases have been
also studied, see for example [1, 2].
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In this short note, we study the particular equation of (1) with m = 5, n = 3, k = 5, and
` = 3, namely

A5 +B3 = C5 +D3. (2)

It is easy to see if (A0, B0, C0, D0) is a solution to the Diophantine equation (2), then so is
(µ3A0, µ

5B0, µ
3C0, µ

5D0) for any rational µ. Searching for nontrivial integer solutions with
1 ≤ A,B,C,D ≤ 300, A < C found the solutions (1, 32, 8, 1), (1, 243, 27, 1), (2, 10, 4, 2),
(3, 21, 6, 12), (3, 220, 24, 139), (6, 48, 9, 39), (6, 298, 28, 210), (7, 161, 14, 154), (8, 243, 27, 32),
(9, 39, 6, 48), and (28, 210, 6, 298). Computer searches can be used to find all solutions below a
given bound, however it is challenging to find an infinite family of solutions.

Our main result is to find integral solutions to (2). We use a method, involving the theory of
elliptic curves as a main tool, to find the solutions. In effect, we will show that to any possible
suitable rational parameter t, it corresponds a rank-positive elliptic curveEt so that each generator
Gt of Et leads to an integral solution to (2). Since Et has an infinite number of rational solutions,
this will yield an infinite number of integral solutions to (2). This shows implicitly that difference
of quintics equals difference of cubics for infinitely many integers.

2 An infinite number of integral solutions to (2)

In this section, we compute solutions to (2) and show how to find solutions from generators
on Et.

Our method uses birational transformations to relate the equation (2) to a parametric positive
rank elliptic curve Et. For this, we introduce four new variables x, y, z, t, and set

A = −x+ t, B = x+ y, C = x+ t, D = −x+ y. (3)

Substituting (3) into (2), and then brushing aside the uninteresting possibility x = 0, the
equation (2) becomes

3y2 = x4 + (10t2 − 1)x2 + 5t4, (4)

or, equivalently,
Et : Y

2 = 3X4 + (270t2 − 27)X2 + 1215t4, (5)

where Y = 27y, X = 3x, and t 6= 0.
A short computer search reveals that (5) (or (4)) has a nontrivial solution (A,B,C,D) =

(−4, 80, 12, 64) for t = 4. In the sequel, we take t = 4. (One can pick up another value of t
whose corresponding curve Et has positive rank and get another class of integral solutions.) The
curve (5) thus turns into

Y 2 = 3X4 + 4293X2 + 311040. (6)

This quartic equation has rational point (X, Y ) = (24, 1944) among others. Put Z = X − 24.
Hence, (6) becomes

Y 2 = 3Z4 + 288Z3 + 14661Z2 + 371952Z + 3779136. (7)
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Using the following standard transformations given in Theorem 2.17 of [5]:

Z =
432(9U + 49580)

V
,

Y =
24(−81V 2 − 85376760V − 15498UV + 1784880U2 + 4916352800U + 162U3)

V 2
,

the quartic (7) turns to the cubic

V 2 +
574

3
UV + 1119744V = U3 +

49580

9
U2 − 45349632U − 249826083840, (8)

which is a rank-two elliptic curve with generators P1 = (−6660, 16616) and P2 = (−5724, 41184)
carried out with Sage software ([4]).

Now, completing the square on the left hand side of (8) yields

E4 : W
2 = U3 + 14661U2 + 61772544U + 63630572544, (9)

where W = V + 559872 + (287/3)U , and G1 = (−6660, 84348), G2 = (−5724, 53460) being
generators.

For our next result, recall that the shape of Weierstrass curve requires that an element P be
representable in the form P = (u/v2, w/v3), where u, v, w are integers, with v coprime to uw.

Theorem 2.1. Suppose (u/v2, w/u3) is a rational point on the elliptic curveE4, with u, v, w ∈ Z,
and gcd(v, uw) = 1. Let

A = 4(−3w + 1679616v3 + 287uv)14(3w + 3675024v3 + 685uv),

B = 16(−3w + 1679616v3 + 287uv)23(−36w2 − 132uvw + 10367154302976v6

+6231739104uv4 + 1638384wv3 + 1234544u2v2 + 81u3),

C = −12(−3w + 1679616v3 + 287uv)14(3w + 105264v3 + 37uv),

D = 16(−3w + 1679616v3 + 287uv)23(−45w2 + 132uvw + 3684120v3w

+12042913904640v6 + 6852323736uv4 + 1291657u2v2 + 81u3).

Then (A,B,C,D) is an integral solution to A5 +B3 = C5 +D3.

Proof. By aforementioned relations, we have

x =− 8(3W + 199U + 997704)

−3W + 287U + 1679616
,

y =
24

(−3W + 287U + 1679616)2
{−27W 2 + 1774168W + 54U3 + 842067U2

+ 4361354280U + 7470022735872}.

Substituting in U = u/v2 and W = w/v3, we get

x =− 8(3w + 997704v3 + 199uv)

−3w + 1679616v3 + 287uv
,

y =
24

(−3w + 1679616v3 + 287uv)2
{−27w2 + 1774168wv3 + 7470022735872v6

+ 4361354280uv4 + 842067u2v2 + 54u3}.
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Consequently,

A =
4(3w + 3675024v3 + 685uv)

−3w + 1679616v3 + 287uv
,

B =
16

(−3w + 1679616v3 + 287uv)2
(−36w2 − 132uvw + 1638384v3w

+10367154302976v6 + 6231739104uv4 + 1234544u2v2 + 81u3),

C = −12 3w + 105264v3 + 37uv

−3w + 1679616v3 + 287uv
,

D =
16

(−3w + 1679616v3 + 287uv)2
(−45w2 + 132uvw + 3684120v3w

+12042913904640v6 + 6852323736uv4 + 1291657u2v2 + 81u3).

Using the fact that (µ3A, µ5B, µ3C, µ5D) is a solution to (2) if (A,B,C,D) is, we can elim-
inate the denominators. The result follows immediately by choosing µ = −3w + 1679616v3 +

287uv.

We note that the point G1 + G2 = (−1188, 96228) on E4 gives the solution (A,B,C,D) =

(12, 64,−4, 80) on (2) previously found. Computations show that this theorem yields also posi-
tive integer solutions. For example, the point 2G1 + 2G2 on E4 leads to

(89625865324, 22150923354823326352, 338012683980, 18626242614304094768)

on (2). The point 2G1 gives the solution

(A,B,C,D) = (3850788469738603004, 10325312124840891442240229608512,

701998052118715980, 12487708418886438298641426418928).

3 Conclusion

In this study, we used a method based on elliptic curves to find infinitely many integer solutions
to the diagonal nonhomogeneous symmetric Diophantine equation (2), i.e., A5 +B3 = C5 +D3.
In view of number theory, it means that difference of quintics equals difference of cubics for
infinitely many integers. The equation (2) which we have focused on is in fact the n = 3 case of
the more general equation

A2n−1 +Bn = C2n−1 +Dn. (10)

If we let A = −a+ c, B = a+ b, C = a+ c, and D = −a+ b, then some algebra shows that
when n = 2, the identity

(16c− 16a)3 + (32a2 + 64a+ 96c2)2 = (16a+ 16c)3 + (32a2 − 64a+ 96c2)2,

gives an infinite parameterized family of integral solutions.
It is remarkable that finding integral solutions to (10) for n ≥ 4 would be interesting. Prelim-

inary computer searches have not found any nontrivial solutions.
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